用户名: 密码: 验证码:
聚合物纳米管和聚合物包覆金属同轴纳米电缆组装、结构与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一维纳米材料,包括纳米线、纳米管、同轴纳米电缆等,因具有许多独特的光学、电学、磁学、化学等方面的性能,而成为近年来纳米材料领域的研究热点之一。聚合物纳米管是继碳纳米管之后又一个崭新的研究领域,正在异军崛起。本论文紧跟国际前沿,在大量检索、整理、综合分析文献的基础上,首次以孔径为200 nm阳极氧化铝(Anodic Aluminum Oxide,AAO)膜为模板、采用简单可行的模板浸润的物理技术,成功地组装了多种常规分子量的聚合物纳米管;并采用电化学沉积技术,首次成功地组装了常规聚合物包覆金属的同轴纳米电缆;分别对它们的结构与性能进行了表征,并首次对模板浸润法组装聚合物纳米管的机理进行了初步探讨。
     1 聚合物纳米管
     采用聚合物溶液和熔体浸润AAO模板的方法,组装了常规分子量的PS、PA6、PP、PA66、PU、PRSN—130、PCL和ABS等十多种聚合物纳米管和纳米线,并进行了结构与性能的表征。
     (1)采用模板浸润法,首次在200 nm的AAO模板中组装了常规分子量聚苯乙烯(PS)纳米管。采用SEM、FESEM和TEM等测试表明:纳米管外径约为300 nm;当溶液浓度为2.5wt%,5.0wt%和10.0wt%时,制得的纳米管的管壁厚度分别为50 nm,70 nm和80 nm;在较
One-dimensional nanomaterials, such as nanowire, nanotube and nanocable, have attracted increasing attention due to their novel optical, electronic, magnetic, chemical and good mechanical properties. Polymer nanotube is another heat point besides carbon nanotube. Various kinds of methods have been developed to prepare one-dimensional nanomaterials. Template method is proved to be very effective. In this thesis, the wetting template method, based on porous anodic aluminum oxide (AAO) membranes, has been used to fabricate several kinds of one-dimensional nanomaterials, including polymer nanotubes, metal nanowires and polymer enveloping metal coaxial nanocables. Their structures, properties have been characterized, and the mechanisms of difference methods have been tentatively studied. 1. Polymer nanotubesMore than 10 normal relative molecular mass polymer nanotubes and nanowires, such as PS, PA6, PP, PA66, PU, PRSN-130, PCL and ABS, etc., and their arrays were fabricated by simple physical techniques in the AAO templates with polymer solution and melt.(1) PS nanotubes with array was prepared by depositing a solution or melt of a high molecular weight PS (BASF) within the 200nm pores of anodic aluminum oxide (AAO). Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FESEM) were used to investigate their morphology and structures. These results illuminated that PS tubules were
    successfully obtained and the wall thickness of PS nanotubes prepared by the 2.5wt%, 5.0wt% and 10.0wt% PS solution were respectively 50, 70 and 80 nm . The structure of polymer nanotubes depends strongly on the concentration of PS solution. The nanotubes made by 2.5wt% solution contain defects in its walls. Otherwise, the nanotubes by 5.0 wt% and 10.0 wt% solution are intact. The wall thickness of nanotubes from PS melt is about 110 nm. As to solution methods, the arrayed polymer nanotubes are easily prepared by the "down-to-up " wetting method, a simple solution wetting method.(2) The preparation of PA6, PP and PA66 nanotubes has not been reported. Template wetting method was, at the first time, applied to fabricate these nanotubes with polymer solution. PA6, PP and PA66 nanotubes and nanowires were, respectively, prepared at the different temperature. PP and LDPE nanotubes were successfully obtained by melt method. Based on the above result, the new viewpoint is raised that the polarity of polymer has much less influence on wetting process than the high surface energy of AAO template.(3) The bending modulus of polymer nanotubes was characterized by advanced AFM technique at the first time. PS nanotube's bending modulus is 0.7 GPa.(4) PS, PA6 and PA66 nanotubes were characterized by TGA and DTA. The results indicated that polymer nanotubes have better anti-oxidation and anti-pyrogenation properties than their bulk polymer. In addition, polymer nanotubes have good anti-solvent properties.(5) Based on the results of testing properties, we can deduce that the array of the molecular chain in the wall of polymer nanotubes is different from normal bulk polymer. Further, it verifies the Martin's conclusion that the polymer chains in the microcrystallites are oriented perpendicularly to the long axis of the nanotubes and the pore walls of the template.(6) At the first time, we put forward multi-layer wetting mechanism of polymer solution and critical value principle of polymer melt and drew its model graphs.2. Metal nanowiresPt, Fe and Au nanowires have been prepared by electrochemical deposition method.
引文
1 Morales A M, Lieber C M. A Laser Ablation method for the synthesis of crystalline semiconductor nanowires. Science, 1998, 279:208-211.
    2 Huang Y, Duan X F, Wei Q Q, et al. Directed assembly of one-dimensional nanostructures into functional networks. Science, 2001, 291: 630-633.
    3 Cui Y, Lieber C M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science, 2001, 291:851-853.
    4 Trentler T J, Hickman K M, Bubro W E, et al. Solution-liquid-solid growth of crystalline Ⅲ-Ⅴ semiconductors—An analogy to vapor-liquid-solid growth. Science, 1995, 270:1791-1794.
    5 Dai H J, Wong E W, Lieber C M, et al. Synthesis and characterization of carbide nanorods. Nature, 1995, 375:769-772.
    6 Han W Q, Fan S S, Li Q Q, et al. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science, 1997, 277:1287-1289.
    7 Fasol G. Applied physics—Nanowires: Small is beautiful. Science, 1998, 280: 545-546.
    8 Zhang Y, Suenaga K, Colliex C. et al. Coaxial nanocables: Silicon carbide and silicon oxide sheathed with boron nitride and carbon. Science, 1998, 281:973-975.
    9 张立德,牟季美.纳米材料与纳米结构[M].北京:科学出版社,2001.
    10 Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science, 2001, 291: 1947-1949.
    11 Xia Y N, Yang P D, Sun Y G, et al. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv Mater, 2003, 15:353-389.
    12 董亚杰,李亚栋.一维纳米材料的合成、组装与器件.科学通报,2002,47(9):641-649.
    13 韩红梅,王太宏.纳米线、纳米管的制备、表征及其应用.微纳电子技术,2002,5:1-10.
    14 张亚利,郭玉国,孙典亭.纳米线研究进展(1):制备与生长机制.材料科学与工程,2001,19(1):131-136.
    15 张亚利,郭玉国,孙典亭.纳米线研究进展(2):纳米线的表征与性能.材料科学与工程,2001,19(2):89-94.
    16 Cui Y, Duan X F, Hu J, et al. Doping and electrical transport in silicon nanowires. J Phys Chem, 2000, 104(22): 5213-5216.
    17 Zhang Y, Wang N, Zhu J, et al. A simple method to synthesize nanowires. Chem Mater, 2002, 14(8): 3564 - 3568.
    18 Yang P D, Lieber C M. Nanorod-superconductor composites: A pathway to materials with high critical current densities. Science, 1996, 273: 1836 - 1840.
    19 Yuan Y S, Wong M S, Wang S S. Solid-state processing and phase development of bulk (MgO)w/BPSCCO high-temperature superconducting composite. J Mater Res, 1996, 11:8-17.
    20 Yang P D, Lieber C M. Nanostructured high-temperature superconductors: Creation of strong-pinning columnar defects in nanorod/superconductor composites. J Mater Res, 1997, 12: 2981 - 1996.
    21 Yu D P, Lee C S, Bello I, et al. Synthesis of nano-scale silicon wires by excimer laser ablation at high temperature. Solid State Commun, 1998, 105(6): 403 - 407.
    22 Cai Z, Martin C R. Electronically conductive polymer fibers with mesoscopic diameters show enhanced electronic conductivities. J Am Chem Soc, 1989, 111(11):4138-4139.
    23 Chen C C, Yeh C C, Chen C H, et al. Catalytic growth and characterization of gallium nitride nanowires. J Am Chem Soc, 2001, 123(12): 2791 - 2798.
    24 Zhang J, Peng X S, Zhang L D, et al. Micro-Raman investigation of GaN nanowires prepared by direct reaction Ga with NH3. Chem Phys Lett, 2001, 345:372-376.
    25 Duan X F, Lieber C M. Laser-assisted catalytic growth of single crystal GaN nanowires. J Am Chem Soc, 2000, 122(1): 188 - 189.
    26 Duan X F, Wang J F, Lieber C M. Synthesis and optical properties of gallium arsenide nanowires. Appl Phys Lett, 2000, 76(9): 1116-1118.
    27 Duan X F, Lieber C M. General synthesis of compound semiconductor nanowires. Adv Mater, 2000, 12(4): 298 - 302.
    28 Wang Y W, Zhang L D, Liang C H, et al. Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires. Chem Phys Lett, 2002, 357: 314-318.
    29 Wang Y W, Meng G W, Zhang L D, et al. Catalytic growth of large-scale CdS nanowires by physical evaporation and their photoluminescence. Chem Mater, 2002, 14(4): 1773-1777.
    30 Wu X C, Song W H, Wang K Y, et al. Preparation and photoluminescence properties of amorphous silica nanowires. Chem Phys Lett, 2001, 336: 53 - 56.
    31 Gudiksen M S, Lieber C M. Diameter-selective synthesis of semiconductor nanowires. J Am Chem Soc, 2000, 122(36): 8801 - 8802.
    32 Gudiksen M S, Wang J F, Lieber C M. Synthetic control of the diameter and length of single crystal semiconductor nanowires. J Phys Chem B, 2001, 105(19): 4062-4064.
    33 Cui Y, Lauhon L J, Gudiksen M S, et al. Diameter-controlled synthesis of single-crystal silicon nanowires. Appl Phys Lett, 2001, 78(15): 2214-2216.
    34 Holmes J D, Johnston K P, Korgel B A, et al. Control of thickness and orientation of solution-grown silicon nanowires. Science, 2000, 287: 1471 - 1473.
    35 Hanrath T, Korgel B A. Nucleation and growth of germanium nanowires seeded by organic monolayer-coated gold nanocrystals. J Am Chem Soc, 2002, 124(7): 1424- 1429.
    36 Lu X, Hanrath T, Korgel B A, et al. Growth of single crystal silicon nanowires in supercritical solution from tethered gold particles on a silicon substrate. Nano Lett, 2003, 3(1): 93-99.
    37 Heath J R, LeGoues F K. A liquid solution synthesis of single crystal germanium quantum wires. Chem Phys Lett, 1993, 208: 263 - 268.
    38 Wang X, Li Y. Selected-control hydrothermal synthesis of a- and P-MnO_2 single crystal nanowires. J Am Chem Soc, 2002, 124(12): 2880-2881.
    39 Kasuga T. Hiramatsu M, Hoson A, et al. Formation of titanium oxide nanotube. Languir, 1998, 14(12): 3160-3163.
    40 Lu Q, Gao F, Zhao D. One-step synthesis and assembly of copper sulfide nanoparticles to nanowires, nanotubes, and nanovesicles by a simple organic amine-assisted hydrothermal Process. Nano Lett. 2002, 2(7): 725 - 728.
    41 Xie Y, Yan P, Lu J, et al. A Safe Low temperature route to InAs nanofibers. Chem Mater, 1999. 11(9): 2619-2622.
    42 Wang W, Geng Y, Yan P. et al. A novel mild route to nanocrystalline selenides at room temperature. J Am Chem Soc, 1999, 121(16): 4062 - 4063.
    43 Wang Z L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem B, 2000, 104(6): 1153 - 1175.
    44 Ahmadi T S, Wang Z L, Green T C, et al. Shape-controlled synthesis of colloidal platinum nanoparticles. Science, 1996, 272: 1924- 1925.
    45 Bradley J S, Tesche B, Busser W, et al. Surface spectroscopic study of the stabilization mechanism for shape-selectively synthesized nanostructured transition metal colloids. J Am Chem Soc, 2000. 122( 19): 4631 - 4636.
    46 Sun Y G, Xia Y N. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298:2176-2179.
    47 Peng X G, Manna L, Alivisatos A P, et al. Shape control of CdSe nanocrystals. Nature, 2000,404:59-61.
    48 Manna L, Scher E C, Alivisatos A P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J Am Chem Soc, 2000, 122(51): 12700-12706.
    49 Peng Z A, Peng X G. Mechanisms of the shape evolution of CdSe nanocrystals. J Am Chem Soc, 2001, 123(7): 1389-1395.
    50 Peng Z A, Peng X G. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J Am Chem Soc, 2002, 124(13): 3343-3353.
    51 Sun Y, Gates B, Xia Y, et al. Crystalline silver nanowires by soft solution processing. Nano Lett, 2002, 2(2): 165 - 168.
    52 Sun Y, Yin Y, Xia Y, et al. Uniform silver nanowires synthesis by reducing AgNO_3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater, 2002,14(11): 4736-4745.
    53 Li Y D, Wang J W, Deng Z X, et al. Bismuth Nanotubes: A rational low-temperature synthetic route. J Am Chem Soc, 2001, 123(40): 9904 - 9905.
    54 Li Y D, Li X L, He R R, et al. Artificial lamellar mesostructures to WS_2 nanotubes. JAm Chem Soc, 2002, 124(7): 1411 - 1416.
    55 Li Y D, Li X L, Deng Z X, et al. From surfactant-inorganic mesostructures to tungsten nanowires. Angew Chem Int Edit, 2002, 41(2): 333 - 335.
    56 Li Y D, Liao H W, Qian Y T, et al. Nonaqueous synthesis of CdS nanorod semiconductor. Chem Mater, 1998, 10(9): 2301 -2303.
    57 Li Y D, Liao H W, Ding Y, et al. Solvothermal elemental direct reaction to CdE (E=S, Se, Te) semiconductor nanorod. Inorg Chem, 1999, 38(7): 1382-1387.
    58 Wang X, Li Y D. Rational synthesis of α-MnO_2 single-crystal nanorods. Chem Commun, 2002, 7: 764 - 765.
    59 Hornyak G L, Phani K L N, Martin C R, et al. Fabrication, characterization and optical theory of aluminum nanometal/nanoporous membrane thin film composites. NanoStructured Mater, 1995, 6: 839 - 842.
    60 Piraux L, Dubois S, Demoustier-Champagne S. Template synthesis of nanoscale materials using the membrane porosity. Nucl Instr Meth B, 1997, 131: 357-363.
    61 Toimil Molares M E, Brotz J, Buschmann V, et al. Etched heavy ion tracks in polycarbonate as template for copper nanowires. Nucl Instr Meth B, 2001, 185: 192- 197.
    62 Valizadeh S, Hultman L, George J M, et al. Template synthesis of Au/Co multilayered nanowires by electrochemical deposition. Adv Funct Mater, 2002, 12:766-772.
    63 Hornyak G L, Patrissi C J, Martin C R. Fabrication, characterization, and optical properties of gold nanoparticle/porous alumina composites: The nonscattering Maxwell-Garnett limit. J Phys Chem B, 1997, 101(9): 1548 - 1555.
    64 Suh J S, Lee J S. Surface enhanced Raman scattering for CdS nanowires deposited in anodic aluminum oxide nanotemplate. Chem Phys Lett, 1997, 281: 384-388.
    65 Xu D, Xu Y, Chen D, et al. Preparation and characterization of CdS nanowire arrays by dc electrodeposit in porous anodic aluminum oxide templates. Chem Phys Lett, 2000, 325: 340 - 344.
    66 Yang Y, Chen H, Mei Y, et al. Anodic alumina template on Au/Si substrate and preparation of CdS nanowires. Solid State Commun, 2002, 123: 279-282.
    67 Zhou Y K, Huang J, Shen C M, et al. Synthesis of highly ordered LiNiC_2 nanowire arrays in AAO templates and their structural properties. Mat Sci Eng A, 2002, 335:260-267.
    68 Zhou Y K, Shen C M, Li H L. Synthesis of high-ordered LiCoO_2 nanowire arrays by AAO template. Solid State Ionics, 2002, 146: 81 - 86.
    69 Zhao W B, Zhu J J, Chen H Y. Photochemical synthesis of Au and Ag nanowires on a porous aluminum oxide template. J Cryst Growth, 2003, 258: 176-180.
    70 Tang Z K, Zhang L, Wang N, et al. Superconductivity in 4 angstrom single-walled carbon nanotubes. Science, 2001, 292: 2462 - 2465.
    71 Fan S, Chapline M G Dai H, et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science, 1999, 283: 512 - 514.
    72 Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc. 1992, 114(27): 10834-10843.
    73 Zhu K, He H, Xie S, et al. Crystalline WO3 nanowires synthesized by templating method. Chem Phys Lett, 2003, 377: 317-321.
    74 Zhao Y, Guo Y G, Zhang Y L, et al. Fabrication and characterization of highly ordered Pt nanotubule arrays. Phys Chem Chem Phys. 2004, 6(8): 1766 - 1768.
    75 Cheng G S, Chen S H, Zhang L D, et al. Highly ordered nanostructures of single crystalline GaN nanowires in anodic alumina membranes. Mat Sci Eng A, 2000,286: 165-168.
    76 Huber I E. Processing and characterization of high-conductance bismuth wire array composites. J Mater Res, 2000, 15(8): 1816-1821.
    77 Lakshmi B B, Dorhout P K, Martin C R. Sol-gel template synthesis of semiconductor nanostructures. Chem Mater, 1997, 9(3): 857-862.
    78 Xu H, Qin D H, Li H L, et al. Fabrication and characterization of highly ordered zirconia nanowire arrays by sol-gel template method. Mater Chem Phys, 2003, 80: 524 - 528.
    79 Menon V P, Martin C R. Fabrication and evaluation of nanoelectrode ensembles. Anal Chem, 1995, 67: 1920-1928.
    80 Wirtz M, Martin C R. Template-fabricated gold nanowires and nanotubes. Adv Mater, 2003, 15:455-458.
    81 Peng Y, Qin D H, Li H L, et al. Bismuth quantum-wires arrays fabricated by electrodeposition in nanoporous anodic aluminum oxide and its structural properties. Mat Sci Eng B, 2000, 77: 246 - 249.
    82 Pan S L, Zeng D D, Li H L, et al. Preparation of ordered array of nanoscopic gold rods by template method and its optical properties. Appl Phys A, 2000, 70: 637 - 640.
    83 Lee J S, Gu G H, Kim H, et al. Well-ordered Co nanowire arrays for aligned carbon nanotube arrays. Synthetic Met, 2001, 124: 307 - 310.
    84 Zhang X Y, Zhang L D, Lei Y, et al. Fabrication and characterization of highly ordered Au nanowire arrays. J Mater Chem, 2001, 11: 1732 - 1734.
    85 Pang Y T, Meng G W, Zhang L D, et al. Arrays of ordered Pb nanowires and their optical properties for laminated polarizers. Adv Funct Mater, 2002, 12: 719-722.
    86 Qin D H, Cao L, Sun Q Y, et al. Fine magnetic properties obtained in FeCo alloy nanowire arrays. Chem Phys Lett, 2002, 358: 484 - 488.
    87 Peng X S, Meng G W, Zhang J, et al. Electrochemical fabrication of ordered Ag2S nanowire arrays. Mater Res Bull, 2002, 37: 1369 - 1375.
    88 Sander M S, Prieto A L, Gronsky R, et al. Fabrication of high-density, high aspect ratio, large-area bismuth telluride nanowire arrays by electrodeposition into porous anodic alumina templates. Adv Mater, 2002, 14: 665 - 667.
    89 Guo Y G, Li C J, Wan L J, et al. Well-defined fullerene nanowire arrays. Adv Funct Mater, 2003, 13: 626 -630.
    90 Chu S Z, Wada K, Inoue S, et al. Fabrication and characteristics of nanostructures on glass by Al anodization and electrodeposition. Electrochim Acta, 2003, 48:3147-3153.
    91 Li L, Zhang Y, Zhang L D, et al. A route to fabricate single crystalline bismuth nanowire arrays with different diameters. Chem Phys Lett, 2003, 378:244-249.
    92 郭玉国.纳米线的电化学模板法制备与表征:[硕士学位论文].青岛:青岛大学化学工程系,2001.
    93 梁汉璞.纳米线的制备和纳米微电极的研究:[硕士学位论文].青岛:青岛大学化学系,2002.
    94 Liang W, Martin C R. Template-synthesized polyacetylene fibrils show enhanced supermolecular order. J Am Chem Soc, 1990, 112(26): 9666-9668.
    95 Van Dyke L S, Martin C R. Electrochemical investigations of electronically conductive polymers. 4. Controlling the supermolecular structure allows charge transport rates to be enhanced. Langmuir. 1990, 6(6): 1118-1123.
    96 Brumlik C J, Martin C R. Template synthesis of metal microtubules. J Am Chem Soc, 1991, 113(8): 3174-3175.
    97 Brumlik C J, Menon V P, Martin C R. Template synthesis of metal microtuble ensembles utilizing chemical, electrochemical, and vacuum deposition techniques. J Mater Res, 1994, 9: 1174-1183.
    98 Martin C R. Nanomaterials: A membrane-based sythetic approach. Science, 1994, 266:1961-1966.
    99 Che G, Lakshmi B B, Martin C R, et al. Carbon nanotubule membranes for electrochemical energy storage and production. Nature, 1998, 393:346-349.
    100 Che G, Lakshmi B B, Martin C R, et al. Metal-nanocluster-filled carbon nanotubes: Catalytic properties and possible applications in electrochemical energy storage and production. Langmuir, 1999, 15(3): 750-758.
    101 Zhao J, Gao Q Y, Yong Y, et al. Template synthesis of nano-structured electrode materials and its electrochemical performance. Electrochem, 2000, 6(4): 393-398.
    102 Hou Z, Abbott N L, Stroeve P. Self-assembled monolayers on electroless gold impart pH-responsive transport of ions in porous membranes. Langmuir, 2000, 16(5): 2401-2404.
    103 Patolsky F, Weizmann Y, Lioubashevski O, et al. Au-nanoparticle nanowires based on DNA and polylysine templates. Angew Chem, 2002, 114:2429-2433.
    104 Bockrath M, Cobden D H, Smalley R E, et al. Single-electron transport in ropes of carbon nanotubes. Science, 1997, 275: 1922-1925.
    105 Lee R S, Kim H J, Smalley R E, et al. Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br. Nature, 1997, 388: 255-257.
    106 朱建新,汪子丹,蒋祺,等.弹道区的电子输运.物理学进展,1997,17(3):233-249.
    107 Ohnishi H, Kondo Y, Takayanagi K. Quantized conductance through individual rows of suspended gold atoms. Nature, 1998, 395:780-783.
    108 Yanson A I, Rubio Bollinger G, Van Den Brom H E, et al. Formation and manipulation of a metallic wire of single gold atoms. Nature, 1998, 395:783-785.
    109 Kondo Y, Takayanagi K. Synthesis and characterization of helical multi-shell gold nanowires. Science, 2000, 289:606-608.
    110 Thornton T J. Ballistic transport in GaAs quantum wires—A short history. Superlattices Microstruct, 1998, 23: 601-610.
    111 Abellan J, Chicon R, Arenas A. Properties of nanowires in air: Controlled values of conductance. Surf Sci, 1998, 418:493-501.
    112 严东生,冯端.材料新星—纳米材料科学[M].湖南:湖南科学技术出版社,1997.
    113 Dubios s, Michel A, Eymery J P, et al. Fabrication and properties of arrays of superconducting nanowires. J Mater Res, 1999, 14:665-671.
    114 Huang M H, Mao S, Yang P D, et al. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292:1897-1899.
    115 Duan X F, Huang Y, Lieber C M, et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature, 2001, 409: 66-69.
    116 Duan X F, Huang Y, Lieber C M, et al. Single-nanowire electrically driven lasers. Nature, 2003, 421:241-245.
    117 Zhou X T, Lai H L, Peng H Y, et al. Thin β-SiC nanorods and their field emission properties. Chem Phys Lett, 2000, 318:58-62.
    118 Lee C J, Lee T J, Lyu S C, et al. Field emission from well-aligned zinc oxide nanowires grown at low temperature. Appl Phys Lett, 2002, 81:3648-3650.
    119 Penner R M, Martin C R. Preparation and electrochemical characterization of ultramicroelectrode ensembles. Anal Chem, 1987, 59:2625-2630.
    120 Hulteen J C, Menon V P, Martin C R. Template preparation of nanoelectrode ensembles. J Chem Soc, Faraday Trans, 1996, 92:4029-4032.
    121 Forrer P, Schlottig F, Siegenthaler H, et al. Electrochemical preparation and surface properties of gold nanowire arrays formed by the template technique. J Appl Electrochem, 2000, 30:533-541.
    122 Brunetti B, Ugo P, Martin C R, et al. Electrochemistry of phenothiazine and methylviologen biosensor electron-transfer mediators at nanoelectrode ensembles. J Electroanal Chem, 2000, 491: 166-174.
    123 孔景临,薛宽宏,何春建,等.镍纳米线电极的电化学氧化还原行为及其对乙醇的电化学氧化催化作用.应用化学,2001,18(6):462-465.
    124 孔景临,薛宽宏,邵颖,等.镍纳米线电极对乙醇的电催化氧化动力学参数的测定.物理化学学报,2002,18(3):268-271.
    125 孔景临,薛宽宏,何春建,等.镍纳米线电极的交流阻抗研究.应用化学,2002,19(4):313-316.
    126 Kong J, Franklin N R, Dai H J, et al. Nanotube molecular wires as chemical sensors. Science, 2000, 287:622-625.
    127 Favier F, Walter E C, Penner R M, et al. Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science, 2001, 293:2227-2231.
    128 Walter E C, Favier F, Penner R M. Palladium mesowire arrays for fast hydrogen sensors and hydrogen-actuated switches. Anal Chem, 2002, 74:1546-1553.
    129 Cui Y, Wei Q Q, Lieber C M, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001, 293: 1289-1292.
    130 Iijima S. Helical macro-tubules of graphitic carbon. Nature, 1991, 354:56.
    131 Martin C R. Nanomaterials: A membrane-based synthetic approach. Science, 1994, 266(23): 1961-1966
    132 Steinhart M, Wendorff J H, Greiner A. Polymer nanotubes by wetting of ordered porous template. Science, 2002, 296(14): 1997-1997
    133 Zhang Z M, Wan M X. Composite films of nanostructured polyaniline with poly(vinyl alcohol). Synthetic Metals, 2002, 128:83-89
    134 D. AlMawiawi, N. Coombs, M. Moskovits. Magnetic properties of Fe deposited into anodic aluminum oxide pores as a function of particle size. J. Appl. Phys, 1991, 70:4421
    135 JD Klein, RD Herrick D. Palmer, MJ Sailor, CJ Brumlik, and. C. R. Martin. Electrochemical fabrication of cadmium microdiode arrays. Chem. Mater. 1993, 5:902-904
    136 Wu, C. T. Bein. Conducting polyaniline filaments in a mesoporous channel host. Science, 1994. 264:1757-1759.
    137 Tonucci RJ, Justus BL, Campillo AJ, Nanochannel array glass Science, 1992, 258:783-785
    138 Higgins SB, Schlenker JL, A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates, J. Am. Chem. Soc. 114 10834-10843 1992
    139 GA.Ozin. Nanochemistry - Synthesis in Diminishing Dimensions Adv.Mater, 1992,4:612-613
    140 Cepak V M, Martin C R. Preparation of polymeric micro- and nanostructures using a template-based deposition method. Chem. Mater. 1999, 11, 1363-1367
    141 B. H. Hong, J. Y. Lee, C. W. Lee. Self-assembled arrays of Organic nanotubes with infinitely long one-dimensional H-bond chains. J. Am. Chem. Soc. 2001, 123, 10748-10749
    142 Kim K K, Jin L L. Preparation of PPV nanotubes and nanorods and carbonized products derived therefrom. Nano Letters, 2001, 1(11): 631-636
    143 Miller, S.A.; Young, V.Y.; Martin, C.R. Electroosmotic Flow in Template-Prepared Carbon Nanotube Membranes. J. Am. Chem. Soc, 2001, 123, 12335-12342.
    144 Harrell, C; Lee, S.; Martin, C.R. Synthetic Single Nanopore and Nanotube Membranes, Anal. Chem., 2003, 75, 6861 - 6867.
    145 Parthasarathy, R. V.; Martin, C. R. Synthesis of Polymeric Microcapsule Arrays and Their Use for Enzyme Immobilization, Nature, 1994, 369, 298-301.
    146 Joo J, Park K T, Kim M S, Lee S Y. Conducting polymer nanotube and nanowire synthesized by using nanoporous template: synthesis, characteristics, and applications. Synthetic Metals, 2003, 135-136, 7-9
    147 Hou H Q, Zeng Jun. Poly(p-xylylene) nanotubes by coating and removal of ultrathin polymer template fibers. Macromolecules, 2002, 35, 2429-2431
    148 Michael Bognitzki, Hou H Q, Michael Ishaque. Polymer, Metal, and Hybrid Nano- and Mesotubes by Coating Degradable Polymer Template Fibers (TUFT Process). Adv. Mater, 2000, 12(9): 637-640
    149 Huang J, Wan M X. In-Situ doping Polymerization of Polyaniline Microtubules in the Presence of beita -naphthalenesulfonic acid. J. Polym. Sci. A: Polym. Chem. 1999,37: 151-153
    150 Yang Y S, Wan M X. Chiral nanotubes of polyaniline synthesized by a toemplate-free method . Journal of Materials Chemistry, 2002, 12:897-901
    151 Huang K, Wan M X. Self-assembled polyaniline nanostructures with photoisomerization function . Chem. Mater, 2002,14: 3486-3492
    152 Yang Y S, Liu J. Wan M X. Self-assembled conducting polypyrrole micro/nanotubes. Nanotechnology, 2002, 13: 771-773
    153 Liu J and Wan M X. Synthesis, characterization and Electrical Properties of Microtubules of Polypyrrole by a Template-Free Method. J. Mater. Chem, 2001,11(2): 404-409
    154 Yang Y and Wan M. Microtubules of polypyrrole synthesized by an electrochemical templatefree method. J. Mater. Chem,2001,l l(8):2022-2025
    155 Zhang L J, Wan M X. Sythesis and characterization of self-assembled polyanline nanotubes doped with D-10-camphorsulfonic acid. Nanotechnology, 2002, 13:750-755
    156 Ding, JH; Gin, DL. Catalytically Active Pd Nanocomposites based on a Liquid Crystal Template. Polym. Chem. 1999, 40 (2), 738-739.
    157 Ga W Q, Zhou W J, Gin D L, Synthesis and characterization of novel nanostructured polymers enhanced by hydrogen-bonding using liquid crystal monomers. Chem. Mater, 2001, 13: 1949- 1951
    158 Kane R S, Cohen R E, Silbey R. Synthesis of doped ZnS nanoclusters within block copolymer nanoreactors. Chem. Mater, 1999, 11 (1): 90-93
    159 Kane R S, Cohen R E, Silbey R. Synthesis of PbS nanoclusters within block copolymer nanoreactors. Chem. Mater. 1996, 8(8): 1919-1924
    160 Underhill R S, Liu G J, Triblock Nanospheres and Their Use as Template for Inorganic Nanoparticie Preparation. Chem. Mater. 2000, 12(8): 2082-2091
    161 Stewart S, Liu G J. Block copolymer nanotubes. Angew. Chem. Int. Ed. 2000, 39(2): 340-344
    162 Valizadeh S, Hultman L. George J M, et al. Template synthesis of Au/Co multilayered nanowires by electrochemical deposition. Adv Funct Mater, 2002, 12:766-772.
    163 Hornyak G L, Patrissi C J, Martin C R. Fabrication, characterization, and optical properties of gold nanoparticle/porous alumina composites: The nonscattering Maxwell-Garnett limit. J Phys Chem B, 1997, 101(9): 1548 - 1555.
    164 Yang Y, Chen H, Mei Y. et al. Anodic alumina template on Au/Si substrate and preparation of CdS nanowires. Solid State Commun, 2002, 123: 279 - 282.
    165 Zhou Y K, Huang J, Shen C M, et al. Synthesis of highly ordered LiNiO2 nanowire arrays in AAO templates and their structural properties[J]. Mat Sci EngA, 2002, 335:260-267.
    166 Huber 1 E. Processing and characterization of high-conductance bismuth wire array composites[J]. J Mater Res, 2000, 15(8): 1816- 1821.
    167 Menon V P, Martin C R. Fabrication and evaluation of nanoelectrode ensembles. Anal Chem, 1995, 67: 1920-1928.
    168 Lee J S, Gu G H, Kim H, et al. Well-ordered Co nanowire arrays for aligned carbon nanotube arrays. Synthetic Met, 2001, 124: 307-310.
    169 Zhang X Y, Zhang L D, Lei Y, et al. Fabrication and characterization of highly ordered Au nanowire arrays. J Mater Chem, 2001, 11: 1732 - 1734.
    170 Sander M S, Prieto A L, Gronsky R, et al. Fabrication of high-density, high aspect ratio, large-area bismuth telluride nanowire arrays by electrodeposition into porous anodic alumina templates. Adv Mater, 2002, 14: 665 - 667.
    171 Zhang Y, Suenaga K., Colliex C. Coaxial nanocable silicon carbide core shelled by silica and borou nitride. Science, 1998, 281: 973-975
    172 Suenaga K, Zhang Y, Iijima S, Coiled structure of eccentric co-axial nanocable made of amorphous boron and silicon oxide. Applied Physical Letters, 2000, 76: 1564-1566
    173 Meng G W, Zhang L D, Mo C. M. Syntheis of a SiC nanorod within a SiO2 nanotube one dimension composite nanostructures. Sol. Stat. Coram., 1998, 106(4): 215-219
    174 Ma R., Bando Y, Sato T. Controlled Synthesis of BN Nanotubes, Nanobamboos, and Nanocables. Adv Mater, 2002, 14: 663 - 667.
    175 Wong Yuk-hong, Li Quan. Study of the crystallinity of ZnO in the Zn/ZnO nanocable Heterostructures. J. Mater. Chem. 2004,14(9): 1413-1418.
    176 Zhang J X, Chen F E. Aligned polythiphene coated gold nanowires. Synthetic Metals, 2003,135-136:217-218
    177 Cao H Q, Xu Z, Sheng D, Song J M, Sang H, Du Y W. An array of iron nanowires encapsulated in polyaniline nanotubules and its magnetic behavior, J.Mater. Chem., 2001, 11:958-960.
    178 Hou H Q, Jun Z etc. Poly(p-xylylene) nanotubes by coating and removal of ultrathin polymer template fibers. Macromolecules, 2002, 35, 2429-2431
    179 Long Y Z, Zhang L Q. Electrical conductivity of an individual polyaniline nanotube synthesized by a self-assembly method. Macromolecular Rapid Communications, 2003, 24: 938-942
    180 Yu S F, Li N C. Nano wheat fields prepared by plasma-etching gold nanowire-containing membranes. 2003, Nano. Letters, 1(11): 631-636
    181 Martin S, Stephan S, Ralf B W. Curvature-directed crystallization of poly(vinylidene difluoride) in nanotube walls. Macromolecules, 2003, 36: 3646-3651
    182 Joo J, Park K T, Kim M S. Conducting polymer nanotube and nanowire synthesized by using nanoporous template: synthesis, characteristics, and applications. Synthetic Metals, 2003, 135-136(1); 7-9
    183 Yang Y S, Wan M X. Chiral nanotubes of polyaniline synthesized by a template-free method. Journal of Materials Chemistry, 2002, 12(4): 897-901
    184 Zhang J X, Chen F E. Aligned polythiphene coated gold nanowires. Synthetic Metals, 2003, 135-136(2):217-218
    185 Cepak V M, Martin C R. Preparation of polymeric micro- and nanostructures using a template-based deposition method. Chem. Mater. 1999, 11(5): 1363-1367
    186 Ai S F, Lu G, He Q. Highly flexible polyelectrolyte nanotubes. J Am Chem Soc, 2003, 125(37): 11140-11141
    187 Cao H Q, Sheng D, Xu Z. Template synthesis and magnetic behavior of an array of cobalt nanowires encapsulated in polyaniline nanotubules. Adv. Mater, 2001, 13(2): 121-123
    188 Moon S I, McCarthy T J. Template synthesis and self-assembly of nanoscopic polymer "pencils". Macromolecules, 2003, 36(12): 4253-4255
    189 Li B S, Zhu G S. Fabrication of polystyrene nanofiber and nanotube using mesoporous silicate and aluminosilicate as template. Polymer Preprints 2002, 43(2): 414
    190 Tan E P S, Lim C T. Physical properties of a single polymeric nanofiber. Applied Physics Letters, 2004, 84(9): 1603-1605
    191 Martin S, Stephan S. Ralf B W. Curvature-directed crystallization of poly(vinylidene difluoride) in nanotube walls. Macromolecules, 2003, 36: 3646-3651
    192 Ai S F, Lu G, He Q. Highly flexible polyelectrolyte nanotubes. J Am Chem Soc, 2003. 125(37): 11140-11141
    193 Martin Steinhart. Sven Zimmermann. Petra Golring, Andreas K. Schaper, Ulrich Golsele, Christoph Weder,| Joachim H. Wendorff. Liquid Crystalline Nanowires in Porous Alumina: Geometric Confinement versus Influence of Pore Walls. Nano. Letters, 2005, 5(3): 429-434
    194 Moon S I, McCarthy T J. Template synthesis and self-assembly of nanoscopic polymer "pencils". Macromolecules, 2003, 36(12): 4253-4255
    195 Martin S. Sven Z., Petra G., Andreas K. S., Ulrich G., Christoph W.,| Joachim H. Wendorff. Liquid Crystalline Nanowires in Porous Alumina: Geometric

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700