用户名: 密码: 验证码:
智能车辆的惯性传感器故障诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着自动化技术在各行各业的应用,其系统越来越复杂,传感器作为主要信息获取装置,为系统可靠安全稳定工作提供了保证。然而如果传感器出现性能降低、故障、甚至失效,那么将给系统监测、控制等带来严重影响,有可能造成无法估量的损失。所以传感器的故障诊断就显得尤为重要。
     本课题来源于国家自然科学基金重大专项“高速公路车辆智能驾驶中的关键科学问题研究”。作为该项目研究的一部分,本文主要针对惯性传感器和组合导航系统的故障以及异常检测与诊断问题,从数字信号处理、故障诊断方法、以及故障预测方法三个方面进行研究。首先通过对传感器采集的数据进行数字信号处理,降低噪声,减少不确定性影响,提高采集数据的精度;然后通过采用不同精度传感器的冗余方式,结合软件冗余和硬件冗余两种方法的优点进行故障诊断;最后通过故障预测3技术来提高故障诊断的实时性,以将故障防范于未然。
     本文的主要创新点是:
     1)针对基于分段方式的多尺度卡尔曼滤波计算量大、延时长的问题,提出基于无抽取Haar算法的实时卡尔曼滤波方法。该方法采用简单的加减、移位运算在t时刻完成多尺度变换,然后在各个尺度进行小波阈值去噪和卡尔曼滤波。为了验证该方法的有效性,在自主改装的智能车上对低精度加速度传感器进行了实验,结果表明,通过无抽取Haar算法的小波重构完成信号处理,减少了重复运算,提高了算法实时性。该方法能有效提高传感器的性能,在不能准确估计状态转移误差情况下,该方法的去噪性能优于卡尔曼滤波。
     2)提出了不同精度的冗余传感器故障诊断方法。该方法采用动态模型不确定性影响最小化而故障影响最大化的原则,对低精度传感器数据进行预处理,轮流使用一个传感器作为输入,另一个作为输出建立卡尔曼滤波方程组,并通过所得新息进行故障诊断。实验表明,所提出方法能有效抑制低精度传感器的噪声干扰,降低硬件成本以及系统建模复杂性,在传感器故障诊断的工程应用中具有较好的实用性。同时针对智能车辆行驶过程中,背景噪声变化很大,多精度冗余传感器故障难以诊断的问题,提出了基于小波噪声估计的二次卡尔曼滤波故障诊断方法。通过实验分析了该方法故障检测率与噪声强度的关系,结果表明,该方法提高了故障诊断的准确性,具有较好的鲁棒性。
     3)提出了基于后验概率分布的自适应粒子滤波器方法。该方法采用先验知识设定似然概率置信区间,通过置信范围内粒子分布逼近真实状态分布的后验估计来自适应调整粒子集大小,既保证算法精度,又提高了计算效率。然后将粒子滤波器用于故障诊断与故障预测,并提出了一种基于多模态RBPF粒子滤波器的故障预测算法。该算法通过k步迭代后产生k组加权粒子来估计系统的状态,以此计算故障状态的分布情况和故障发生的概率,并通过故障概率的变化率来预测故障类型以及故障发生时刻。通过在移动机器人航迹推算系统上进行实验,验证了该方法的有效性和可行性。
With the application of automation technology in all walks of life, the automation systems have become more and more complex. As the main information acquirement device, the sensors guarantee a reliable, secure and stable work. However, if the sensors have low performance, failure, and even become useless, it will have serious effect on system monitor and control, and cause incalculable damage. Thus, the sensor fault diagnosis is very important.
     This dissertation is supported by the National Natural Science Foundation of China under Grant90820302, Research on the Key Scientific Problems of Intelligent Vehicle Driving on the Highway. As one part of the project, the dissertation focuses on anomaly detection and fault diagnosis of inertial sensors and navigation systems in unmanned vehicle. Three aspects are researched, including digital signal process, fault diagnosis and fault prediction methods. Firstly, the original sensor data is processed by using digital signal process methods to remove noise, reduce uncertainties and improve the data accuracy. Then, the sensor fault diagnosed by using different precision sensors in redundancy way, which combines the advantages of software redundancy method and hardware redundancy method; Finally, the fault prediction technology based on particle filter is researched to improve the real-time of the fault diagnosis.
     Main contributions of the dissertation are shown as following:
     1) A real-time Kalman filter based on the non-decimated Haar algorithm is proposed to avoid the problem of large computation and long delays in existing multi-scale Kalman filter. The simple addition, subtraction, and shift operations are used to complete multi-scale transformation at time t, and the signal is reconstructed after de-noising by wavelets soft-threshold and Kalman filter in each scale. To verify the validity of this method, the experiments with low-precision acceleration sensor for intelligent vehicle are carried out. The experimental results show that the repeated computation is reduced and the speed of the algorithm is improved by using the non-decimated Haar algorithm. The method can effectively improve the sensor performance. Meanwhile, the de-noising performance of this method is superior to Kalman filter when the status can not be estimated correctly.
     2) A fault diagnosis method with different precision redundant sensors is proposed in this thesis. The method uses the principle of minimizing uncertainties of the dynamic model and maximizing the impact of fault to preprocess the low-precision sensor data, taking turns to use a sensor data as input, and the other sensor as output to establish the Kalman filter equations, and the fault diagnosis can be made by the obtained new information. The experiments show that, the proposed method can not only effectively suppresses the noise in low-precision sensors, but also can reduce costs and complexity of system modeling. Meanwhile, in the moving process of the intelligent vehicle, the background noise changes badly, which causes the diagnosis for multiple-precision sensor failure more difficult. Thus, the wavelet-based noise estimation of the two stage Kalman filter fault diagnosis method is proposed. The relationship between the fault detection rate and noise intensity is also discussed, and the result shows that the method improves the accuracy of fault diagnosis and has relatively good robustness.
     3) An adaptive particle filter based on posterior distribution is proposed. The prior knowledge is used to set the confidence interval of likelihood, and the number of particles is adjusted by the posterior estimation in the confidence interval. Then the particle filter is used in fault diagnosis and fault prediction. An algorithm of fault prediction base on particle filter is proposed. After k-step iterative, the algorithm uses k groups particles to estimate the system status and get the fault status distribution and the probability of failure, then the change rate of the failure probability is obtained to predict the fault type and the time of the failure. The experimental results of the mobile robot dead-reckoning system demonstrate the effectiveness and feasibility of the method.
引文
[1]蔡自兴,徐光祐.人工智能及其应用,第四版,北京:清华大学出版社,2010
    [2]柳玉甜.未知环境中移动机器人故障诊断技术的研究:[博士学位论文],浙江:浙江大学,2007
    [3]张冀,王兵树,邸剑等.传感器多故障诊断的信息融合方法研究,中国电机工程学报,2007,27(16):104-108
    [4]Frank P M. Fault diagnosis in dynamics systems using analytical and knowledge-based redundancy:a survey and some new results. Automatica,1990, 26(3):459-474
    [5]周东华,叶银忠.现代故障诊断与容错控制.北京:清华大学出版社,2000.
    [6]Yoshimura M, Frank P M, Ding X. Survey of robust residual generation and evaluation methods in observer-based fault detection systems. Journal of Process Control,1997,7(6):403-424
    [7]Patton R J, Frank P M, Clark R N. Issues of Fault Diagnosis for Dynamic Systems. London:Springer-Verlag,2000
    [8]周东华,胡艳艳.动态系统的故障诊断技术,自动化学报,2009,35(06):748-758
    [9]Peng Z, Wang W H, Zhou D H. Diagnosis of sensor and actuator faults of a class of hybrid systems based on semi-qualitative method. In:Proceedings of the 5th World Congress on Intelligent Control and Automation. Piscataway, USA:IEEE,2004. 1771-1774
    [10]Yang F, Xiao D Y. Model and fault inference with the frame work of probabilistic SDG. Proceedings of the 9th International Conference on Control, Automation, Robotics, and Vision. Piscataway, USA:IEEE,2006.1-6
    [11]Caceres S, Henley E J. Process failure analysis by block diagrams and fault trees. Industrial and Engineering Chemistry, Fundamentals,1976,15(2):128-134
    [12]Ramesh T S, Shum S K, Davis J F. A structured frame work for efficient problem solving in diagnostic expert systems. Computers and Chemical Engineering,1988, 12(9-10):891-902
    [13]Rich S H, Venkatasubramanian V, Nasrallah M, et al. Development of a diagnostic expert system for a whipped toppings process. Journal of Loss Prevention in the Process Industries,1989,2(3):145-154
    [14]Yang J B, Liu J, Wang J, et al. Belief rule-base inference methodology using the evidential reasoning approach RIMER. IEEE Transactions on Systems, Man,and Cybernetics, Part A:Systems and Humans,2006,36(2):266-285
    [15]Xu D L, Liu J, Yang J B, et al. Inference and learning methodology of belief-rule-based expert system for pipeline leak detection. Expert Systems with Applications,2007,32(1):103-113
    [16]邵晨曦,张俊涛,范金锋等.基于定性定量知识的故障诊断.计算机工程,2006,32(6):189-192
    [17]Wang W H, Zhou D H, Li Z X. Robust state estimation and fault diagnosis for uncertain hybrid systems. Nonlinear Analysis,2006,65(12):2193-2215
    [18]Mosallaei M, Salahshoor K, Bayat M R. Process fault detection and diagnosis by synchronous and asynchronous decentralized Kalman filtering using state-vector fusion technique. Proceedings of the 3rd International Conference on Intelligent Sensors, Sensor Networks and Information. Piscataway, USA:IEEE,2007.209-214
    [19]段琢华,蔡自兴,于金霞.移动机器人软故障检测与补偿的自适应粒子滤波算法.中国科学E缉:信息科学,2008,38(4).565-578
    [20]Li L L, Zhou D H. Fast and robust fault diagnosis for a class of nonlinear systems: detectability analysis. Computers and Chemical Engineering,2004,28(12):2635-2646
    [21]Park S, Himmelblau D M. Fault detection and diagnosis via parameter estimation in lumped dynamic systems. Industrial and Engineering Chemistry, Process Design and Development,1983,22(3):482-487
    [22]Blodt M, Chabert M, Regnier J, et al. Maximum-likelihood parameter estimation for current-based mechanical fault detection in induction motors. Proceedings of 2006 IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscataway, USA:IEEE,2006.269-272
    [23]Chow M Y, Mangum P, Thomas R J. Incipient fault detection in DC machines using a neural network. Proceedings of the 22nd Asilomar Conference on Signals, Systems, and Computers. San Jose, USA:IEEE,1988.706-709
    [24]Zhang J. Improved on-line process fault diagnosis through information fusion in multiple neural networks. Computers and Chemical Engineering,2006,30(3): 558-571
    [25]Quteishat A, Lim C P. A modified fuzzy min-max neural network with rule extraction and its application to fault detection and classification. Applied Soft Computing, 2008,8(2):985-995
    [26]Jack L B, Nandi A K. Support vector machines for detection and characterization of rolling element bearing faults. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science,2001,215(9):1065-1074
    [27]Castro D, Ranson A, Matheus J, et al. Fault detection and identification in chemical processes using multivariable statistical techniques and SVM for classification. Proceedings of ISA Monterrey 2002. North Carolina, USA:ISA Services Inc,2002. 165-175
    [28]Wise B M, Ricker N L, Veltkamp D F, et al. A theoretical basis for the use of principal component models for monitoring multivariate processes. Process Control and Quality, 1990,1(1):41-51
    [29]Li W, Yue H H, Valle-Cervantes S, et al. Recursive PCA for adaptive process monitoring. Journal of Process Control,2000,10(5):471-486
    [30]Wang X, Kruger U, Irwin G W, et al. Nonlinear PCA with the local approach for diesel engine fault detection and diagnosis. IEEE Transactions on Control Systems Technology,2008,16(1):122-129
    [31]Cherry G A, Qin S J. Multi-block principal component analysis based on a combined index for semiconductor fault detection and diagnosis. IEEE Transactions on Semiconductor Manufacturing,2006,19(2):159-172
    [32]Zhao S J, Zhang J, Xu Y M. Performance monitoring of processes with multiple operating modes through multiple PLS models. Journal of Process Control,2006, 16(7):763-772
    [33]Drif M, Benouzza N, Kraloua B, et al. Squirrel cage rotor faults detection in induction motor utilizing stator power spectrum approach. Proceedings of International Conference on Power Electronics, Machines, and Drives. London, UK:IEEE,2002. 133-138
    [34]谭阳红,叶佳卓.模拟电路故障诊断的小波方法.电子与信息学报,2006,28(9):1748-1751
    [35]Al-Raheem K F, Roy A, Ramachandran K P, et al. Application of the Laplace wavelet combined with ANN for rolling bearing fault diagnosis. Journal of Vibration and Acoustics,2008,130(5):60-68
    [36]Parikh U B, Das B, Maheshwari R P. Combined wavelet-SVM technique for fault zone detection in a series compensated transmission line. IEEE Transactions on Power Delivery,2008,23(4):1789-1794
    [37]Jayabharata R M, Mohanta D K. A wavelet-fuzzy combined approach for classification and location of transmission line faults. Electrical Power and Energy Systems,2007,29(9):669-678
    [38]Zhang Q, Han Z X, Wen F S. New approach for fault diagnosis in power systems based on rough set theory. Proceedings of the 4th International Conference on Advances in Power System Control, Operation, and Management. Hong Kong, China: IEEE,1997.597-602
    [39]Lee S, Vachtsevanos G. An application of rough set theory to defect detection of automotive glass. Mathematics and Computers in Simulation,2002,60(3-5):225-231
    [40]Fan X F, Zuo M J. Fault diagnosis of machines based on D-S evidence theory, part 2: application of the improved D-S evidence theory in gearbox fault diagnosis. Pattern Recognition Letters,2006,27(5):377-385
    [41]Cheng Q, Varshney P K, Belcastro C M. Fault detection in dynamic systems via decision fusion. IEEE Transactions on Aerospace and Electronic Systems,2008,44(1): 227-242
    [42]ITS America 2004 Annual Report. The Intelligent Transporation Society of America, http://www.itsa.org/media-center/publications/annual-reports
    [43]秦贵和,葛安林,雷雨龙.智能交通系统及其车辆自动控制技术,汽车工程,2001,23(2):92-96
    [44]Karel A B, Dick W, Wiel H J. Behavioural impacts of Advanced Driver Assistance Systems-an overview. EJTIR.2001,1(3):245-253
    [45]A Dugarry. Advanced Driver Assistance Systems Information Management and Presentation:[PhD Thesis], England:Cranfield University,2004
    [46]孙振平.自主驾驶汽车智能控制系统:[博士学位论文],长沙:国防科学技术大学,2004
    [47]游峰.智能车辆自动换道与自动超车控制方法的研究:[博士学位论文],吉林:吉林大学,2005
    [48]张朋飞,何克忠,欧阳正柱等.多功能室外智能移动机器人实验平台—THMR-V.机器人,2002,24(2):97-101
    [49]王立琦,杜茂.基于激光扫描仪的智能车前方障碍物检测.2010年系统仿真技术及其应用学术会议论文集,合肥:中国科学技术大学出版社,2010:544-547
    [50]张宇腾,杨明,王春香.基于主动视觉的智能车道路跟踪方法.上海交通大学学报,2010,44(8):1042-1045
    [51]Intelligent vehicle safety system, http://www.globeaccess.com/web/isa/
    [52]Guang L, Jihua H, Masayoshi T, Vehicle Lateral Control Under Fault in Front and/or Rear Sensors:Final Report. California Partners for Advanced Transit and Highways (PATH). Research Reports:Paper UCB-ITS-PRR-2004-36. http://repositories.cdlib.org/its/path/reports/UCB-ITS-PRR-2004-36
    [53]Robert H C, Hok K N, Jason L S, et al. Testing and Evaluation of Robust Fault Detection and Identification for a Fault Tolerant Automated Highway System:Final Report. http://repositories.cdlib.org/its/path/reports/UCB-ITS-PRR-2004-46
    [54]Douglas R K, Speyer J L, Mingori D L, et al. Fault Detection and Identification with Application to Advanced Vehicle Control Systems, California PATH Research Report UCB-ITS-PRR-97-26
    [55]Rajesh R. Fault Diagnostics For Intelligent Vehicle Applications. Report Date:May 2001. Report Number:2001-20. Report/Product:http://www.lrrb.org/pdf/200120.pdf
    [56]Fischer D, Borner M, Schmitt J, et al. Fault detection for lateral and vertical vehicle dynamics. Control Engineering Practice,2007,15(3):315-324
    [57]Gao Z, Ding S X, Ma Y. Robust fault estimation approach and its application in vehicle lateral dynamic systems. Optimal Control Applications and Methods,2007, 28(3):143-156
    [58]Garg V. Fault Detection in Nonlinear Systems:An Application to Automated Highway Systems:[PhD Thesis], University of California at Berkeley,1995.
    [59]Rajamani R, Howell A, Chieh C, et al. A Complete Fault Diagnostic System For Longitudinal Control Of Automated Vehicles. Proceedings of the ASME Dynamic Systems and Control Division,2007.715-723
    [60]Howell A S, Hedrick J K. Multiple fault diagnosis as applied to automated vehicle control. American Society of Mechanical Engineers, Dynamic Systems and Control Division,1999.615-621
    [61]Unger I, Isermann R. Fault tolerant sensors for vehicle dynamics control. Proceedings of the American Control Conference,2006.3948-3953
    [62]Yang H, Cocquempot V, Bin J. Fault tolerant strategy for hybrid longitudinal control system of automated vehicles. Proceedings of the IEEE Conference on Decision and Control,2007.3176-3181
    [63]Rajamani R, Howell A, Chieh C, et al. A Complete Fault Diagnostic System For Automated Vehicles Operating In A Platoon. IEEE Transactions on Control Systems Technology,2001,9(4):553-564
    [64]Crossman J A, H Guo, Murphey Y L, et al. Automotive signal fault diagnostics-Part Ⅰ: Signal fault analysis, signal segmentation, feature extraction and quasi-optimal feature selection. IEEE Transactions on Vehicular Technology,2003,52(4):1063-1075
    [65]Murphey Y L, Crossman J A, ZhiHang C, et al. Automotive fault diagnosis-Part Ⅱ:A distributed agent diagnostic system. IEEE Transactions on Vehicular Technology, 2003,52(4):1076-1098
    [66]Faller W, Hess D, Fu T, et al. Analytic redundancy for automatic control systems: Recursive neural network based virtual sensors. Collection of Technical Papers-45th AIAAAerospace Sciences Meeting,2007.1897-1914
    [67]Halbe I. Model-based fault-detection of vehicle dynamics sensors At-Automatisierungstechnik,2007,55(6):322-329
    [68]Schwall M L, Gerdas J C. Multi-modal diagnostics for vehicle fault detection. ASME International Mechanical Engineering Congress and Exposition, Proceedings,2001(2): 1753-1762
    [69]Caron F, Davy M. Particle filtering for multi-sensor data fusion with switching observation models:Application to land vehicle positioning. IEEE Transactions on Signal Processing,2007.2703-2719
    [70]陈敏泽,周东华.动态系统的故障预报技术.控制理论与应用.2003,20(06):819-824
    [71]Lu K S, Saeks R. Failure prediction for an on-line maintenance system in a poisson shock environment. IEEE Trans on Systems, Man, and Cybernetics,1979, 9(6):356-362
    [72]Box G E, Jenkins G M. Time Series Analysis Forecasting and Control. San Francisco: Holden Day,1970
    [73]刘颖,严军.基于时间序列ARMA模型的振动故障预测.化工自动化及仪表,2011,38(7):841-843
    [74]邓聚龙.灰色系统基本方法.武汉:华中工学院出版社,1987
    [75]郭阳明,姜红梅,翟正军.基于灰色理论的自适应多参数预测模型.航空学报,2009,30(5):925-931
    [76]王晶,刘建新.基于灰色新预测模式的变压器故障预测.华北电力大学学报(自然科学版),2007,34(1):10-14
    [77]李斌,章卫国,宁东方等.基于神经网络技术的飞机舵面故障趋势预测研究.系统仿真学报,2008,20(21):5840-5842
    [78]程进军,夏智勋,胡雷刚.基于遗传神经网络的航空装备故障预测.空军工程大学学报(自然科学版),2011,12(1):15-19
    [79]徐贵斌,周东华.基于在线学习神经网络的状态依赖型故障预测.浙江大学学报(工学版),2010,44(7):1251-1254
    [80]Sidar M M, Doolin B F. On the feasibility of realtime prediction of aircraft carrier motion at sea. IEEE Transactions on Automatic Control,1983,28(3):350-355
    [81]Berg R F. Estimation and prediction for maneuvering target trajectories. IEEE Transactions on Automatic Control,1983,28(3):294-304
    [82]Yang S K, Liu T S. State estimation for predictive maintenance using Kalman filter. Realiability Engineering and System Safety,1999,66(1):29-39
    [83]柳玉甜,蒋静坪.基于粒子滤波器的移动机器人故障诊断和预测方法.机床与液 压,2009,37(11):241-245
    [84]Benveniste A, Basseville M, Moustakides G V. Asymptotic local approach to change detection and model validation. IEEE Transactions on Automatic Control,1987, 32(7):583-592
    [85]Demetriou M A, Polycarpou M M. Incipient fault diagnosis of dynamical systems using online approximators. IEEE Transactions on Automatic Control,1998,43(11): 1612-1617
    [86]Yang S K, Liu T S. A petri net approach to early failure detection and isolation for preventive maintenance. Quality and Reliability Engineering Int,1998,14(5):319-330.
    [87]Kabanza F, Barbeau M. Planning control rules for reactive agents. Artificial Intelligence,1997,95(1):67-113
    [88]Pawlak Z. Rough Sets. International Journal of Parallel Programming,1982,11(5): 341-356
    [89]Flint A, Ingleby M, Morton D. A new generalisation of the Hough transform in trend analysis. IEEE Int Symposium on Intelligent Control. Glasgow, Scotland,1992: 261-267
    [90]梁旭,李行善,张磊等.支持视情维修的故障预测技术研究.测控技术,2007,26(6):5-8
    [91]周开军,余伶俐.基于粒子滤波器的故障预测方法.第30届中国控制会议,中国烟台,2011:4109-4114
    [92]Kailath, T. An innovations approach to least-squares estimation--Part Ⅰ:Linear filtering in additive white noise. IEEE Transactions on Automatic Control,1968,13(6): 646-655
    [93]张贤达,现代信号处理,北京:清华大学出版社,2002
    [94]Mallat S. A Wavelet Tour of Signal Processing, USA:Academic Press,1998
    [95]文成林.多尺度估计理论及其应用.北京:清华大学出版社,2002
    [96]罗鹏飞等译.统计信号处理基础--估计与检测理论.电子工业出版社,2006
    [97]崔培玲,王桂增,潘泉.一类动态多尺度系统融合估计算法的分析.控制理论与应用,2007,24(1):84-89
    [98]徐宁寿.随机信号估计与系统控制.北京:北京工业大学出版社,2001
    [99]尹世荣,王蔚然.多尺度卡尔曼滤波探测气体浓度.激光与红外,2005,35(9):679-681
    [100]柯熙政,任亚飞.多尺度多传感器融合算法在微机电陀螺数据处理中的应用.兵工学报,2009,30(7):994-998
    [101]Bor-Sen C, Wen-Sheng H. Deconvolution filter design for fractal signal transmission systems:A multi-scale Kalman filter bank approach. IEEE Transactions on Signal Processing,1997,45(5):1359-1364
    [102]赵娟,马洪,游志胜等.基于小波变换的分形随机信号的卡尔曼滤波.电子学报,2001,29(9):1157-1160
    [103]覃方君,许江宁,李安等.基于小波卡尔曼滤波的加速度计降噪方法.武汉理工大学学报(交通科学与工程版),2009,33(01):49-52
    [104]ZHAO T, WANG Y, WANG H. Image Fusion Based on Multi-scale Kalman Filtering. 2010 Second International Workshop on Education Technology and Computer Science(ETCS),2010.207-215
    [105]崔培玲,王桂增,潘泉.一类动态多尺度系统融合估计算法的分析.控制理论与应用,2007,24(1):84-89
    [106]时伟,吴美平,薛祖瑞.基于小波卡尔曼混合滤波的激光陀螺信号处理.兵工自动化,2005,24(4):57-58
    [107]谭平,蔡自兴.基于无抽取haar算法的实时卡尔曼滤波方法研究[J].中南大学学报(自然科学版).2011,42(12):3760-3764
    [108]丁宁,周新志.基于改进多孔算法的时间序列预测.系统仿真学报,2007,19(17):4082-4085
    [109]Renaud O, Starck J L, Murtagh F. Wavelet-Based Combined Signal Filtering and Prediction. IEEE Transactions on Systems, Man, and Cybernetics,2005,36(6): 1241-1251
    [110]张娅玲,陈伟民,章鹏等.传感器故障诊断技术概述.传感器与微系.2009,28(1):4-6
    [111]赵志刚,赵伟.基于动态不确定度理论的多传感器系统传感器失效检测方法.传感技术学报,2006,12(6):2723-2726
    [112]颜东,张洪钺.均值检验方法及其在冗余惯性导航系统中的应用.航空学报,1997,18(4):417-42
    [113]车录锋,周晓军,程耀东.考虑传感器失效的多传感器加权数据融合算法.工程设计.1999(1):38-40
    [114]黎梨苗,陆绮荣,徐永杰.基于硬件冗余的传感器故障诊断研究.微计算机信息.2008,24(7):211-212
    [115]张玲霞,陈明,刘翠萍.冗余传感器故障诊断的最优奇偶向量法与广义似然比检验法的等效性.西北工业大学学报.2005,23(4):266-270
    [116]贾鹏,张洪钺.基于奇异值分解的冗余惯导系统故障诊断.宇航学报,2006,27(5):1076-1080
    [117]Daly K C, Gai E, Harrision J V. Generalized Likelihood Test for FDI in Redundant Sensor Configuration. Journal of Guidance and Control,1979,2(1):9-17
    [118]Jin H, Zhang H. Optimal Parity Vector Sensitive to Designated Sensor Fault. IEEE Trans on Aerospace and Electronic System,1999,35(4):1122-1128
    [119]Shim D S, Yang C K. Geometric FDI based on SVD for redundant inertial sensor systems. In Proceedings of the 2004 Asian Control Conference, Melbourne,2004. 1094-1100
    [120]杨国胜,谢东亮,侯朝桢.基于神经网络的传感器冗余方法研究.传感技术学报,2001,(1):33-38
    [121]李冬辉,周巍巍.基于小波神经网络的传感器故障诊断方法研究.电工技术学报,2005,20(5):49-52
    [122]谭平,蔡自兴,余伶俐.不同精度的冗余传感器故障诊断研究[J].控制与决策.2011,26(12):1909-1912
    [123]唐瓒,张闻捷,高琰等.不同精度冗余数据的融合.自动化学报,2005,31(6):934-942
    [124]Donoho D L. Denoising by Soft Thresholding. IEEE Transactions on Information Theory,1995,41(3):613-627
    [125]Donoho D L, Johnstone I. Ideal Spatial Adaptation by Wavelet Shrinkage. Biometrika, 1994,81(3):425-455
    [126]闻新,张洪钺.控制系统的故障诊断与容错控制,北京:机械工业出版社,1998
    [127]文成林.多传感器单模型动态系统多尺度数据融合.电子学报.2001,29(03):341-345
    [128]周雪梅,基于多尺度估计理论的组合导航系统研究:[博士学位论文],哈尔滨:哈尔滨工程大学,2006
    [129]莫以为,萧德云.基于进化粒子滤波器的混合系统故障诊断.控制与决策.2004,19(06):611-615
    [130]Arulampalam S, Maskell S, Neil G, et al. A Tutorial on Particle Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking. IEEE Transactions on Signal Processing. 2002,50(2):174-188
    [131]Giremus A, Tourneret J Y, and Calmettes V, A Particle Filtering Approach for Joint Detection/Estimation of Multipath Effects on GPS Measurements, IEEE Transactions on Signal Processing,2007,55(4):1275-1285
    [132]Verma V. Tractable particle filters for robot fault diagnosis:[PhD Thesis], Pittsburgh: Carnegie Mellon University,2005
    [133]Jang-Sub K, Serpedin E, Shin D R. Improved Particle Filtering-Based Estimation of the Number of Competing Stations in IEEE 802.11 Networks. IEEE Signal Processing Letters,2008,15(1):87-90
    [134]Doucet A, Godsill S J, Andrieu C. On Sequential Monte Carlo Sampling Methods for Bayesian Filtering. Statistics and Computing,2000,10(3):197-208
    [135]Doucet A, Freitas D, and Gordon N. An Introduction to Sequential Monte Carlo methods in Practice, New York:Springer-Verlag,2001
    [136]Gordon N, Salmond D, Smith A. Novel approach to nonlinear/non-Gaussian Bayesian state estimation, IEE Proceedings F:Radar and Signal Processing,1993,140(2): 107-113
    [137]冯驰,王萌,汲清波.粒子滤波器重采样算法的分析与比较.系统仿真学报,2009,21(2):1101-1110
    [138]Kwok C, Fox D, Meila M. KLD-Sampling:Adaptive Particle Filters. Advances in Neural Information Processing Systems (NIPS),2001
    [139]段琢华.基于自适应粒子滤波器的移动机器人故障诊断理论与方法研究:[博士学位论文],中南大学,2007
    [140]Kotecha J H, Djuric P M, Gaussian particle filtering, IEEE Transactions on Signal Processing,2003,51(10):2592-2601
    [141]张琪,胡昌华,乔玉坤等.基于随机摄动粒子滤波器的故障预报算法.控制与决策,2009,24(2):284-288
    [142]Tan Ping, Cai Zixing. An Adaptive Particle Filter Based on Posterior Distribution[C]. Proceedings of the 8th World Congress on Intelligent Control and Automation, Jinan, China,2010:5886-5890
    [143]邹小兵.移动机器人原型的控制系统设计与环境建模研究:[博士学位论文],长沙:中南大学,2005
    [144]余伶俐,蔡自兴,谭平等.基于多模态进化Rao-Blackwellized粒子滤波器的移动机器人航迹推算系统的故障诊断.控制与决策,2010,25(12):1787-1792
    [145]张磊,李行善.基于混合系统粒子滤波和二元估计的故障预测算法.航空学报.2009,30(07):1277-1283

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700