用户名: 密码: 验证码:
J-TEXT托卡马克边缘静电涨落和湍动输运的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
托卡马克实验研究显示,横越磁场的粒子输运和能量输运明显高于经典和新经典理论所预言的水平,这将会降低等离子体的约束性能,影响到未来聚变堆的经济性和实用性。许多试验研究显示这种高度反常的输运在装置边缘更为显著,它主要是由静电涨落引起的。但是产生反常输运的物理机制至今仍不明确。为了理解反常输运的物理机制,本文研究了J-TEXT托卡马克边缘的静电涨落和湍动输运特性。这对理解反常输运的物理机制,采取有效措施抑制等离子体湍流,提高等离子体约束具有重要的现实意义。
     本文以两套静电探针系统作为主要诊断工具,首次对J-TEXT托卡马克边缘的静电涨落和湍动输运进行了研究,并分析了静电涨落中的间歇性爆发事件及其对输运的影响,最后结合J-TEXT托卡马克等离子体为圆截面的特点,设计了一套极向探针阵列,用于研究静电涨落和湍动输运的极向分布特点,并分析了放电条件对等离子体参数极向分布的影响。主要的工作内容和实验结果如下:
     (1)建立了一套手动探针系统和一套极向探针阵列,并结合具体的实验目标设计了多种探针结构,例如四探针、一维径向和极向探针阵列、二维探针阵列等;
     (2)编写了大量的探针信号处理程序,可以实现静电涨落的湍流谱分析、相关分析、时频分析、双谱分析以及各种高阶矩统计分析等;
     (3)首次给出了J-TEXT托卡马克边缘等离子体的基本特性。实验观察到在最后闭合磁面附近存在自然形成的E×B流剪切。剪切层附近的静电涨落水平较低,涨落量之间的相关性降低,径向输运水平变小,温度和密度梯度变陡,存在自发形成的边界输运垒。这是欧姆放电条件下约束较好的重要因素。实验验证了在J-TEXT托卡马克边界E×B流剪切抑制湍动输运的BDT理论是成立的。
     (4)利用不同的探针结构研究了静电涨落中的间歇性爆发事件(IBE)。发现IBE具有高于周围等离子体的密度和径向速度。在J-TEXT边缘,其引起的输运占总输运的比重为25%-45%。在r-目平面内,单个IBE的速度大小和方向具有随机性,条件平均后的IBE则具有比较明确的速度大小和方向,径向速度Vr≈400~600m/s,极向速度Vθ≈600~1800m/s,方向分别沿着径向向外和离子逆磁漂移方向。通常幅值大的IBE要比幅值小的运动速度快。
     (5)对静电涨落自相似特性的研究显示,静电涨落具有明显的阵法性、f-1幂律分布和长程时间相关性,这与SOC理论预言的雪崩输运特征相一致。
     (6)对静电涨落的极向分布研究显示,电子温度、密度和径向粒子输运的极向分布具有明显的不对称性;对不同极向位置的密度涨落分析发现,低场侧的雪崩输运特征更为明显。改变放电条件显示,等离子体某些参数的极向分布会因为放电条件的不同而发生变化。
Decades of studies on tokamaks have shown that the cross-field transport is much higher than expected in the fusion research. This will decrease the performance of plasma confinement, and thereby has adverse influence on the applicability of the fusion reactors in the future. Most experimental results have shown that the anomalous transport is more obvious in the boundary region of tokamaks. Significant contributors to the anomalous transport are the electrostatic fluctuations. However, the origin of the anomalous transport is still an open question. Therefore, we do our best to study the electrostatic fluctuations and turbulent transport in the boundary of J-TEXT tokamak, and thereby provide the possibility for deepening the understanding of the nature of the anomalous transport. This will be of great importance in finding effective measures to suppress the turbulence and enhance the plasma confinement efficiency.
     Two sets of Langmuir probe systems have been built and operated as the primary diagnostic tools. The electrostatic fluctuations and their influence on the radial transport are studied for the first time in the boundary of J-TEXT tokamak. The intermittent burst events (IBEs) and their influence on the radial transport are analyzed. A set of poloidal electrostatic probe array has been designed to study the poloidal asymmetry of the electrostatic fluctuations in the Scrape-Off Layer (SOL). The influence of the discharge conditions on the poloidal distribution of the plasma parameters is analyzed. The chief work and experimental results are described below:
     (1) Two sets of Langmuir probe systems have been built. Different probe tips have been designed according to different experimental purposes, such as four-probe array, one-dimensional radial probe array, one-dimensional poloidal probe array, two-dimensional probe array, and so on.
     (2) Lots of programs for the probe signal processing have been developed. A lot of detailed information about electrostatic fluctuations can be achieved using them, such as turbulent spectrum, correlation functions, bispectrum, time-frequency spectrum, higher order moments statistics, and so on.
     (3) The electrostatic fluctuations and their influence on the radial transport in the boundary of J-TEXT have been presented for the first time. The E x B flow shear is observed near the Last Closed Flux Surface (LCFS), where the level of the fluctuations decreases significantly, the degree of correlation between fluctuations diminishes, and the radial gradients of the electron temperature and density are higher than the other radial positions. The experimental results verify that the BDT theory is suitable near the LCFS of J-TEXT.
     (4) The IBEs and their influence on the radial transport are analyzed by applying lots of different probe arrays. The results reveal that the IBEs have higher density and radial velocity than their surrounding plasma. The radial transport carried by the IBEs is about 25%~45%to the total transport. In ther-θplane, the direction of movement of the single IBE is random. The average velocity of the IBEs has similar properties, the radial velocity Vr≈400-600m/s, the poloidal velocity Vθ≈600~1800 m/s, the directions of motion are outwards along the radius and along the ion diamagnetic direction, respectively. The IBEs with higher amplitude have higher velocity in most situations.
     (5) The electrostatic fluctuations have intermittent properties, power-law decay with the type of S(f)(?)f-1 in the power spectra, and time-long-range correlation characters. These properties are consistent with the predictions of the self-organized criticality systems (SOC).
     (6) The electrostatic fluctuations have poloidal asymmetry characters. The studies on the density fluctuations reveal that the SOC properties are more significant in the outside of the midplane. The discharge conditions may influence the poloidal distribution of the plasma parameters.
引文
[1]丁厚昌,黄锦华,盛光昭,李长河.聚变能——21世纪的新能源.北京:原子能出版社,1998.1-12
    [2]董家齐.托卡马克高约束运行模式和磁约束受控核聚变.物理,2010,39:400-405
    [3]朱士尧.核聚变原理.合肥:中国科学技术大学出版社,1992.4-7
    [4]F. F. Chen.等离子体物理学导论.林光海译.北京:人民教育出版社,1980.180-199
    [5]朱士尧.核聚变原理.合肥:中国科学技术大学出版社,1992.9-20
    [6]丁永华.J-TEXT托卡马克主机及磁测量系统:博士学位论文.武汉:华中科技大学,2009
    [7]邱励俭.聚变能及其应用.北京:科学出版社,2008.37-41
    [8]宫本健郎.热核聚变等离子体物理学.金尚宪译.北京:科学出版社,1981.30-45
    [9]F. Wagner, G. Fussmann, T. Grave, et al., Development of an edge transport barrier at the H-mode transition of ASDEX. Phys. Rev. Lett,1984,53:1453-1456
    [10]徐家鸾,金尚宪.等离子体物理学.北京:原子能出版社,1981.544-547
    [11]G. Serianni, et al., Magnetic fluctuations and energy transport in RFX. Plasma Phys. Control. Fusion,2001,43:919-927
    [12]G. Fiksel, et al., Measurement of magnetic fluctuation induced energy transport. Phys. Rev. Lett,1994,72:1028-1031
    [13]G. Fiksel, S. C. Prager, P. Pribyl, et al., Measurement of magnetic fluctuation induced energy transport in a tokamak. Phys. Rev. Lett.,1995,75:3866-3869
    [14]王贵鼎.KT-5C托卡马克等离子体湍流和反常输运的实验研究:博士学位论文.合肥:中国科学技术大学,1996
    [15]S. J. Zweben, J. A. Boedo, O. Grulke, et al., Edge turbulence measurements in toroidal fusion devices. Plasma Phys. Control. Fusion,2007,49:S1-S23
    [16]T. L. Rhodes, C. P. Ritz, R. D. Bengtson, et al., Scaling of far edge plasma turbulence and fluctuation induced particle transport in the TEXT tokamak. Nucl. Fusion,1993, 33:1147-1163
    [17]B. LaBombard, et al., Particle transport in the scrape-off layer and its relationship to discharge density limit in Alcator C-Mod Phys. Plasmas,2001,8:2107-2117
    [18]D. L. Rudakov, et al., Far SOL transport and main wall plasma interaction in DIII-D. Nucl. Fusion,2005,45:1589-1599
    [19]M. Endler, et al., Measurements and modelling of electrostatic fluctuations in the scrape-off layer of ASDEX. Nucl. Fusion,1995,35:1307-1338
    [20]J. A. Boedo. Edge turbulence and SOL transport in tokamaks. J.Nucl.Materials,2009, 390-391:29-37
    [21]M. Endler. Turbulent SOL transport in stellarators and tokamaks. J.Nucl.Materials, 1999,266-269:84-90
    [22]J. A. Boedo, et al., Transport by intermittent convection in the boundary of the DIII-D tokamak. Phys. Plasmas,2001,8:4826-4833
    [23]D. L. Rudakov,et al., Far SOL transport and main wall plasma interaction in DIII-D. Nucl. Fusion,2005,45:1589-1599
    [24]J. A. Boedo, et al., Transport by intermittency in the boundary of the DIII-D tokamak. Phys. Plasmas,2003,10:1670-1677
    [25]T. A. Carter. Intermittent turbulence and turbulent structures in a linear magnetized plasma. Phys. Plasmas,2006,13:010701
    [26]S. I. Krasheninnikov, D. A. D'Ippolito, J. R. Myra. Recent theoretical progress in understanding coherent structures in edge and SOL turbulence. J. Plasma Phys.,2008, 74:679-171
    [27]G. Y. Antar, et al., On the scaling of avaloids and turbulence with the average density approaching the density limit. Phys. Plasmas,2005,12:082503
    [28]P. C. Liewer. Results from the University of Wisconsin torsatron/stellarator programme. Nucl. Fusion,1985,25:1281
    [29]A. J. Wootton, B. A. Carreras, H. Matsumoto, et al., Fluctuations and anomalous transport in tokamaks. Phys. Fluids B,1990,2:2879-2901
    [30]M. Porkolab, et al., Phase contrast imaging of waves and instabilities in high temperature magnetized fusion plasmas. IEEE Trans. Plasmas Sci.,2006,34:229-234
    [31]R. Nazikian, et al., A tutorial on the basic principles of microwave reflectometry appliedto fluctuation measurements in fusion plasmas. Phys. Plasmas,2001,8: 1840-1855
    [32]R. A. Moyer, J. W. Cuthbertson, T. E. Evans, et al., The role of turbulent transport in DⅢ-D edge and divertor plasmas. J. Nucl. Materials,1997,241-243:633-638
    [33]T. D. Rempel, A. F. Almagri, S. Assadi, et al., Turbulent transport in the Madison Symmetric Torus reversed-field pinch. Phys. Fluids B,1992,4:2136-3141
    [34]G. R. Tynan, et al., Steady-state convection and fluctuation-driven particle transport in the H-mode transition. Phys. Rev. Lett.,1999,68:3032-3035
    [35]G. Serianni, A. Murari, G. Fiksel, et al., Magnetic fluctuations and energy transport in RFX, Plasma Phys. Control. Fusion,2001,43:919-927
    [36]C. Silva, H. Figueiredo, I. Nedzelskiy, et al., Control of the edge turbulent transport by emissive electrode biasing on the tokamak ISTTOK. Plasma Phys. Control. Fusion, 2006,48:727-744
    [37]M. Endler. The poloidal variation of the radial transport due to electrostatic fluctuations in toroidal magnetic confinement experiments. Plasma Phys. Control. Fusion,1999,41:1431-1440
    [38]D. L. Brower, et al., The spectrum, spatial distribution and scaling of microturbulence in the TEXT tokamak. Nucl. Fusion,1987,27:2055
    [39]G. R. Tynan, J. Liberati, P. Pribyl, et al., Externally-driven H-mode studies in CCT. Plasma Phys. Control. Fusion,1996,38:1301-1305
    [40]P. Devynck, G. Bonhomme, E. Martines, et al., Spatially resolved characterization of electrostatic fluctuations in the scrape-off layer of the CASTOR tokamak. Plasma Phys. Control. Fusion,2005,47:269-280
    [41]V. A. Vershkov, S. A. Grashin, V. V. Dreval, et al., Radial distributions and poloidal asymmetries of T-10 SOL parameters and turbulence. J. Nucl. Mater.1997,241-243: 873-877
    [42]G. S. Kirnev, V. P. Budaev, S. A. Grashin, et al., Comparison of plasma turbulence in the low-and high-field Scrape-Off Layers in the T-10 tokamak. Nucl. Fusion,2005, 45:459-467
    [43]C. Fenzi, et al., Interplay between edge and outer core fluctuations in the tokamak Tore Supra Nucl. Fusion,2000,40:1621-1625
    [44]K. Tanaka, et al., Experimental study of particle transport and density fluctuations in LHD. Nucl. Fusion,2006,46:110-122
    [45]B. LaBombard, et al., Transport-driven Scrape-Off-Layer flows and the boundary conditions imposed at the magnetic separatrix in a tokamak plasma. Nucl. Fusion, 2004,44:1047-1066
    [46]R. A. Moyer et al., Potentials, E×B drifts, and fluctuations in the DIII-D boundary. J. Nucl. Mater,1999,266:1145-1150
    [47]G. Y. Antar, et al., The poloidal distribution of turbulent fluctuations in the Mega-Ampere Spherical Tokamak. Phys. Plasmas,2005,12:032506
    [48]王文浩.磁约束等离子体边缘湍流长程相关特性及湍流雷诺协强驱动极向流研究:博士学位论文.合肥:中国科学技术大学,2002
    [49]K. C. Shaing and E. C. Crume. Bifurcation theory of poloidal rotation in tokamaks:A model for L-H transition. Phys. Rev. Lett.,1989,63:2369-2372
    [50]A. B. Hassam, et al. Spontaneous poloidal spin-up of tokamaks and the transition to the H mode. Phys. Rev. Lett.,1991,66:309-312
    [51]G. Van Oost. et al. Plasma Phys. Control. Fusion, Turbulent transport reduction by EXB velocity shear during edge plasma biasing:recent experimental results. Plasma Phys. Control. Fusion,2003,45:621
    [52]M. A. Meier, et al., Adiabatic electron thermal pressure fluctuationsin Tokamak Plasmas. Phys. Rev. Lett.,2001,87:085003
    [53]V. Budaev, et al. Effect of rotating helical magnetic field on the turbulence fractal structure and transport in the tokamak edge plasma. Nucl. Fusion,2004,44: S108-S117
    [54]A. A. Ferreira, et al. Turbulence and transport in the scrape-off layer TCABR tokamak. Plasma Phys. Control. Fusion.2004,46:669-679
    [55]B. J. Ding, et al. Edge turbulent transport with lower hybrid current drive in the Hefei Tokamak-7 Phys. Plasmas.2004,11:207-213
    [56]项志遴,俞昌旋,高温等离子体诊断技术,上册,上海:上海科技出版社,1982.27-36
    [57]I. H. Hutchinson. Principles of plasma diagnostics, second edition. London: University Press Cambridge,2002
    [58]P. C. Stangeby and G. M. McCracken. Plasma boundary phenomena in tokamaks. Nucl. Fusion,1990,30:1225
    [59]G. F. Matthews. Tokamak plasma diagnosis by electrical probes. Plasma Phys. Control. Fusion,1994,36:1595-1628
    [60]H. Lin, et al., Temperature fluctuations and transport in a tokamak edge plasma. Phys. Fluids B,1989,1:2027-2030.
    [61]兰涛.托卡马克边缘等离子体中测地声模带状流的实验研究:博士学位论文.合肥:中国科学技术大学,2008
    [62]宋梅.HT-7托卡马克边缘等离子体行为与约束特性研究:博士学位论文.合肥:中国科学院等离子体物理研究所,2003
    [63]H. Lin, et al., A Comparison of Langmuir probe techniques for measuring temperature fluctuations. Rev. Sci. Instrum,1992,63:4611
    [64]S. J. Levinson, J. M. Beall, E. J. Powers, et al., Space/time statistics of the turbulence in a tokamak edge plasma. Nucl. Fusion,1984,24:527-539
    [65]D. W. Ross. On standard forms for transport equations and quasilinear fluxes.Plasma Phys. Control. Fusion,1992,34:137-146
    [66]B. A. Carreras. Progress in anomalous transport research in toroidal magnetic confinement devices. IEEE Trans. Plasma Sci.,1997,25:1281-1321
    [67]G. Fiksel, S. C. Prager, W. Shen, et al., Measurement of magnetic fluctuation induced energy transport. Phys. Rev. Lett.,1994,72:1028-1031
    [68]G. Serianni, A. Murari, G. Fiksel, et al., Magnetic fluctuations and energy transport in RFX. Plasma Phys. Control. Fusion,2001,43:919-927
    [69]G. Fiksel, S. C.Prager, P. Pribyl., et al., Measurement of magnetic fluctuation induced energy transport in a tokamak. Phys. Rev. Lett.,1995,75:3866-3869
    [70]余羿.稳态磁约束环等离子体输运相关问题的实验研究:博士学位论文.合肥:中国科学技术大学,2009
    [71]B. A. Carreras, et al., Self-similarity of the plasma edge fluctuations. Phys. Plasmas, 1998,5:3632.
    [72]Ch. P. Ritz, H. Lin, T. L. Rhodes, et al., Evidence for confinement improvement by velocity-shear suppression of edge turbulence. Phys. Rev. Lett.,1990,65:2543-2546
    [73]朱华,黄辉宁.随机信号分析.北京:北京理工大学出版社,1990.150-160
    [74]张明友,张扬.随机信号分析.成都:电子科技大学出版社,2002.51-70
    [75]李在铭,李晓峰,周宁,傅志中.随机信号分析.成都:电子科技大学出版社,2004:118。123
    [76]王永德,王军.随机信号分析基础.北京:电子工业出版社,2003.41-50
    [77]朱华,黄辉宁.随机信号分析.北京:北京理工大学出版社,1990.188-224
    [78]印勇.随机信号分析.北京:中国物资出版社,2000.100-115
    [79]王永德,王军.随机信号分析基础.北京:电子工业出版社,2003.77-91
    [80]赵淑清,郑薇.随机信号分析.哈尔滨:哈尔滨工业大学出版社,1999: 58-71
    [81]J. M. Beall, Y. C. Kim, and E. J. Powers. Estimation of wavenumber and frequency spectra using fixed probe pairs. J. Appl. Phys.,1982,53:3933-3940
    [82]Naofumi Iwama, Yasuo Ohba, and Takashige Tsukishima. Estimation of wavenumber and frequency spectra using fixed probe pairs. J. Appl. Phys.,1979,50: 3197-3206
    [83]Ch. P. R, E. J. Powers, T. L. Rhodes, et al., Advanced plasma fluctuation analysis techniques and their impact on fusion research. Rev. Sci. Instrum,1988,59: 1739-1744
    [84]C. L. Nikias and M. R. Raghuveer. Bispectrum estimation:a digital signal processing framework. Proceedings of The IEEE,1987,75:869-891
    [85]张大吉.基于双谱与分形技术及神经网络的刀具智能诊断技术研究.西安:西安交通大学,2005
    [86]Young C. Kim and Edward J. Powers. Digital bispectral analysis and its applications to nonlinear wave interactions. IEEE. Transactions on Plasma. Science,1979, PS-7: 120-131
    [87]Edward J. Powers, Jae Y. Hong, and Christoph P. Ritz. Applied digital time series analysis. Preliminary version edition,1988
    [88]D. Gresillon and M. S. Mohamed-Benkadda. Direct mode-mode coupling observation in the fluctuations of nonstationary transparent fluid. Phys. Fluids.31(7), 1904-1909(1988).
    [89]C. Holland, G. R. Tynan, P. H. Diamond et al. Evidence for Reynolds-stress driven shear flows using bispectral analysis:theory and experiment. Plasma Phys. Control. Fusion,2002,44:A453-A457
    [90]H. Y. W. Tsui, K. Rypdal, Ch. P. Ritz, et al., Coherent nonlinear coupling between a long-wavelength mode and small-scale turbulence in the TEXT tokamak. Phys. Rev. Lett.,1993,70:2565-2568
    [91]C. Hidalgo, E. Sanchez, T. Estrada, et al. Experimental evidence of three-wave coupling on plasma turbulence. Phys. Rev. Lett.,1993,71:3127-3130
    [92]H. E. Hurst. Long-term capacity of reservoirs. Trans. Am. Soc. Civ.Eng.,1951,116: 770-808
    [93]B. B. Mandelbrot, and J. R. Wallis. Noah, Joseph, and Operational Hydrology. Water Resources Research,1968,4:909-918
    [94]B. B. Mandelbrot, and J. R. Wallis. Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence. Water Resources Research, 1969,5:967-988
    [95]A. Davis, A. Marshak, W. Wiscombe, et al., Multifractal characterizations of nonstationarity and intermittency in geophysical fields:Observed, retrieved, or simulated. J. OF Geophys. Res.,1994,99:8055-8072
    [96]C. X. Yu. Structure function analysis of long-range correlations in plasma turbulence. Phys. Plasmas,2003,10:2772-2779
    [97]E. Y. Wang, L. Schmitz, Y. Ra, et al. An omegatron mass spectrometer for plasma ion species anslysis. Rev. Sci. Instrum.,1990,61:2155-2158
    [98]P. Staib. An E×B analyser to study the particle fluxes, energy and charge state in the scrape-off layer of tokamak. J. Nucl.Mater.,1980,93/94:351-356
    [99]E. J. Powers. Spectral techniques for experimental investigation of plasma diffusion due to polychromatic fluctuation. Nucl. Fusion,1974,14:749-752
    [100]A. V. Filippas, Roger D. Bengston, G.-X. Li, et al. Conditional analysis of floating potential fluctuations at the edge of Texas Experimental Tokamak Upgrade (TEXT-U). Phys. Plasmas,1995,2:839-845
    [101]Y. H. Xu, S. Jachmich, R. R. Weynants, et al. On the properties of turbulence intermittency in the boundary of the TEXTOR tokamak. Plasma Phys. Control. Fusion,2005,47:1841-1855
    [102]0. Grulkel, F. Greinerl, T. Klinger, et al., Comparative experimental study of coherent structures in a simple magnetized torus. Plasma Phys. Control. Fusion,2001, 43:525-542
    [103]D. L. Rudakov, J. A. Boedol, R. A. Moyer, Fluctuation-driven transport in the DIII-D boundary. Plasma Phys. Control. Fusion,2002,44:717-731
    [104]Fusion Research Center, TEXT user handbook, University of Texas, Austin,1989.
    [105]Fusion Research Center, Proposal for the Texas experimental tokamak a fusion plasma research facility, Austin,1989.
    [106]Zhuang G, Ding Y H, Zhang M, Yu K X, Zhang X Q, Wang Z J, Hu X W and Pan Y. Reconstruction of the TEXT-U Tokamak in China. Plasma Sci. Tech.,2009,11: 439-442
    [107]Yang Z J, Zhuang G, Hu X W, Zhang M, Qiu S S, Wang Z J, Ding Y H and Pan Y. Design and realization of the J-TEXT tokamak central control system.Fusion Eng. Design,2009,84:2093-2099
    [108]张明. J-TEXT托卡马克装置脉冲电源系统的实现及运行分析:博士学位论文.武汉:华中科技大学,2009
    [109]A. Hasegawa and M. Wakatani. Plasma edge turbulence. Phys. Rev. Lett.,1983,50: 682-686
    [110]B. Scott. Self-sustained collisional drift-wave turbulence in a shear magnetic field. Phys. Rev. Lett.,1990,65:3289-3292
    [111]S. J. Zweben. Search for coherent structure within tokamak plasma turbulence. Phys. Fluids,1985,28:974-982
    [112]P. W. Terry and P. H. Diamond. Theory of dissipative density-gradient-driven turbulence in the tokamak edge. Phys. Fluids,1985,28:1419-1439
    [113]R. E. Waltz and R. R. Dominguez. Drift-wave turbulence with wave-wave and wave-particle nonlinear effects in a sheared slab. Phys. Fluids,1983,26:3338-3349
    [114]G. S. Lee and P. H. Dimond. Theory of ion-temperature-gradient-driven turbulence in tokamaks. Phys. Fluids,1986,29:3291-3313
    [115]程均.快速往复静电探针系统与HL-2A边缘静电涨落研究:硕士学位论文.成都:核工业西南物理研究院,2007
    [116]徐国盛.HT-7托卡马克边界等离子体湍流与输运的研究:博士学位论文.合肥:中国科学院等离子体物理研究所,2005
    [117]V. Antoni, E. Spada, N. Vianello, et al., Shear flows generated by plasma turbulence and their influence on transport. Plasma Phys. Control. Fusion,2005,47:B13-B23
    [118]C. Hidalgo, R. Balbin, M. A. Pedrosa, et al., Experimental evidence of significant temperature fluctuations in the plasma edge region of the TJ-I tokamak. Phys. Rev. Lett.,1992,69:1205-1208
    [119]T. L. Rhodes, C. P. Ritz, et al., Scaling of far edge plasma turbulence and fluctuation induced particle transport in the TEXT tokamak. Nucl. Fusion.1993,33:1147-1163
    [120]D. R. Thayer and P. H. Diamond. Thermally driven convective cells and tokamak edge turbulence. Phys. Fluids,1987,30:3724-3734
    [121]D. R. Thayer and P. H. Diamond. Thermally driven turbulence and transport in a sheared system. Phys. Rev. Lett.,1990,65:2784-2787
    [122]T. Hwa and M. Kardar. Avalanches, hydrodynamics, and discharge events in models of sandpiles. Phys. Rev. A,1992:45:7002-7023
    [123]B. A. Carreras, D. Newman, V. E. Lynch, et al., A model realization of self-organized criticality for plasma confinement. Phys. Plasmas,1996,3:2903-2911
    [124]B. A. Carreras, C. Hidalgo, D. E. Newman, et al., Fluctuation-induced flux at the plasma edge in toroidal devices. Phys. Plasmas,1996,3:2664-2672
    [125]T. Happel, F. Greiner, N. Mahdizadeh, B. Nold, M. Ramisch and U. Stroth. Generation of intermittent turbulent events at the transition from closed to open field lines in a toroidal plasma. Phys. Rev. Lett.,2009,102:255001
    [126]E. Sanchez, C. Hidalgo, D. Lopez-Bruna, et al., Statistical characterization of fluctuation wave forms in the boundary region of fusion and nonfusion plasmas. Phys. Plasmas,2000,7:1408-1415
    [127]V. Carbone, G. Regnoli, E. Martines and V. Antoni. Intermittency and self-similarity in plasma edge fluctuations. Phys. Plasmas,2000,7:445-447
    [128]G. Y. Antar, G. Counsell, Y. Yu, et al., Universality of intermittent convective transport in the scrape-off layer of magnetically confined devices. Phys. Plasmas, 2003,10:419-428
    [129]Cheng J, Yan L W, Hong W Y, Zhao K J, Lan T, Qian J, Liu A D, Zhao H L, Liu Y, Yang Q W, Dong J Q, Duan X R and Liu Y. Statistical characterization of blob turbulence across the separatrix in HL-2A tokamak. Plasma Phys. Control. Fusion, 2010,52:055003
    [130]Wang W H, Yu C X, Wen Y Z,et al., Experimental evidence of the self-similarity and long-range correlations of the edge fluctuations in HT-6M tokamak. Chin. Phys., 2001,10:139-144
    [131]M. Z. Zhu, G. Zhuang, Z. J. Wang, et al., Intermittency of the density fluctuations and its influence on the radial transport in the boundary of J-TEXT. Chin. Phys. B,2011, 20:025204
    [132]Sanchez R, Newman D E, Ferenbaugh W, Carreras B A, Lynch V E and van Milligen B Ph. Quiet-time statistics:A tool to probe the dynamics of self-organized-criticality systems from within the strong overlapping regime. Phys. Rev. E,2002,66:036124
    [133]Lynch V E, Carreras B A, Sanchez R, LaBombard B, van Milligen B Ph and Newman D E. Determination of long-range correlations by quiet-time statistics. Phys. Plasmas, 2005,12:052304
    [134]S. J. Zweben. Search for coherent structure within tokamak plasma turbulence. Phys. Fluids.1985,28:974-982
    [135]S. J. Zweben and R. W. Gould. Structure of edge-plasma turbulence in the Caltech tokamak. Nucl. Fusion,1985,25:171-182
    [136]O. Grulke, J. L. Terr, B. LaBombard, et al., Radially propogarting fluctuation structures in the scrape-off layer of Alcator C-Mod. Phys. Plasmas,2006,13:012306
    [137]Antoni V, Carbone V, Cavazzana R, Regnoli G, Vianello N, Spada E, Fattorini L, Martines E, Serianni G, Spolaore M, Tramontin L and Veltri P. Transport Processes in Reversed-Field-Pinch Plasmas:Inconsistency with the Self-Organized-Criticality Paradigm. Phys. Rev. Lett.2001,87:045001
    [138]Spada E, Carbone V, Cavazzana R, Fattorini L, Regnoli G, Vianello N, Antoni V, Martines E, Serianni G, Spolaore M and Tramontin L. Search of Self-Organized Criticality Processes in Magnetically Confined Plasmas:Hints from the Reversed Field Pinch Configuration. Phys. Rev. Lett.,2001,86:3032-3035
    [139]Wang W H, He Y X, Gao Z, Zeng L, Zhang G P, Xie L F and Feng C H. Observation of intermittency in edge plasma of SUNIST tokamak. Chin. Phys.2004,13: 2091-2096
    [140]周守仁.现代科学意义下的复杂性概念.大自然探索.1997,4:102-105
    [141]Mandelbrot B. The fractal geometry of nature, Freeman, San Francisco,1982
    [142]P. H. Diamond and T. S. Hahm. On the dynamics of turbulent transport near marginal stability. Phys. Plasmas.1995,2:3640-3649
    [143]D. E. Newman, B. A. Carreras, et al., The dynamics of marginality and self-organized criticality as a paradigm for turbulent transport. Phys. Plasmas.1996,3:1858-1866
    [144]D. R. Baker, R. T. Snider, M. Nagami. Observation of cold, high-density plasma near the Doublet III limiter. General Atomic Rep,1981, GA-A-16337
    [145]B. LaBombard and B. Lipschultz. Poloidal asymmetries in the scrape-off layer plasma of the Alcator C tokamak. Nucl. Fusion,1987:81-99
    [146]C. Fenzi, X. Garbet, A. True, et al., Interplay between edge and outer core fluctuations in the tokamak Tore Supra. Nucl. Fusion,2000,40:1621-1626
    [147]G. S. Kirnev, V. P. Budaev, S. A. Grashin, et al., Comparison of plasma turbulence in the low-and high-field scrape-off layers in the T-10 tokamak. Nucl. Fusion,2005,45: 459-466

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700