用户名: 密码: 验证码:
压缩变形对AZ61镁合金组织的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于镁合金的晶格特点,镁合金的热成形能力比较差,从而导致变形镁合金产品成本远高于镁合金铸造产品,严重影响了变形镁合金的推广应用。通过优化工艺来提高变形镁合金的热成形性能是国内外关注的焦点之一。但至今为止,国内外对变形镁合金成形过程的组织变化规律都研究较少,大量的工作集中在通过成分优化或合金再设计来提高变形镁合金的成形性能方面,因此通过加工工艺优化来提高成形性缺乏理论基础。压缩变形是镁合金产品生产过程中最重要的变形方法之一,也是了解镁合金的力学响应和微观演化过程的重要手段,对变形镁合金压缩变形过程中组织变化规律进行系统研究对变形镁合金成形性能的改善和加工工艺的优化有重要的理论意义和应用价值。
     AZ61镁合金是常用Mg-Al系变形镁合金中Al含量较高的合金之一,其合金的强度比AZ31高,热成性性能比AZ31差。出现这种差异的原因是AZ61基体中存在大量的第二相。第二相的特性(类型、大小、分布、数量、形态等)是影响成形性能和使用性能的核心因素之一。已有的研究结果表明,第二相与镁合金再结晶行为也存在紧密的联系,而再结晶过程直接决定了镁合金的使用性能。因此,在压缩变形过程中,铸态中第二相的特性以及第二相的碎化和溶解行为的控制是整个工艺过程的关键。至今为止,关于AZ61镁合金中关于这方面的研究很少,很难在现有数据和理论上为优化已有的加工工艺和开发新的加工工艺提供支持。所以系统的研究铸态合金中第二相的特性、深入了解第二相在压缩变形过程中的碎化和溶解行为并建立相关理论模型是优化现有的AZ61镁合金的加工工艺、提高合金的成形性能和推广AZ61变形镁合金商业化应用所必不可少的工作。并且所得的数据和建立的理论模型对于其他种类变形镁合金具有普适性,对推动变形镁合金的整体发展具有重要的指导意义。
     本文采用金相显微镜、扫描电镜及能谱分析仪、X射线衍射分析仪、图像分析处理软件ImagePro和Thermo-Cacl软件等方法,系统的分析了AZ61中非平衡共晶Mg_(17)Al_(12)相和Al-Mn相在半连续浇铸的AZ61中的大小、数量、分布、形貌等特性。在此基础上,观察在室温下铸态压缩变形后的显微组织,分析第二相在基体中的碎化行为和第二相与孪晶之间的相互作用机制。然后对比分析了室温下预变形处理后的铸态试样与固溶态试样经高温变形后的组织形貌差异以及不同温度下经过预变形处理的试样和铸态试样经高温热变形后的组织差异,并对共晶Mg_(17)Al_(12)的高温溶解行为进行仔细的观察。研究结果表明在室温下预变形能够提高再结晶在基体中的形核均匀性,削弱了基体在高温变形中的失稳趋势。还发现包含有粗大共晶Mg_(17)Al_(12)相的铸态试样经过高温热变形后其再结晶晶粒尺寸比固溶态的尺寸细小。以上现象说明粗大的Mg_(17)Al_(12)相能够提高晶粒内部的孪晶含量,为热变形过程中再结晶提供更多的形核核心,避免了热变形过程中由于再结晶不均匀而造成的变形失稳,相比固溶态变形能够获得更为细小的再结晶组织,从而提高了合金的强度和塑性。而且预变形在共晶Mg_(17)Al_(12)相引入的裂纹,在经过几分钟的保温后,能够使共晶Mg_(17)Al_(12)相在高温变形中碎化的程度更高,分布更为弥散,增加了基体的变形协调性。同时通过研究Mg_(17)Al_(12)相高温溶解行为发现,室温下所产生的孪晶等缺陷和外力对基体做功能够加速Mg_(17)Al_(12)相的溶解,从而使避免粗大第二相对变形后组织产生负面影响成为了可能。
The magnesium alloy has unsatisfactory thermoformability owning to its lattice features,leading to higher processing cost in the wrought magnesium alloy than the cast magnesiumalloy and furthermore restricting the extensive application of wrought magnesium alloy.Nowadays, it is one of the focuses through the optimization of process to improve thethermoformability of wrought magnesium alloy at home and abroad. So far, however, a betterunderstanding of the mechanisms of the microstructure evolution in the deformation process isneeded to improve the formability of magnesium alloy. In fact, the current research focusesmainly on composition optimization and alloy redesign. Compression deformation is one of themost important deformation ways in the process of the magnesium alloy production. And it isalso an important method to understand the mechanical response and microstructure evolutionof magnesium alloy. It is theoretically important and practically valuable to systematicallyinvestigate the influence of compression deformation on the microstructures of magnesiumalloy.
     AZ61magnesium alloys are one of the commonly used Mg-Al magnesium alloys withhigh Al content. The strength of the AZ61alloy is higher and the thermoformability is worsethan the AZ31alloy because there are many second phases distributed in the AZ61. Thecharacteristics of second phases (type, size, distribution, quantity, shape, etc.) are one of the keyfactors governing the formability and usability. The recently research indicate that there isclose correlation between the second phases and the recrystallization behaviors. Furthermore,the recrystallization processes determinate the usability in magnesium alloys directly. Therefore,the key points are how to control the fragment and dissolution of the second phases in thedeformation process as well as the characteristics of second phases in the as-cast magnesiumalloy. Unfortunately, few researchers have paid attention to these aspects. Thus, it is difficult tooptimize the existing processing technology and develop a new processing technologyaccording to the existing data and theories. Therefore, the systematic investigation on the secondphase characteristics in the as-cast magnesium alloy, understanding the second phase behaviorsof fragment and dissolution during the compression deformation process and building therelatively theoretical model are essential for optimizing existing processing technology,improving the formability and promoting the commercial application of the AZ61magnesiumalloy. And these data and theoretical model are also suit for other wrought magnesium alloy. There is an important guiding significance in promoting the overall development of wroughtmagnesium alloys.
     Optical Microscopy (OM), Scanning Electron Microscopy (SEM) and Energy DispersiveSpectrometry (EDS), X-ray Diffraction (XRD), Image analysis processing software (Image Pro)and Thermo-Cacl software etc. are used to characterize the size, the number density, the areafraction, the distribution and the morphology of the non-equilibrium eutectic Mg_(17)Al_(12)and theAl-Mn phase in the semi-continuous casting. Based on the above characters, the compressedmicrostructure at room temperature has been observed and the second phase fracture behaviorand the interaction mechanisms between the second phases and twinning have also beenanalyzed. Then the morphological feature of the as-cast predeformation sample compressed atelevated temperature has been analyzed compared to the as-solution predeformation sample.And the differences between the predeformation sample and the as-cast sample compressed atthe different temperature have been distinguished. The dissolution of the eutectic Mg_(17)Al_(12)atelevated temperature has also been observed. The results of the study show that thepredeformation at room temperature can improve the nuclear uniformity of recrystallization andweaken the instability tendency of the matrix at elevated temperature. It is also found that therecrystallization grain size of the as-cast sample containing a bulky eutectic Mg_(17)Al_(12)phase isfiner than the as-solution sample after compressing at elevated temperature. The abovephenomenon suggested that the bulky Mg_(17)Al_(12)phase can improve the twinning content amongthe internal grains to supply more nucleation sites for recrystallization during hot deformationprocess and avoid the instability caused by non-uniform recrystallization. Compared to theas-solution sample, the as-cast sample can get finer recrystallization grain. So the compressionof as-cast sample can improve the strength and plasticity of alloy. And the predeformation canintroduce the crack into the eutectic Mg_(17)Al_(12)phase. It can make the fracture of eutecticMg_(17)Al_(12)phase become finer and the distribution more diffuse after a few minutesheat-preservation treatment to increase the coordination deformation ability of matrix. At thesame time, the defect produced at room temperature and the force work can accelerate thedissolution speed of Mg_(17)Al_(12). And it is possible to avoid the disadvantages from the bulkysecond phase after deformation.
引文
[1] http://news.xinhuanet.com/ziliao/2006-01/16/content_4057926.htm
    [2]徐坚.中国新材料产业技术发展十二五展望[J].化工新型材料,2010,(S1).
    [3]龙思远,徐绍勇,查吉利,曹韩学,刘波,蔡军,马季.镁合金应用与汽车节能减排[J].资源再生,2011,(3):48-50.
    [4]潘复生,韩恩厚.高性能变形镁合金及加工技术[M].北京:科学出版社,2007.
    [5]张津,章宗和.镁合金及应用[M].化学工业出版社,2004.
    [6]陈振华,严红革,陈吉华.镁合金[M].化学工业出版社,2004.
    [7]陈振华.变形镁合金[M].化学工业出版社,2005.
    [8] http://www.most.gov.cn/kjbgz/201105/t20110524_87006.htm
    [9]汪明朴,尹志民,中国材料工程大典,第四卷:有色金属材料工程(上), in,北京:化学工业出版社,2005.
    [10] Li X., Jiao F., Al-Samman T., Ghosh Chowdhury S. Influence of second-phase precipitateson the texture evolution of Mg–Al–Zn alloys during hot deformation[J]. Scripta Materialia,2012,66(3–4):159-162.
    [11]刘庆.镁合金塑性变形机理研究进展[J].金属学报,46(11).
    [12]李亚宁,龙思远,曹韩学. AZ61镁合金挤锻复合成形技术研究[J].特种铸造及有色合金,2009,29(004):384-387.
    [13] Kim W., Hong S., Kim Y., Min S., Jeong H., Lee J. Texture development and its effect onmechanical properties of an AZ61Mg alloy fabricated by equal channel angularpressing[J]. Acta Materialia,2003,51(11):3293-3307.
    [14]陈立佳,刘洋,王鑫,张越,孟宪林,陈涛,熊健.等通道转角挤压AZ61镁合金的塑性变形行为[J].沈阳工业大学学报,2009,31(005):481-485.
    [15] Del Valle J., Pérez-Prado M. T., Ruano O. Texture evolution during large-strain hot rollingof the Mg AZ61alloy[J]. Materials Science and Engineering: A,2003,355(1):68-78.
    [16] Dahle A. K., Lee Y. C., Nave M. D., Schaffer P. L., StJohn D. H. Development of theas-cast microstructure in magnesium-aluminium alloys[J]. Journal of light metals,2001,1(1):61-72.
    [17] Braszczyńska-Malik K. Spherical shape of γ-Mg17 Al12precipitates in AZ91magnesium alloy processed by equal-channel angular pressing[J].Journal of Alloys and Compounds,2009,487(1):263-268.
    [18] Crawley A., Lagowski B. Effect of two-step aging on the precipitate structure inmagnesium alloy AZ91[J]. Metallurgical and Materials Transactions B,1974,5(4):949-951.
    [19] Clark K., AZ91E Magnesium Sand Casting Alloy: the Standard for Excellent CorrosionPerformance, in,1986, pp.37-41.
    [20] Lagowski B., Crawley A. The effect of prior cold work on the precipitation and mechanicalproperties of a heat treated Mg-9Al-2Zn (AZ92) alloy[J]. Metallurgical and MaterialsTransactions A,1976,7(4):773-775.
    [21] Zhang M. X., Kelly P. Crystallography of Mg17 Al12precipitates in AZ91D alloy[J]. Scripta Materialia,2003,48(5):647-652.
    [22] Dahle A., St John D., Dunlop G., Developments and challenges in the utilization ofmagnesium alloys, in,1995, pp.167-182.
    [23] Laser T., Nürnberg M., Janz A., Hartig C., Letzig D., Schmid-Fetzer R., Bormann R. Theinfluence of manganese on the microstructure and mechanical properties of AZ31gravitydie cast alloys[J]. Acta Materialia,2006,54(11):3033-3041.
    [24] Song G., Atrens A. Understanding magnesium corrosion—a framework for improved alloyperformance[J]. Advanced Engineering Materials,2003,5(12):837-858.
    [25] Lun Sin S., Dube D., Tremblay R. Characterization of Al-Mn particles in AZ91Dinvestment castings[J]. Materials Characterization,2007,58(10):989-996.
    [26] Wang R., Eliezer A., Gutman E. Microstructures and dislocations in the stressed AZ91Dmagnesium alloys[J]. Materials Science and Engineering: A,2003,344(1):279-287.
    [27] ZENG R., ZHANG J., HUANG W., Dietzel W., Kainer K., Blawert C., KE W. Review ofstudies on corrosion of magnesium alloys[J]. Transactions of Nonferrous Metals Society ofChina,2006,16: s763-s771.
    [28] Gur D., Bronfin B., Shmelkin E., Detection of defects in magnesium castings by theradiography method, in,2000, pp.135-142.
    [29] Barbagallo S., Laukli H., Lohne O., Cerri E. Divorced eutectic in a HPDCmagnesium–aluminum alloy[J]. Journal of Alloys and Compounds,2004,378(1):226-232.
    [30] Kaya A., Uzan P., Eliezer D., Aghion E. Electron microscopical investigation of as castAZ91D alloy[J]. Materials science and technology,2000,16(9):1001-1006.
    [31] Wei L. Y., Westengen H., Terje K. A., Albright D. Characterisation ofmanganese-Containing Intermetallic Particles and corrosion Behaviour of Die CastMg-Al-based Alloys[J].2000.
    [32] Tamura Y., Yagi J., Motegi T., Kono N., Tamehiro H., Manganese-Bearing Particles inLiquid AZ91Magnesium Alloy, in, Trans Tech Publ,2003, pp.703-708.
    [33] Byun J. Y., Kwon S. I., Ha H. P., Yoon J. K. A Manufacturing Technology of AZ91‐AlloySlurry for Semi Solid Forming[J]. Magnesium,2003:713-718.
    [34] Chen Z., Worswick M. J. Investigation of void nucleation in Al-Mg sheet[J]. MaterialsScience and Engineering: A,2008,483-484:99-101.
    [35] Favier S., Canova G. R., Shrivastava S. Modelling the damage evolution due tosecond-phase particle fragmentation and decohesion in an Al alloy[J]. Journal ofComputer-Aided Materials Design,1996,3(1):217-232.
    [36] Turon A., Costa J., Maimí P., Trias D., Mayugo J. A. A progressive damage model forunidirectional fibre-reinforced composites based on fibre fragmentation. Part I:Formulation[J]. Composites Science and Technology,2005,65(13):2039-2048.
    [37] Guiglionda G., Poole W. J. The role of damage on the deformation and fracture of Al-Sieutectic alloys[J]. Materials Science and Engineering A,2002,336(1-2):159-169.
    [38] Li Z., Dong J., Zeng X. Q., Lu C., Ding W. J. Influence of Mg17Al12intermetalliccompounds on the hot extruded microstructures and mechanical properties of Mg-9Al-1Znalloy[J]. Materials Science and Engineering: A,2007,466(1-2):134-139.
    [39]彭北山,刘志义,宁爱林,许晓嫦,党朋,曾苏民. ECAP变形过程中θ′相的碎化及溶解行为分析[J].稀有金属材料与工程,2008,37(11):1930-1933.
    [40]雍歧龙,钢铁材料中的第二相, in,北京:冶金工业出版社,2006.
    [41] Aaron H. B., Kotler G. R. Second phase dissolution[J]. Metallurgical and MaterialsTransactions B,1971,2(2):393-408.
    [42]王晓颖张.,介万奇.匀速加热过程中第二相的扩散溶解[J].金属学报,2004,40(4):434-438.
    [43] Hillert M. The role of interfacial energy during solid state phase transformations[J].Jernkontorets Annaler,1957,141:757-789.
    [44] Brice J. Diffusive and kinetic processes in growth from solution[J]. Journal of CrystalGrowth,1967,1(3):161-163.
    [45] Cortes.R V. A., Ruiz.J,Caballero.L, and Toribio.J. Finite-elemnet madeling ofstress-assisted hydrogen diffusion in316L stainless steel[J]. materials science,1997,33(4):491-503.
    [46]许晓嫦,刘志义,党朋,于文斌,谭曼玲,吴纯.研究强塑性变形过程中第二相回溶现象的现状及发展趋势[J].金属热处理,2005,30(004):1-6.
    [47] Xu Y., Umemoto M., Tsuchiya K. Comparison of the characteristics of nanocrystallineferrite in Fe-0.89C steels with pearlite and spheroidite structure produced by ballmilling[J]. Materials Transactions(Japan),2002,43(9):2205-2212.
    [48]杨顺华,物理学,丁棣华.晶体位错理论基础[M].科学出版社,1998.
    [49]毛卫民,赵新兵,金属学.金属的再结晶与晶粒长大[M].冶金工业出版社,1994.
    [50] Christian J. W., Mahajan S. Deformation twinning[J]. Progress in Materials Science,1995,39(1-2):1-157.
    [51] Price P. Nucleation and growth of twins in dislocation-free zinc crystals[J]. Proceedings ofthe Royal Society of London. Series A. Mathematical and Physical Sciences,1961,260(1301):251-262.
    [52] Bell R., Cahn R. The nucleation problem in deformation twinning[J]. Acta Metallurgica,1953,1(6):752-753.
    [53] Cahn R. Twinned crystals[J]. Advances in Physics,1954,3(12):363-445.
    [54] Meyers M., V hringer O., Lubarda V. The onset of twinning in metals: a constitutivedescription[J]. Acta Materialia,2001,49(19):4025-4039.
    [55]刘庆.镁合金塑性变形机理研究进展[J].金属学报,2010,11.
    [56] J.A. del Valle M. T. P. r.-P., O.A. Ruano. Texture evolution during large-strain hot rolling ofthe Mg AZ61alloy[J]. Materials Science and Engineering A,2003,355:68-78.
    [57]付启涛,潘复生,汤爱涛,刘传璞.铸态AZ系镁合金的彩色金相研究[J].材料导报,2010,24(020):46-48.
    [58]张丁非兰.,曾丁丁,张保平. AZ31镁合金的凝固冷却速率与二次枝晶间距的定量关系[J].金属热处理,2008,33(3):1-3.
    [59]徐祖耀,材料科学专家.金属材料热力学[M].科学出版社,1981.
    [60]朱鸣芳. CA-LBM模型模拟自然对流作用下的枝晶生长杨朝蓉;孙东科;潘诗琰;戴挺;朱鸣芳东南大学江苏省先进金属材料高技术研究重点实验室;南京211189[J].金属学报,2009,45(1).
    [61]朱鸣芳,戴挺,李成允,洪俊杓.对流作用下枝晶生长行为的数值模拟[J].中国科学E辑,2005,35(7):673-688.
    [62]崔忠圻,刘北兴.金属学与热处理原理[J].1998.
    [63]戴永年.二元合金相图集[M].科学出版社,2009.
    [64] Prakash D., Regener D. Quantitative characterization of Mg17 Al12 phase and grain size in HPDC AZ91magnesium alloy[J]. Journal of Alloys andCompounds,2008,461(1):139-146.
    [65]余永宁,刘国权,体视学, in,北京:冶金工业出版社,1989.
    [66]马礼敦. X射线粉末衍射的新起点—Rietveld全谱拟合[J]. Progress in Physics,1996,16(2).
    [67] Nave M., Dahle A., StJohn D., Eutectic growth morphologies in magnesium-aluminiumalloys, in,2000, pp.233-242.
    [68]徐才录.凝固条件和镁对Al—Si11.0合金组织的影响[J].材料工程,1999,(001):3-6.
    [69]杨全,铸造,张真,机械工程.金属凝固与铸造过程数值模拟[M].浙江大学出版社,1996.
    [70]刘刚,刘林,赵新宝,张卫国,金涛,张军,傅恒志.一种镍基单晶高温合金的高温度梯度定向凝固组织及枝晶偏析[J].金属学报,2010,46(1):77-83.
    [71] Wang X., Jie W. Controlled melting process of off-eutectic alloy[J]. Acta Materialia,2004,52(2):415-422.
    [72] Zhu T., Chen Z. W., Gao W. Effect of cooling conditions during casting on fraction ofβ-Mg17 Al12 in Mg–9Al–1Zn cast alloy[J]. Journal ofAlloys and Compounds,2010,501(2):291-296.
    [73] Wang R., Eliezer A., Gutman E. An investigation on the microstructure of an AM50magnesium alloy[J]. Materials Science and Engineering: A,2003,355(1):201-207.
    [74] Wang Y., Xia M., Fan Z., Zhou X., Thompson G. The effect of Al8Mn5intermetallicparticles on grain size of as-cast Mg-Al-Zn AZ91D alloy[J]. Intermetallics,2010,18(8):1683-1689.
    [75] Han G., Ma G., Liu X. Effect of manganese on the microstructure of Mg–3Al alloy[J].Journal of Alloys and Compounds,2009,486(1):136-141.
    [76] Cao P., Qian M., StJohn D. H. Effect of manganese on grain refinement of Mg–Al basedalloys[J]. Scripta Materialia,2006,54(11):1853-1858.
    [77] Sundman B. Thermo-calc User’s guide[J]. Version P, Royal Institute of Technology,Stockholm,2002.
    [78] YANG Q., LIAO B., WAN X. EFFECT OFFREEZING POINT ON RE INCLUSION ASHETEROGENEO US NUCLEATION OF PRIMARY AUSTENITEIN Fe-CALLOYS[J]. Chinese Journal of Material Research,1999.
    [79]田永君,吴浩泉,郭景海,李富荣.稀土夹杂物对Fe-C合金中初生奥氏体非均质形核的影响[J].中国稀土学报,1988,6(4):45-48.
    [80] Polmear I. Magnesium alloys and applications[J]. Materials science and technology,1994,10(1):1-16.
    [81]郑文龙. GB/T7314-2005《金属材料室温压缩试验方法》实施要点[J].试验技术与试验机,2007,46(4):55-70.
    [82] H.T.Zhou X. Q. Z., Q.D Wang, W.J.Ding. A FLOW STRESS MODEL FOR AZ61MAGNESIUM ALLOY[J]. ACTA METALLURGICA SINICA(ENGLISH LETTERS)2004,17(2):155-160.
    [83] Ion S., Humphreys F., White S. Dynamic recrystallisation and the development ofmicrostructure during the high temperature deformation of magnesium[J]. ActaMetallurgica,1982,30(10):1909-1919.
    [84] Guiglionda G., Poole W. The role of damage on the deformation and fracture of Al–Sieutectic alloys[J]. Materials Science and Engineering: A,2002,336(1):159-169.
    [85] Teng X., Wierzbicki T., Couque H. On the transition from adiabatic shear banding tofracture[J]. Mechanics of Materials,2007,39(2):107-125.
    [86]李淑萍,梁燕萍.强烈塑性变形超塑材料研究进展[J].兵器材料科学与工程,2008,31(4):75-78.
    [87]汪建敏,陆晋,周孔亢,许晓静,姜银方.基于剧烈塑性变形的超细晶中碳钢制备技术[J].农业机械学报,2007,37(12):209-212.
    [88] Kim W. J., Jeong H. G., Mechanical properties and texture evolution in ECAP processedAZ61Mg alloys, in, Trans Tech Publ,2003, pp.201-206.
    [89]詹美燕,李元元,陈维平,陈宛德.累积叠轧工艺对AZ31镁合金板材组织和性能的影响[J].材料工程,2008,(003):22-27.
    [90] Azushima A., Kopp R., Korhonen A., Yang D., Micari F., Lahoti G., Groche P., YanagimotoJ., Tsuji N., Rosochowski A. Severe plastic deformation (SPD) processes for metals[J].CIRPAnnals-Manufacturing Technology,2008,57(2):716-735.
    [91]程永奇,陈振华,夏伟军,张文玉,曹清香.大塑性变形技术的研究与发展现状[J].材料导报,2006,20(F11):245-248.
    [92] Yu K., Rui S. T., Wang X. Y., Wang R. C., Li W. Texture evolution of extruded AZ31magnesium alloy sheets[J]. Transactions of Nonferrous Metals Society of China,2009,19(3):511-516.
    [93] Zhong C., Liu F., Wu Y., Le J., Liu L., He M., Zhu J., Hu W. Protective diffusion coatingson magnesium alloys: A review of recent developments[J]. Journal of Alloys andCompounds,2012,520(0):11-21.
    [94]朱永昌,浦素云,断裂力学, in,北京航空航天大学出版社.北京,1988.
    [95]黄克智,余寿文.弹塑性断裂力学[J].北京:清华大学出版社,1985.
    [96]范天佑.断裂力学基础[J].江苏科学技术出版社,1978.
    [97]洪超超.工程断裂力学基础[M].上海交通大学出版社,1987.
    [98] Zhou H., Zeng X., Wang Q., Ding W. A flow stress model for AZ61magnesium alloy[J].ACTA METALLURGICA SINICA-ENGLISH LETTERS-,2004,17(2):155-160.
    [99]王龙甫,弹性力学.弹性理论[M].科学出版社,1984.
    [100]武际可,王敏中,弹性力学,王炜.弹性力学引论[M].北京大学出版社,2001.
    [101]余俊,机械学.摩擦学[M].湖南科学技术出版社,1984.
    [102]薛景文,摩擦学.摩擦学及润滑技术[M].兵器工业出版社,1992.
    [103]温诗铸,黄平.摩擦学原理[M].清华大学出版社,2002.
    [104] Weibull W. Wide Applicability[J]. Journal of applied mechanics,1951.
    [105]张宏图,陈易之.固体的形变与断裂[M].高等教育出版社,1989.
    [106] Zerilli F., Armstrong R. Dislocation mechanics based analysis of material dynamicsbehavior: enhanced ductility, deformation twinning, shock deformation, shear instability,dynamic recovery[J]. Le Journal de Physique IV,1997,7(C3):3-3.
    [107] Armstrong R. W., Worthington P. J., A Constitutive Relation for Deformation Twinning inBody Centered Cubic Metals, in, DTIC Document,1973.
    [108]许晓嫦.强变形诱导铝合金析出相低温回溶现象及应用基础研究[D].长沙:中南大学博士论文,2008
    [109] Meyers M. A.,材料的动力学行为, in,北京:国防工业出版社,2006.
    [110]万见峰,陈世朴,徐祖耀.温度对铁基合金层错能的影响[J].中国科学E辑,2001,31(5):385-391.
    [111] Hahn G. A model for yielding with special reference to the yield-point phenomena of ironand related bcc metals[J]. Acta Metallurgica,1962,10(8):727-738.
    [112]于兴福,田素贵,杜洪强,王明罡,孟凡来.元素W, Co对Ni-Al合金层错能的影响[J].稀有金属材料与工程,2008,36(12):2148-2151.
    [113]赵敬世.位错理论基础[M].国防工业出版社,1989.
    [114] Ericsson T. The temperature and concentration dependence of the stacking fault energy inthe Co-Ni system[J]. Acta Metallurgica,1966,14(7):853-865.
    [115] Ishida K. Direct estimation of stacking fault energy by thermodynamic analysis[J].physica status solidi (a),1976,36(2):717-728.
    [116] Datta A., Waghmare U., Ramamurty U. Structure and stacking faults in layered Mg–Zn–Yalloys: A first-principles study[J]. Acta Materialia,2008,56(11):2531-2539.
    [117] Zhong Y. Investigation in Mg-Al-Ca-Sr-Zn System by Computational ThermodynamicsApproach Coupled with First-principles Energetics and Experiments[D]. The PennsylvaniaState University,2005
    [118] Yakubtsov I., Ariapour A., Perovic D. Effect of nitrogen on stacking fault energy of fcciron-based alloys[J]. Acta Materialia,1999,47(4):1271-1279.
    [119] Dinsdale A. T. SGTE data for pure elements[J]. CALPHAD,1991,15(4):317-425.
    [120] Liang H., Chen S. L., Chang Y. A thermodynamic description of the Al-Mg-Zn system[J].Metallurgical and Materials Transactions A,1997,28(9):1725-1734.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700