用户名: 密码: 验证码:
生物质基碳水化合物催化转化制乳酸甲酯
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳酸甲酯是一类重要的羟基酯类化合物,主要用作合成香料和除草剂。它又是一类重要的工业溶剂。乳酸甲酯水解后可以制备成平台化合物乳酸。传统的乳酸以生物发酵为主,存在生产周期长、产生大量废弃物、反应条件严格等缺点。随着乳酸及其衍生物的广泛应用,传统的生产方式显然已经不能满足现代需要,近几年来科学家们致力于研究开发新的简单环保的化学方法制备乳酸及其衍生物。
     本文的工作内容是以生物质基碳水化合物为原料,以固体碱、酸性介孔分子筛以及具有酸碱两性的过渡金属氧化物为催化剂在甲醇中制备乳酸甲酯。用XPD、 BET、TEM、CO2-TPD、NH3-TPD、Py-IR、IR等技术详细分析表征了各催化剂的物理化学性质,考察了催化剂的催化活性及其相关影响因素。得到了以下主要结论:
     (1)固体碱催化剂MgO对生物质基碳水化合物转化为乳酸甲酯有催化活性,其催化活性和表面碱性相关。对于不同来源以及不同焙烧温度活化的MgO来说,只具有弱碱性位点的MgO的催化活性最佳。在最优反应条件下乳酸甲酯的产率接近30%。催化剂的稳定性及循环使用研究表明,反应前后催化剂的结构与碱性几乎没有变化,经多次使用,催化活性几乎没有降低。水对MgO的催化活性有不利的影响。
     (2)研究中发现,甲醇对生物质基碳水化合物制乳酸甲酯也有催化作用。对比不同一元醇为溶剂的反应,结果显示甲醇的反应活性与催化活性最佳。这主要是因为甲醇比其他一元醇的极性都大。而非质子传递惰性溶剂正己烷完全没有反应活性。
     (3)制备了具有高度有序介孔结构Sn-MCM-41和部分有序介孔结构的SnO2/SiO2-a,这两种催化剂对生物质基碳水化合物转化成乳酸甲酯都具有较好的催化活性。在最优反应条件下乳酸甲酯的产率在40%左右。中等强度酸性对生成乳酸甲酯有主要作用,分子筛催化剂的总酸量越高催化剂的活性越好。催化剂的稳定性及循环使用研究表明,Sn-MCM-41和SnO2/SiO2-a都具有良好的稳定性,循环使用五次后催化剂的活性改变不大。反应过程中两种催化剂的Sn流失量小于0.15%,TEM与Py-IR结果显示反应前后催化剂的结构以及酸性种类没有明显变化。(4)制备了NiO、Cr2O3、TiO2这几种过渡金属氧化物和稀土金属氧化物La2O3,对于生物质碳基水化合物催化转化成乳酸甲酯的反应,它们的催化活性顺序如下:NiO>La2O3>Cr2O3>TiO2。在最优反应条件下NiO催化葡萄糖制得的乳酸甲酯的产率可达40%。对这几种催化剂的酸碱性的分析表征表明:催化活性主要与催化剂的酸性有关,酸性位点的数目越多,催化剂催化活性越好。催化剂表面碱性与催化剂活性之间没有明显的联系。NiO具有良好的循环使用性能,在反应过程中有约0.15%的Ni流失,循环使用三次后催化剂的催化活性没有显著降低。XRD与Py-IR结果显示反应前后催化剂的晶体结构以及酸性种类没有明显变化。
Methyl lactate is a kind of important hydroxyl ester. It is used in spices and herbicides mainly. In addition, it is a kind of important industrial solvents. And it is widely used in medicine, resin coating, adhesive, cleaning lotion, printing ink, cosmetics, cigarettes, drink, ice cream, and other food industries. Methyl lactate can be hydrolyzed into platform lactic acid. At present, lactic acid is produced by either bacterial fermentation. However, enzyme catalysis processes show many drawbacks, such as long reaction time, formation of large amount of calcium sulfate wastes, and very strict reaction condition. Currently, the growing demand for lactic acid based materials calls attention to the improvement of unpractical conventional processes with an efficient and sustainable chemical route used for lactic acid production.
     In this work, biomass-derived carbohydrates were used as substrates. Solid base, acidic zeolites, amphipathic transition metal oxide were used as catalysts. Catalysts were characterized by XRD, BET, TEM, CO2-TPD, NH3-TPD, and Py-IR. The influence factors of catalytic activity were researched. We prove the following conclusions:
     (1) Magnesium oxide can be used as solid base catalyst for the production of methyl lactate from biomass-derived carbohydrate in methanol for the first time. MgO with the highest concentration of weakly basic sites was found to show the highest catalytic activity for the conversion of sugars to methyl lactate. The yield of methyl lactate reached nearly30%under optimal reaction conditions. The catalyst can be reused without deactivation for many times. Water showed negative effect to the formation of methyl lactate.
     (2) Methanol also showed catalytic activity in this chemical system. Different monohydric alcohols were used as solvent for the blank run reactions. And methanol showed the best catalytic activity. When hexane, a kind of proton transfer inert solvent, was used as solvent, no methyl lactate was detected.
     (3) Sn-MCM-41and SnO2/SiO2-a with only partly MCM-41structure were prepared. Both catalysts showed high catalytic activity for the conversion of sugars to methyl lactate. The yield of methyl lactate reached nearly40%under optimal reaction conditions. The methyl lactate yield was closely related to reaction temperature, reaction times, and the type together with the amount of the acid sites of the catalyst. The catalytic activity was improved with the increase of the total acid content of catalysts. The acidic sites and mesoporous structures of reused catalysts did not change much. The catalysts were active and can be reused without significant decrease in the catalytic activity after being used for five recycles. The TEM images and Py-IR of reused catalysts indicated unchanged mesoporous structures and acidic sites.
     (4) NiO, La2O3, Cr2O3, and TiO2were prepared. Their catalytic activities were in following order:NiO> La2O3> Cr2O3> TiO2. The yield of methyl lactate reached nearly40%under optimal reaction conditions with NiO as catalyst. The catalytic activity was improved with the increase of the total acid content of catalysts. The base content of catalysts did not show significant influence in catalytic activity. The catalysts were active and can be reused without significant decrease in the catalytic activity after being used for three recycles. The XRD pattern and Py-IR of reused catalyst indicated unchanged crystal structures and acidic sites.
引文
1. J. N. Chheda, G. W. Huber and J. A. Dumesic, Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals, Angewandte Chemie-International Edition,2007,46(38):7164-7183.
    2. D. R. Keshwani and J. J. Cheng, Switchgrass for bioethanol and other value-added applications:A review, Bioresource Technology,2009,100(4): 1515-1523.
    3. R. E. H. Sims, W. Mabee, J. N. Saddler and M. Taylor, An overview of second generation biofuel technologies, Bioresource Technology,2010,101(6): 1570-1580.
    4. R. M. West, E. L. Kunkes, D. A. Simonetti and J. A. Dumesic, Catalytic conversion of biomass-derived carbohydrates to fuels and chemicals by formation and upgrading of mono-functional hydrocarbon intermediates, Catalysis Today, 2009,147(2):115-125.
    5. P. N. R. Vennestrom, C. M. Osmundsen, C. H. Christensen and E. Taarning, Beyond Petrochemicals:The Renewable Chemicals Industry, Angewandte Chemie-International Edition,2011,50(45):10502-10509.
    6. J. L. Iriarte, C. A. Vargas, F. J. Tapia, R. Bermudez and R. E. Urrutia, Primary production and plankton carbon biomass in a river-influenced upwelling area off Concepcion, Chile, Progress in Oceanography,2012,92-9597-109.
    7. A. Onda, T. Ochi and K. Yanagisawa, Hydrolysis of Cellulose Selectively into Glucose Over Sulfonated Activated-Carbon Catalyst Under Hydrothermal Conditions, Kyoto, Japan,2008.
    8. J. Hegner, K. C. Pereira, B. DeBoef and B. L. Lucht, Conversion of cellulose to glucose and levulinic acid via solid-supported acid catalysis, Tetrahedron Letters, 2010,51(17):2356-2358.
    9. S. Kudo, Z. W. Zhou, K. Norinaga and J. Hayashi, Efficient levoglucosenone production by catalytic pyrolysis of cellulose mixed with ionic liquid, Green Chemistry,2011,13(11):3306-3311.
    10. X. Zhang, M. B. Tu and M. G. Paice, Routes to Potential Bioproducts from Lignocellulosic Biomass Lignin and Hemicelluloses, Bioenergy Research,2011, 4(4):246-257.
    11. G. W. Huber, S. Iborra and A. Corma, Synthesis of transportation fuels from biomass:Chemistry, catalysts, and engineering, Chemical Reviews,2006,106(9): 4044-4098.
    12. T. A. Hsu, M. R. Ladisch and G. T. Tsao, Alcohol from Cellulose, Chemtech, 1980,10(5):315-319.
    13. R. Gunawan, X. Li, A. Larcher, X. Hu, D. Mourant, W. Chaiwat, H. W. Wu and C. Z. Li, Hydrolysis and glycosidation of sugars during the esterification of fast pyrolysis bio-oil. Fuel,2012,95(1):146-151.
    14. 田宜水,赵立欣,孙丽英and孟海波,农业生物质能资源分析与评价,中国工程科学,2011,13(2):24-28.
    15. P. T. Williams and J. Onwudili, Subcritical and supercritical water gasification of cellulose, starch, glucose, and biomass waste, Energy & Fuels,2006,20(3): 1259-1265.
    16. R. Rinaldi and F. Schuth, Acid Hydrolysis of Cellulose as the Entry Point into Biorefinery Schemes, Chemsuschem,2009,2(12):1096-1107.
    17. M. K. Shukla, R. Lal and M. Ebinger, Principal component analysis for predicting corn biomass and grain yields, Soil Science,2004,169(3):215-224.
    18. C. A. Grob, Mechanisms and Stereochemistry of Heterolytic Fragmentation, Angewandte Chemie International Edition in English,1969,8(8):535-546.
    19. V. A. Yaylayan, A. A. Ismail and S. Mandeville, Quantitative-Determination of the Effect of pH and Temperature on the Keto Form of D-Fructose by Ft Ir Spectroscopy, Carbohydrate Research,1993,248():355-360.
    20. Y. P. Zhu, J. Zajicek and A. S. Serianni, Acyclic forms of 1-C-13 aldohexoses in aqueous solution:Quantitation by C-13 NMR and deuterium isotope effects on tautomeric equilibria, Journal of Organic Chemistry,2001,66(19):6244-6251.
    21. J. I. Seeman, Effect of Conformational Change on Reactivity in Organic-Chemistry-Evaluations, Applications, and Extensions of Curtin-Hammett Winstein-Holness Kinetics, Chemical Reviews,1983,83(2): 83-134.
    22. J. B. Paine, Y. B. Pithawalla and J. D. Naworal, Carbohydrate pyrolysis mechanisms from isotopic labeling. Part 2. The pyrolysis of D-glucose:General disconnective analysis and the formation of C-1 and C-2 carbonyl compounds by electrocyclic fragmentation mechanisms, Journal of Analytical and Applied Pyrolysis,2008,82(1):10-41.
    23. J. Lecomte, A. Finiels and C. Moreau, Kinetic study of the isomerization of glucose into fructose in the presence of anion-modified hydrotalcites, Starch-Starke,2002,54(2):75-79.
    24. P. Dais and A. S. Perlin, Intramolecular hydrogen-bonding and solvation contributions to the relative stability of the beta-furanose form of D-fructose indimethylsulfoxide, Carbohydrate Research,1987,169(0):159-169.
    25. M. Bicker, D. Kaiser, L. Ott and H. Vogel, Dehydration of D-fructose to hydroxymethylfurfural in sub- and supercritical fluids, Journal of Supercritical Fluids,2005,36(2):118-126.
    26. F. Franks, Physical-Chemistry of Small Carbohydrates-Equilibrium Solution Properties, Pure and Applied Chemistry,1987,59(9):1189-1202.
    27. A. T. Nielsen and W. J. Houlihan, in Organic Reactions, John Wiley & Sons, Inc., 2004.
    28. G. R. Ponder and G. N. Richards. Mechanisms of Pyrolysis of Polysaccharides.7. Pyrolysis of Some C-13-Labeled Glucans-A Mechanistic Study, Carbohydrate Research,1993,244(1):27-47.
    29. M. R. Nimlos, S. J. Blanksby, G. B. Ellison and R. J. Evans, Enhancement of 1.2-dehydration of alcohols by alkali cations and protons:a model for dehydration of carbohydrates, Journal of Analytical and Applied Pyrolysis,2003,66(1-2): 3-27.
    30. M. R. Nimlos, S. J. Blanksby, X. H. Qian, M. E. Himmel and D. K. Johnson, Mechanisms of glycerol dehydration, Journal of Physical Chemistry A,2006, 110(18):6145-6156.
    31. W. B. Smith, Ethylene glycol to acetaldehyde-dehydration or a concerted mechanism, Tetrahedron,2002,58(11):2091-2094.
    32. Z. Wang, in Comprehensive Organic Name Reactions and Reagents, John Wiley & Sons, Inc.,2010, pp.556-577.
    33. J. B. Paine, Y. B. Pithawalla and J. D. Naworal, Carbohydrate pyrolysis mechanisms from isotopic labeling. Part 3. The Pyrolysis of D-glucose: Formation of C-3 and C-4 carbonyl compounds and a cyclopentenedione isomer by electrocyclic fragmentation mechanisms, Journal of Analytical and Applied Pyrolysis,2008,82(1):42-69.
    34. P. Gallezot, N. Nicolaus, G. Fleche, P. Fuertes and A. Perrard, Glucose hydrogenation on ruthenium catalysts in a trickle-bed reactor, Journal of Catalysis, 1998,180(1):51-55.
    35. 吕启东,以发展平台化学品为切入点延伸石化产品链,石油化工技术经济,2003,(05):1-4.
    36. M. F. Demirbas and M. Balat, Recent advances on the production and utilization trends of bio-fuels:A global perspective, Energy Conversion and Management, 2006,47(15-16):2371-2381.
    37. P. Gallezot, Conversion of biomass to selected chemical products, Chemical Society Reviews,2012,41(4):1538-1558.
    38. A. K. Chandel, S. S. da Silva, W. Carvalho and O. V. Singh, Sugarcane bagasse and leaves:foreseeable biomass of biofuel and bio-products, Journal of Chemical Technology and Biotechnology,2012,87(1):11-20.
    39. E. Taarning, I. S. Nielsen, K. Egeblad, R. Madsen and C. H. Christensen, Chemicals from renewables:Aerobic oxidation of furfural and hydroxymethylfurfural over gold catalysts, Chemsuschem,2008,1(1-2):75-78.
    40. 王东,糠醛产业现状及其衍生物的生产与应用(二),化工中间体,2003,(21):19-22+26.
    41. 王东,糠醛产业现状及其衍生物的生产与应用(一),化工中间体,2003,(20):16-18.
    42. A. Gimenez-Arnau, J. F. Silvestre, P. Mercader, J. De la Cuadra, I. Ballester, F. Gallardo, R. M. Pujol, E. Zimerson and M. Bruze, Shoe contact dermatitis from dimethyl fumarate:clinical manifestations, patch test results, chemical analysis, and source of exposure, Contact Dermatitis,2009,61(5):249-260.
    43. 陈军,糠醛生产技术进展,贵州化工,2005,(02):6-8.
    44. 江俊芳,糠醛的生产及应用,化学工程与装备,2009,(10):137-139.
    45. A. S. Mamman, J. M. Lee, Y. C. Kim, I. T. Hwang, N. J. Park, Y. K. Hwang, J. S. Chang and J. S. Hwang, Furfural:Hemicellulose/xylosederived biochemical, Biofuels Bioproducts & Biorefining-Biofpr,2008,2(5):438-454.
    46. D. Montane, J. Salvado, C. Torras and X. Farriol, High-temperature dilute-acid hydrolysis of olive stones for furfural production, Biomass & Bioenergy,2002, 22(4):295-304.
    47. S. Yu, H. M. Brown, X. W. Huang, X. D. Zhou, J. E. Amonette and Z. C. Zhang, Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatile platform chemical, Applied Catalysis a-General,2009,361(1-2):117-122.
    48. S. Dutta, S. De, A. K. Patra, M. Sasidharan. A. Bhaumik and B. Saha, Microwave assisted rapid conversion of carbohydrates into 5-hydroxymethylfurfural catalyzed by mesoporous TiO2 nanoparticles, Applied Catalysis a-General,2011, 409133-139.
    49. H. J. H. Fenton and M. Gostling, Derivatives of methylfurfural, Journal of the Chemical Society,1901,79807-816.
    50. H. J. H. Fenton and F. Robinson, Homologues of furfuraldehyde, Journal of the Chemical Society,1909,951334-1340.
    51. X. L. Tong, Y. Ma and Y. D. Li, Biomass into chemicals:Conversion of sugars to furan derivatives by catalytic processes, Applied Catalysis a-General,2010, 385(1-2):1-13.
    52. J. A. Middendorp, Regarding oxymethylfurfurol, Recueil Des Travaux Chimiques Des Pays-Bas Et De La Belgique,1919,381-71.
    53. T. Reichstein, Note on 5-oxymethyl-furfurol, Helvetica Chimica Acta,1926, 91066-1068.
    54. T. Reichstein and H. Zschokke, On 5-methyl-furfuryl-chloride, Helvetica Chimica Acta,1932,15249-253.
    55. W. N. Haworth and W. G. M. Jones, The conversion of sucrose into furan compounds. Part I.5-hydroxymethylfurfuraldehyde and some derivatives, Journal of the Chemical Society,1944,667-670.
    56. H. E. Vandam, A. P. G. Kieboom and H. Vanbekkum, The Conversion of Fructose and Glucose in Acidic Media-Formation of Hydroxymethylfurfural, Starch-Starke,1986,38(3):95-101.
    57. L. Cottier, G. Descotes, J. Lewkowski and R. Skowronski, Oxidation of 5-hydroxymethylfurfural under sonochemical conditions, Polish Journal of Chemistry,1994,68(4):693-698.
    58. M. J. Antal, W. S. L. Mok and G. N. Richards, Kinetic-studies of the reactions of ketoses and aldoses in water at high-temperature.1. Mechanism of formation of 5-(Hydroxymethyl)-2-furaldehyde from D-fructose And sucrose, Carbohydrate Research,1990,199(1):91-109.
    59. Y. Roman-Leshkov, J. N. Chheda and J. A. Dumesic, Phase modifiers promote efficient production of hydroxymethylfurfural from fructose, Science,2006, 312(5782):1933-1937.
    60. H. P. Yan, Y. Yang. D. M. Tong, X. Xiang and C. W. Hu, Catalytic conversion of glucose to 5-hydroxymethylfurfural over SO42-/ZrO2 and SO42-/ZrO2-Al2O3 solid acid catalysts, Catalysis Communications,2009,10(11):1558-1563.
    61. H. Jadhav. E. Taarning, C. M. Pedersen and M. Bols, Conversion of D-glucose into 5-hydroxymethylfurfural (HMF) using zeolite in [Bmim]Cl or tetrabutylammonium chloride (TBAC)/CrCl2, Tetrahedron Letters,2012,53(8): 983-985.
    62. O. Casanova, S. Iborra and A. Corma, Chemicals from biomass:Etherification of 5-hydroxymethyl-2-furfural (HMF) into 5,5'(oxy-bis(methylene))bis-2-furfural (OBMF) with solid catalysts, Journal of Catalysis,2010,275(2):236-242.
    63. S. Q. Hu, Z. F. Zhang, Y. X. Zhou, J. L. Song, H. L. Fan and B. X. Han, Direct conversion of inulin to 5-hydroxymethylfurfural in biorenewable ionic liquids. Green Chemistry,2009,11(6):873-877.
    64. X. Guo, Q. Cao, Y. Jiang, J. Guan, X. Wang and X. Mu, Selective dehydration of fructose to 5-hydroxymethylfurfural catalyzed by mesoporous SBA-15-SO3H in ionic liquid BmimCl, Carbohydrate Research,2012, In Press(O):
    65. Y. Yang, X. Xiang, J. Luo, W. Y. Qi, H. P. Yan, G. Y. Li and C. W. Hu, Pyrolysis of Glucose over Two Amphoteric Metal Oxides, Chemical Research in Chinese Universities,2009,25(2):234-238.
    66. X. H. Qi, M. Watanabe, T. M. Aida and R. L. Smith, Catalytical conversion of fructose and glucose into 5-hydroxymethylfurfural in hot compressed water by microwave heating, Catalysis Communications,2008,9(13):2244-2249.
    67. R. H. Leonard, Levulinic Acid as a Basic Chemical Raw Material, Industrial and Engineering Chemistry,1956,48(8):1331-1341.
    68. B. V. Timokhin, V. A. Baransky and G. D. Eliseeva, Levulinic acid in organic synthesis, Uspekhi Khimii,1999,68(1):80-93.
    69. 郭珍,徐福利and汪有科,乙酰丙酸钾对黄土高原山地红枣生长发育及产量品质的影响,北方园艺,2009,(10):48-51.
    70. 常春,生物质制备新型平台化合物乙酰丙酸的研究,浙江大学博士学位论文,2007,
    71. 蔡磊,吕秀阳,何龙,夏文莉and任其龙,新平台化合物乙酰丙酸制备方法研究进展,现代化工,2003,(04):14-16.
    72. 李宏乾,in中国化工报,2003,p.T00.
    73. W. Zeng, D. G. Cheng, H. H. Zhang, F. Q. Chen and X. L. Zhan, Dehydration of glucose to levulinic acid over MFI-type zeolite in subcritical water at moderate conditions, Reaction Kinetics Mechanisms and Catalysis,2010,100(2):377-384.
    74. J. Potvin, E. Sorlien, J. Hegner, B. DeBoef and B. L. Lucht, Effect of NaCl on the conversion of cellulose to glucose and levulinic acid via solid supported acid catalysis, Tetrahedron Letters,2011,52(44):5891-5893.
    75. L. C. Peng, L. Lin, J. H. Zhang, J. P. Zhuang, B. X. Zhang and Y. Gong, Catalytic Conversion of Cellulose to Levulinic Acid by Metal Chlorides, Molecules,2010, 15(8):5258-5272.
    76. P. Raspor and D. Goranovic, Biotechnological applications of acetic acid bacteria, Critical Reviews in Biotechnology,2008,28(2):101-124.
    77. V. Bilska, The use of acetic acid bacteria in biotechnology for the production of organic acids, Chemicke Listy,1997,91(7):483-486.
    78. Y. H. Hsieh, N. Weinberg, K. Yang, C. K. Kim, Z. Shi and S. Wolfe, Hydration of the carbonyl group-Acetic acid catalysis in the co-operative mechanism, Canadian Journal of Chemistry-Revue Canadienne De Chimie,2005,83(6): 769-785.
    79. K. Sano, H. Uchida and S. Wakabayashi, A new process for acetic acid production by direct oxidation of ethylene, Catalysis Surveys from Japan,1999, 3(1):55-60.
    80. A. Aggrey, P. Dare, R. Lei and D. Gapes, Evaluation of a two-stage hydrothermal process for enhancing acetic acid production using municipal biosolids, Water Science and Technology,2012,65(1):149-155.
    81. Z. Shen, J. F. Zhou, X. F. Zhou and Y. L. Zhang, The production of acetic acid from microalgae under hydrothermal conditions, Applied Energy,2011,88(10): 3444.3447.
    82. X. Yan, F. Jin, K. Tohji and H. Enomoto, in Water Dynamics, eds. K. Tohji, N. Tsuchiya and B. Jeyadevan, Amer Inst Physics, Melville,2007, vol.898, pp. 182-185.
    83. C. Delhomme, D. Weuster-Botz and F. E. Kuhn, Succinic acid from renewable resources as a C(4) building-block chemical-a review of the catalytic possibilities in aqueous media, Green Chemistry,2009,11(1):13-26.
    84. A. Cukalovic and C. V, Stevens, Feasibility of production methods for succinic acid derivatives:a marriage of renewable resources and chemical technology, Biofuels Bioproducts & Biorefining-Biofpr,2008,2(6):505-529.
    85. J. C. Serrano-Ruiz, R. Luque and A. Sepulveda-Escribano, Transformations of biomass-derived platform molecules:from high added-value chemicals to fuels via aqueous-phase processing, Chemical Society Reviews,2011,40(11): 5266-5281.
    86. V. F. Wendisch, M. Bott and B. J. Eikmanns, Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids, Current Opinion in Microbiology, 2006,9(3):268-274.
    87. Y. Tokiwa and B. P. Caiabia, Biological production of functional chemicals from renewable resources, Canadian Journal of Chemistry-Revue Canadienne De Chimie,2008,86(6):548-555.
    88. M. P. Dorado, S. K. C. Lin, A. Koutinas, C. Y. Du, R. H. Wang and C. Webb, Cereal-based biorefinery development:Utilisation of wheat milling by-products for the production of succinic acid, Journal of Biotechnology,2009,143(1): 51-59.
    89. R. Luque, C. S. K. Lin, C. Y. Du, D. J. Macquarrie, A. Koutinas, R. H. Wang, C. Webb and J. H. Clark, Chemical transformations of succinic acid recovered from fermentation broths by a novel direct vacuum distillation-crystallisation method, Green Chemistry,2009,11(2):193-200.
    90. R. Datta and M. Henry, Lactic acid:recent advances in products, processes and technologies-a review. Journal of Chemical Technology and Biotechnology, 2006,81(7):1119-1129.
    91. G. Epane, J. C. Laguerre, A. Wadouachi and D. Marek, Microwave-assisted conversion of D-glucose into lactic acid under solvent-free conditions, Green Chemistry,2010,12(3):502-506.
    92. 江镇海,聚乳酸的应用与市场前景,上海化工,2010,(02):37-38.
    93. 徐兆瑜,2-羟基丙酸及其衍生物的应用与市场前景,化学工业与工程技术,2002,(05):19-23+11.
    94. 齐宏秀,乳酸的应用及生产概况,辽宁化工,1996,(01):20-21.
    95. R. P. John, A. G.S, K. M. Nampoothiri and A. Pandey, Direct lactic acid fermentation:Focus on simultaneous saccharification and lactic acid production, Biotechnology Advances,2009,27(2):145-152.
    96. 刘喆,我国乳酸的生产技术及研发状况,河南化工,2010,(07):29-31.
    97. J. Pintado, J. P. Guyot and M. Raimbault, Lactic acid production from mussel processing wastes with an amylolytic bacterial strain, Enzyme and Microbial Technology,1999,24(8-9):590-598.
    98. Q. Wang, J.-y. Narita, N. Ren, T. Fukushima, Y. Ohsumi, K. Kusano, Y. Shirai and H. I. Ogawa, Effect of pH Adjustment on Preservation of Kitchen Waste Used for Producing Lactic Acid, Water, Air,& Soil Pollution,2003,144(1): 405-418.
    99. K. Nakasaki, N. Akakura, T. Adachi and T. Akiyama, Use of Wastewater Sludge as a Raw Material for Production of 1-Lactic Acid, Environmental Science & Technology,1998,33(1):198-200.
    100. Y. Oda, B.-S. Park, K.-H. Moon and K. Tonomura, Recycling of bakery wastes using an amylolytic lactic acid bacterium, Bioresource Technology,1997,60(2): 101-106.
    101. K. Sakai, Y. Murata, H. Yamazumi, Y. Tau, M. Mori, M. Moriguchi and Y. Shirai, Selective Proliferation of Lactic Acid Bacteria and Accumulation of Lactic Acid during Open Fermentation of Kitchen Refuse with Intermittent pH Adjustment, Food Science and Technology Research,2000,6(2):140-145.
    102. K. L. Wasewar, A. A. Yawalkar, J. A. Moulijn and V. G. Pangarkar, Fermentation of glucose to lactic acid coupled with reactive extraction:A review, Industrial & Engineering Chemistry Research,2004,43(19):5969-5982.
    103. P. P. Pescarmona, K. P. F. Janssen, C. Delaet, C. Stroobants, K. Houthoofd, A. Philippaerts, C. De Jonghe, J. S. Paul, P. A. Jacobs and B. F. Sels, Zeolite-catalysed conversion of C-3 sugars to alkyl lactates, Green Chemistry, 2010,12(6):1083-1089.
    104. P. C. Wang, Y. Masui and M. Onaka, Conversion of triose sugars with alcohols to alkyl lactates catalyzed by Bronsted acid tin ion-exchanged montmorillonite, Applied Catalysis B-Environmental,2011,107(1-2):135-139.
    105. E. Taarning, S. Saravanamurugan, M. S. Holm, J. M. Xiong, R. M. West and C. H. Christensen, Zeolite-Catalyzed Isomerization of Triose Sugars, Chemsuschem, 2009,2(7):625-627.
    106. T. M. Aida, K. Tajima, M. Watanabe, Y. Saito, K. Kuroda, T. Nonaka, H. Hattori, R. L. Smith and K. Arai, Reactions of D-fructose in water at temperatures up to 400℃ and pressures up to 100 MPa, Journal of Supercritical Fluids,2007,42(1s): 110-119.
    107. C. B. Rasrendra, I. Makertihartha, S. Adisasmito and H. J. Heeres, Green Chemicals from d-glucose:Systematic Studies on Catalytic Effects of Inorganic Salts on the Chemo-Selectivity and Yield in Aqueous Solutions, Topics in Catalysis,2010,53(15-18):1241-1247.
    108. Y. Hayashi and Y. Sasaki, Tin-catalyzed conversion of trioses to alkyl lactates in alcohol solution, Chemical Communications,2005,41(21):2716-2718.
    109. A. Onda, T. Ochi, K. Kajiyoshi and K. Yanagisawa, Lactic acid production from glucose over activated hydrotalcites as solid base catalysts in water, Catalysis Communications,2008,9(6):1050-1053.
    110. A. Onda, T. Ochi, K. Kajiyoshi and K. Yanagisawa, A new chemical process for catalytic conversion Of D-glucose into lactic acid and gluconic acid, Applied Catalysis a-General,2008,343(1-2):49-54.
    111. X. Y. Yan, F. M. Jin, K. Tohji, A. Kishita and H. Enomoto, Hydrothermal Conversion of Carbohydrate Biomass to Lactic Acid, Aiche Journal 1.955,2010, 56(10):2727-2733.
    112. M. S. Holm, S. Saravanamurugan and E. Taarning, Conversion of Sugars to Lactic Acid Derivatives Using Heterogeneous Zeotype Catalysts, Science,2010, 328(5978):602-605.
    113. 万忠东,生物质能利用发展方向探讨,能源与节能,2011,(07):20-21.
    114. 景元琢,董玉平,盖超,郭飞强and董磊,生物质固化成型技术研究进展与展望,中国工程科学,2011,(02):72-77.
    115. 乔淑滨,生物质能的利用及生物质型煤,应用能源技术,2003,(03):10-11.
    116. 赵欣儒and张国琮,生物质干馏热解工艺的设计与实现,河北省科学院学报,2009,(02):54-56.
    117. 彭武厚,陆鑫,唐丽卿and钟澂,生物质能的气化能转化及其作用,上海节能,2007,(04):12-14+29.
    118. J. D. Adjaye and N. N. Bakhshi, Catalytic conversion of a biomass-derived oil to fuels and chemicals.1. model compound Studies and reaction pathways, Biomass & Bioenergy,1995,8(3):131-149.
    119. M. Bertero, G. de la Puente and U. Sedran, Fuels from bio-oils:Bio-oil production from different residual sources, characterization and thermal conditioning, Fuel,2012,95(1):263-271.
    120. 楼.辉.郑小明,生物质热解油品位催化提升的思考和初步进展,催化学报,Chinese Journal of Catalysis,2009,30(8):765-769.
    121. W. Li, C. Pan, L. Sheng, Z. Liu, P. Chen, H. Lou and X. Zheng, Upgrading of high-boiling fraction of bio-oil in supercritical methanol, Bioresource Technology, 2011,102(19):9223-9228.
    122. W. Li, C. Pan, Q. Zhang, Z. Liu, J. Peng, P. Chen, H. Lou and X. Zheng, Upgrading of low-boiling fraction of bio-oil in supercritical methanol and reaction network, Bioresource Technology,2011,102(7):4884-4889.
    123. 詹慧龙,严昌宇and杨照,中国农业生物质能产业发展研究,中国农学通报,2010.(23):397-402.
    124. R. A. Khan, A. N. Khan, M. Ahmed, M. R. Khan, M. S. Shah, N. Azam, F. Sadullah, F. Dian, S. Ullah and N. Khan, Bioethanol sources in Pakistan:A renewable energy resource, African Journal of Biotechnology,2011,10(86): 19850-19854.
    125. R. C. Kuhad, R. Gupta, Y. P. Khasa, A. Singh and Y. H. P. Zhang, Bioethanol production from pentose sugars:Current status and future prospects, Renewable & Sustainable Energy Reviews,2011,15(9):4950-4962.
    126. R. L. Huang, R. X. Su, W. Qi and Z. M. He, Bioconversion of Lignocellulose into Bioethanol:Process Intensification and Mechanism Research, Bioenergy Research,2011,4(4):225-245.
    127. R. Jothiramalingam and M. K. Wang, Review of Recent Developments in Solid Acid, Base, and Enzyme Catalysts (Heterogeneous) for Biodiesel Production via Transesterification, Industrial & Engineering Chemistry Research,2009,48(13): 6162-6172.
    128. S. K. Hoekman, A. Broch, C. Robbins, E. Ceniceros and M. Natarajan, Review of biodiesel composition, properties, and specifications, Renewable & Sustainable Energy Reviews,2012,16(1):143-169.
    129. M. Kouzu and J. Hidaka, Transesterification of vegetable oil into biodiesel catalyzed by CaO:A review, Fuel,2012,93(1):1-12.
    130. A. K. Endalew, Y. Kiros and R. Zanzi, Inorganic heterogeneous catalysts for biodiesel production from vegetable oils, Biomass & Bioenergy,2011,35(9): 3787-3809.
    131.司耀彬and马传国,酯交换法制备生物柴油研究进展,中国油脂,2006,(11):60-64.
    132. B. H. Zhang, Y. Q. Weng, H. Xu and Z. P. Mao, Enzyme immobilization for biodiesel production, Applied Microbiology and Biotechnology,2012,93(1): 61-70.
    133. D. H. Yu, C. M. Wang, Y. N. Yin, A. J. Zhang, G. Gao and X. X. Fang, A synergistic effect of microwave irradiation and ionic liquids on enzyme-catalyzed biodiesel production, Green Chemistry,2011,13(7):1869-1875.
    134.沈介发,张跃,严生虎,刘建武,张爱淮and郭文甲,乳酸甲酯的合成研究,精细化工中间体,2007,(04):22-23+31.
    135.钱志良,胡军and雷肇祖,乳酸的工业化生产、应用和市场,工业微生物,2001,(02):49-53.
    136.李望,超临界流体中生物质油分级精制方法的研究,浙江大学博士学位论文,2011,
    137. T. Nishikawa, S. Suzuki, H. Kubo and H. Ohtani, On-column isomerization of sugars during high-performance liquid chromatography:Analysis of the elution profile, Journal of Chromatography A,1996,720(1-2):167-172.
    138. G. Dewit, J. J. Devlieger, A. C. Kockvandalen, R. Heus, R. Laroy, A. J. Vanhengstum, A. P. G. Kieboom and H. Vanbekkum, Catalytic Dehydrogenation of Reducing Sugars in Alkaline-Solution, Carbohydrate Research,1981,91(2): 125-138.
    139. B. Y. Yang and R. Montgomery, Alkaline degradation of glucose:Effect of initial concentration of reactants, Carbohydrate Research,1996,280(1):27-45.
    140. A. V. Ellis and M. A. Wilson, Carbon exchange in hot alkaline degradation of glucose, Journal of Organic Chemistry,2002,67(24):8469-8474.
    141. F. M. Jin, Z. Y. Zhou, H. Enomoto, T. Moriya and H. Higashijima, Conversion mechanism of cellulosic biomass to lactic acid in subcritical water and acid-base catalytic effect of subcritical water, Chemistry Letters,2004,33(2):126-127.
    142. X. Y. Yan, F. M. Jin, K. Tohji, T. Moriya and H. Enomoto, Production of lactic acid from glucose by alkaline hydrothermal reaction, Journal of Materials Science, 2007,42(24):9995-9999.
    143. M. A. Aramendia, V. Borau, C. Jimenez, J. M. Marinas, A. Porras and F. J. Urbano, Synthesis and characterization of various MgO and related systems, Journal of Materials Chemistry,1996,6(12):1943-1949.
    144. L. Yan, J. Zhuang, X. M. Sun, Z. X. Deng and Y. D. Li, Formation of rod-like Mg(OH)(2) nanocrystallites under hydrothermal conditions and the conversion to MgO nanorods by thermal dehydration, Materials Chemistry and Physics,2002, 76(2):119-122.
    145. H. Hattori, Solid base catalysts:generation of basic sites and application to organic synthesis, Applied Catalysis a-General,2001,222(1-2):247-259.
    146. R. M. West, M. S. Holm, S. Saravanamurugan, J. M. Xiong, Z. Beversdorf, E. Taarning and C. H. Christensen, Zeolite H-USY for the production of lactic acid and methyl lactate from C-3-sugars, Journal of Catalysis,2010,269(1):122-130.
    147. Y. Roman-Leshkov, M. Moliner, J. A. Labinger and M. E. Davis, Mechanism of Glucose Isomerization Using a Solid Lewis Acid Catalyst in Water, Angewandte Chemie International Edition,2010,49(47):8954-8957.
    148. F. M. Jin and H. Enomoto, Rapid and highly selective conversion of biomass into value-added products in hydrothermal conditions:chemistry of acid/base-catalysed and oxidation reactions, Energy & Environmental Science 9.446,2011,4(2):382-397.
    149. B. E. Hoogenboom, A history of the double-bond rule, Journal of Chemical Education,1998,75(5):596-603.
    150. S. Matsuoka, H. Kawamoto and S. Saka, Retro-aldol-type fragmentation of reducing sugars preferentially occurring in polyether at high temperature:Role of the ether oxygen as a base catalyst, Journal of Analytical and Applied Pyrolysis, 2012,93(0):24-32.
    151. Y. Yu and H. W. Wu, Kinetics and Mechanism of Glucose Decomposition in Hot-Compressed Water:Effect of Initial Glucose Concentration, Industrial & Engineering Chemistry Research,2011,50(18):10500-10508.
    152. M. Sasaki, K. Goto, K. Tajima, T. Adschiri and K. Arai, Rapid and selective retro-aldol condensation of glucose to glycolaldehyde in supercritical water, Green Chemistry,2002,4(3):285-287.
    153. W. Puterbaugh and W. S. Gaugh, Effect of Alkali Cation Upom Rate of Benzilic Acid Rearrangement, Journal of Organic Chemistry,1961,26(9):3513-3515.
    154. A. Corma, M. T. Navarro and M. Renz, Lewis acidic Sn(Ⅳ) centers-grafted onto MCM-41-as catalytic sites for the Baeyer-Villiger oxidation with hydrogen peroxide, Journal of Catalysis,2003,219(1):242-246.
    155. P. Wu, L. Li, Q. Yu, G. Wu and N. Guan, Study on Pt/Al-MCM-41 for NO selective reduction by hydrogen, Catalysis Today,2010,158(3-4):228-234.
    156. P. G. Harrison, N. C. Lloyd, W. Daniell, C. Bailey and W. Azelee, Evolution of microstructure during the thermal activation of chromium-promoted tin(Ⅳ) oxide catalysts:An FT-IR, FT-Raman, XRD, TEM, and XANES/EXAFS study. Chemistry of Materials,1999,11(4):896-909.
    157. A. Zukal, M. Thommes and J. Cejka, Synthesis of highly ordered MCM-41 silica with spherical particles, Microporous and Mesoporous Materials,2007,104(1-3): 52-58.
    158. O. Carmody, R. Frost, Y. Xi and S. Kokot, Surface characterisation of selected sorbent materials for common hydrocarbon fuels, Surface Science,2007,601(9): 2066-2076.
    159. V. V. Kovalenko, A. A. Zhukova, M. N. Rumyantseva, A. M. Gaskov, V. V. Yushchenko, Ivanova, Ⅱ and T. Pagnier, Surface chemistry of nanocrystalline SnO2:Effect of thermal treatment and additives, Sensors and Actuators B-Chemical,2007,126(1):52-55.
    160. E. A. Alarcon, A. L. Villa and C. M. de Correa, Characterization of Sn- and Zn-loaded MCM-41 catalysts for nopol synthesis, Microporous and Mesoporous Materials,2009,122(1-3):208-215.
    161. Z. Chen and X. Y. Deng, Preparation of nano-NiO by ammonia precipitation and reaction in solution and competitive balance, Materials Letters,2004,58(3-4): 276-280.
    162. G. Colon, J. A. Navio, R. Monaci and I. Ferino, CeO2-La2O3 catalytic system. Part I. Preparation and characterisation of catalysts, Physical Chemistry Chemical Physics,2000,2(19):4453-4459.
    163. 黄爱红,胡成安and罗裕基,反铁磁性超微氧化铬的制备,广州化工,1990,(03):15-17.
    164. A. B. Boffa, C. Lin, A. T. Bell and G. A. Somorjai, Lewis acidity as an explanation for oxide promotion of metals:implications of its importance and limits for catalytic reactions, Catalysis Letters,1994,27(3):243-249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700