用户名: 密码: 验证码:
AZ31B镁合金TIG焊接接头的深冷强化机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金是节能环保型的金属结构材料,影响其广泛应用的因素之一是镁合金的焊接技术。镁合金焊接存在的问题之一是焊接接头的软化,其软化问题无论从焊接工艺方面采取措施还是在焊后采取热处理措施,解决效果皆存在一定的局限性。本文提出改善AZ31B镁合金TIG焊接接头的深冷强化方法,进行了镁合金TIG焊接工艺试验和焊接接头的深冷处理试验。研究了深冷处理参数对AZ31B镁合金TIG焊接接头组织和性能的影响,探讨了深冷处理提高AZ31B镁合金TIG焊接接头性能的机理,探索了改善镁合金焊接接头软化的新途径。主要研究结果如下:
     深冷处理可以改善AZ31B镁合金TIG焊接接头组织的力学性能。研究发现,当深冷处理在-185℃,保温12h时,焊接接头各区域的硬度值趋于均匀化。AZ31B镁合金TIG焊接接头抗拉强度、屈服强度随着保温时间的延长和深冷处理温度的降低而增大。深冷温度为-185℃,达到同样的强化目的所需保温时间有所缩短,在保温12h时抗拉强度和屈服强度都达到最大值,分别提高了16.1%和6.5%,但延伸率的提高有限。
     采用SEM观测了接头的拉伸断口形貌。深冷处理前样品为脆性断裂,深冷处理后局部区域表现出塑性断裂的特征,断口上具有与拉伸轴呈45°方向的斜断裂口,其断裂形式是剪切断裂,断口宏观平齐,无空洞存在,局部区域有撕裂刃和细小的韧窝,呈现出复合性断裂的特征。
     利用金相显微镜、X射线衍射仪(XRD)和透射电子显微镜(TEM)等手段观测了焊接接头的深冷前后的微观组织,应用位错理论分析了AZ31B镁合金TIG焊接接头深冷强化机理。研究结果表明,深冷处理使得AZ31B镁合金TIG焊接接头组织中形成亚晶结构,第二相Mg17Al12颗粒弥散析出,提高了基体的连续性,且第二相颗粒数量明显增加,使AZ31B镁合金TIG焊接接头的基体组织细化,从而强化基体组织;XRD分析表明,深冷处理后焊接接头组织中的某些晶粒的晶面取向发生了变化,产生了晶粒转动;利用TEM观测了深冷处理前后的AZ31B镁合金焊接接头的晶体结构,发现深冷处理可促使TIG焊接接头组织中的位错转化为位错环,使接头组织产生孪晶。
     采用BP神经网络仿真和预测了不同深冷处理工艺参数对焊接接头抗拉强度的影响,得出比较合理的深冷处理参数:温度为-135℃,保温时间为2.5h以上。BP神经网络对AZ31B镁合金TIG焊接接头抗拉强度的预测结果与深冷处理焊接接头实际测量结果比较一致。
     采用有限元模型研究了深冷处理过程中的镁合金焊接接头温度场和应力场的分布特点及影响规律,有限元分析结果与试验结果基本吻合。
Magnesium alloy is the metal structural material for saving energy andenvironmental protection. The welding technology is one of the keytechnologies which decide the magnesium alloy will be widely used or not. Oneof the welding problems for magnesium alloy is the softening of welded joints.There are some limitations whether to take measures in welding procedure or totake heat treatment measures after welding. Deep cryogenic treatment is putforward to improve the strengthening of welded joints by TIG of AZ31Bmagnesium alloy,and welding test and deep cryogenic treatment test are alsotaken in this paper. The author studies the microstructure and mechanicalperformance of welded joints by TIG in the different parameters of deepcryogenic treatment, and investigates the mechanism to improve theperformance of the welded joints by TIG, and explores the new ways to improvethe softening of the welded joints. The major research results are as follows:
     Mechanical properties of welded joint by TIG of AZ31B magnesium alloywere improved by deep cryogenic treatment. The Vickers hardness value of thewelded joints for each region tends to be homogenizing after deep cryogenictreatment for4h at-185℃. The tensile strength and yield strength of the weldedjoint by TIG of AZ31B magnesium alloy improves as the holding time increasesand treatment temperature decreases. When the deep cryogenic temperature is-185℃, the holding time is shortened for achieving the same the purpose ofstrengthen. The tensile strength and yield strength reaches its maximum whenthe deep cryogenic treatment for12h at-185℃,16.1%and6.51%respectively,but elongation improves limited.
     The tensile fracture surface of the welded joints is observed by SEM. Thesample before cryogenic treatment breaks by way of brittle fracture, and thelocal area after cryogenic treatment shows the characteristics of ductile fracture.There is45°oblique fracture with the tensile axis direction on the fracturesurface. The form of fracture is shear fracture, with the fracture flush, and novoid exists. There is a torn edge and small dimple in the local area, showing the characteristics of the compound fracture.
     The microstructure before and after deep cryogenic treatment of weldedjoint by TIG is observed by using optical microscope, X-ray diffraction (XRD),and transmission electron microscope (TEM). The cryogenic strengtheningmechanism of the welded joints of AZ31B magnesium alloy is analyzed by thedislocation theory. The subgrain structure was formed in the welded joint ofAZ31B by deep cryogenic treatment. The Mg17Al12particles precipitated, whichimproved the continuity. The number of second phase particles increased, whichrefined the microstructure of welded joint by TIG of AZ31B magnesium alloyand strengthened mechanism. The analysis by XRD shows that the orientation ofgrain crystal of welded joint of AZ31B changes, resulting in the grain rotationafter deep cryogenic treatment. During the deep cryogenic treatment, thedislocation loop and twins are formed by TEM in the welded joints.
     BP neural network was used to simulate and predict for the tensile strengthof welded joint by TIG of AZ31B magnesium alloy. The reasonable parametersof deep cryogenic treatment are as follows: temperature is-135℃, duration timeis more than150minutes. The predicting results of BP neural network arerelatively accord with the experimental test results.
     Based on the FEM analysis, the distribution and the law of the temperatureand stress field of the welded joints of magnesium alloy are studied during thecryogenic treatment process. These results are consistent with the resultsobtained from experiments of effect of welding.
引文
[1]徐河,刘静安,谢水生编著,镁合金制备与加工技术,北京:冶金工业出版社,2007
    [2]潘复生,张津,张喜燕编著,轻合金材料新技术,北京:化学工业出版社,2008
    [3]王建军,王智民,白杉,日本镁合金的应用与研究现状,中国铸造装备与技术,2006-09-21
    [4]黎文献主编,镁及镁合金,长沙:中南大学出版社,2005.6
    [5] Polmear I J,Magnesium Alloys and Applications, Materials Science and Technology,1994(10):1~16
    [6] Myers P S. Reducing transportation fuel consumption: how far should we go[J].Proceedings-Society of Automotive Engineers,1992,10:225~234.
    [7]景艳,赵培全,汽车新材料的应用---轻量化,现代制造技术与装备,2007.176(1):75~78
    [8] Aghion E, Bronfin B, Friedrich H, et a.l The environmental impact of new magnesiumalloys on the transportation industry[A]. Alan A L. Magnesium Technology2004[C].USA: TMS (TheMaterials, Metals&Materials Society),2004.167~172.
    [9] Cole G S. Issues that influence magnesium’s use in the automotive industry[J]. MaterialScience Forum,2003,419422:43~50.
    [10]李仕慧,王英杰,汽车用镁合金焊接的研究进展,热加工工艺,2010,VOL.39,NO.23:190~194
    [11]张春香,陈培磊,陈海军,时爱菊,关绍康,镁合金在汽车工业中的应用及其研究进展,铸造技术,VOL.29, NO.4,Apr.2008:531~535
    [12]刘波,黎予生,李晓青,刘建才,长安汽车镁合金技术研究与应用进展,汽车工艺与材料,2012(1):17~21
    [13]张宇,葛龙,基于正面碰撞性仿真的轿车车身轻量化研究[J],机械工程学报,2005,41(9):207~211
    [14]钟皓,刘培英,周铁涛,镁及镁合金在航空航天中的应用及前景,航空工程与维修,2002.4:41~42
    [15]刘楚明,朱秀荣,周海涛等,镁合金相图集[M],长沙:中南大学出版社,2006.
    [16]中国机械工程学会焊接学会编,焊接手册[M],第2版,材料焊接,北京:机械工业出版社,2001
    [17]冯吉才,王亚荣,张忠典,镁合金焊接技术的研究现状及应用[J],中国有色金属学报2005.15(2):165~178
    [18]初雅杰,李晓泉,吴申庆,变形镁合金TIG焊接头组织和力学性能研究[J],金属铸锻焊技术,2010.39(9):140~142
    [19]苗玉刚,刘黎明,变形镁合金熔焊接头组织特征分析[J],焊接学报,2003.24(2):63~66
    [20]孙四全,王立君,镁合金焊接接头力学性能的研究现状,机械工程材料,2005.10,vol.29, No.10
    [21]王生希,宋刚,刘黎明,镁合金交流TIG和脉冲TIG组织性能分析[J],焊接学报,2006(9):66~68
    [22]胡学安,徐道荣,变形镁合金交流钨极氩弧焊工艺研究,现代焊接,2007(3):12~14
    [23] Munitz A, Cotler C, Stern A, et a.l Mechanical properties and microstructure of gastungsten arc welded magnesium AZ91D plates[J]. Materials Science and Engineering,2001, A302(1):68~73.
    [24]梁国俐,苑少强,AZ31B镁合金TIG焊接工艺研究[J],金属铸锻焊技术,2008.37(7):56~57
    [25]黎梅,AM60镁合金焊接工艺及组织性能研究,湖南大学硕士论文,2006-04-1
    [26]张福全,黎梅,陈振华等,AM60镁合金薄板的钨极氩弧焊组织与性能的研究,矿业工程,2006.04,vol.26, No.2:86~91
    [27]全亚夫,陈振华,黎梅等,AM60变形镁合金薄板激光焊接接头的组织与性能,中国有色金属学报,2007.04,vol.17, No.4:525~529
    [28]谢丽初,陈振华,俞照辉,ZK60镁合金的CO2激光焊接工艺研究,中南大学学报(自然科学版),2011.5,vol.42, No.5:1332~1337
    [29]王红英,李志军,AZ61镁合金激光焊接接头的组织与性能,中国有色金属学报,2006.8,vol.16, No.8:1338~1393
    [30]张彦军,AZ31镁合金搅拌摩擦焊接头组织和性能研究,大连交通大学硕士论文,2008.12
    [31] Naiyi L, Tsung Y P, Copper R P, et al. Friction stir welding of Magnesium AM60alloy.Alan A L. Magnesium Technology2004. USA: TMS (The Materials, Metals&Materials Society),2004:19~23.
    [32] Lee W B, Yeon Y M, Jung S B. Joint properties of friction stir welded AZ31B2H24Magnesium alloy. Materials Science and Technology,2003,19(6):785~790.
    [33]张华,林三宝,吴林等,AZ31镁合金搅拌摩擦焊接头力学性能,焊接学报,2003.10,vol.24, No.5
    [34]张华,林三宝,吴林,冯吉才,AZ31镁合金搅拌摩擦焊接显微组织形成机制,稀有金属材料与工程,2005.7,vol.34, No.7
    [35]樊车黎,徐跃明,佟晓辉,热处理工程师册,北京:机械工业出版社,2004.9
    [36]崔忠圻主编,金属学与热处理,北京:机械工业出版社,2000.27
    [37]李军,杨建国,翁路露,方洪渊,随焊旋转挤压对铝合金焊接接头组织和性能的影响,焊接学报, VOL.29, NO.6,2008.6:101~104
    [38]王长利,万志敏。锤击对铝合金焊接接头性能的影响,哈尔滨工业大学学报,2002,V.34(6):864~868
    [39]吴志生,靳鹏飞等.深冷处理在金属材料中的应用及研究进展[J].焊接技术,2010.39(1):3~11.
    [40]陈鼎,陈吉华,严红革等,深冷处理原理及其在工业上的应用[J],兵器材料科学与工程,2003,26(3):68~72
    [41] Rhodes R A. Deep cryogenic treatment: What’s in store for the future?[J]. Heat TreatProg,2006,6(1):49
    [42]张茂勋,何福善,尤华平,深冷处理技术进展及应用[J],机电技术,2003.26(B09):60~62
    [43]黎文献,龚浩然,柏振海,金属的深冷处理[J],材料导报,2000.14(3):16~18
    [44] How cool is that cryogenic processing of tooling, Metal working Production.2004,148(12):10
    [45]陈鼎,黄培云,黎文献等,金属材料深冷处理发展概况,热加工工艺,2001(4):57~59
    [46]靳鹏飞,吴志生,王维新,刘翠荣,深冷处理在金属材料中的应用及研究进展,铝加工,2010(3):16~19
    [47]夏雨亮,金滔,汤珂,许斌,张晓忠,陈佑军,深冷处理工艺及设备的发展现状和展望,低温与特气, VOL.25, NO.1,2007.02:4~8
    [48]张劲松,金属材料深冷处理现状,甘肃工业大学学报,2003.29(1):32~34
    [49]戴涛,范蜀晋,低温处理技术的进展,国外金属热处理.1998(1):8~11
    [50]尹洪臣,刘肃人,液氮深冷处理的应用研究[J],国外金属热处理,1999.20(4):43~45
    [51] Owaku S. Cryogenic treatment [J]. Heating Treatment (in Japanese),1999,39(1):12~13
    [52] Kamody D J. Using deep cryogenic to advanced [J].Materials and Processes,1999,6:H67~69
    [53]陈鼎,蒋琼,姜勇等,深冷处理对铸态ZK60镁合金显微组织和力学性能的影响,机械工程材料,2011.2,vol.35(2)
    [54] CHEN Hong-mei, KANG Suk-bong, YU Hua-shun, et al. Effect of heat treatment onmicrostructure and mechanicalproperties of twin roll cast and sequential warm rolledZK60alloy sheets [J].Alloys and Compounds,2009,476:324~328.
    [55] JIANG Yong, CHEN Ding, CHEN Zhen-hua. Effect of cryo-genic treatment on themicrostructure and mechanical proper-ties of AZ31magnesium alloy [J]. Materials andManufacturingProcesses,2010,25(8):837~841.
    [56]陈鼎,夏树人等,镁合金深冷处理研究[J],湖南大学学报,2008.35(1):62~65
    [57]王秋成,柯映林,深冷处理消除7050铝合金残余应力的研究,浙江大学学报(工学版),VOL.37, NO.6,2003.11:748~751
    [58]陈鼎,铝合金的深冷处理研究,中南大学硕士论文,2000
    [59] Chen Ding. Preferred grain orientation of aluminum and aluminum alloys after cryogenictreatment [J]. Metall,2008,62(11):744
    [60]陈鼎,黎文献,深冷处理下铝和铝合金的晶粒转动[J],中南工业大学学报,2000.31(6):544~547
    [61]钱士强,李曼萍等,深冷处理对ZL201铝合金短时时效析出的影响,上海工程技术大学学报,2001.4:257~262
    [62] ZHIRAFAR S. Effect of cryogenic treatment on the mechanical properties of steel andaluminum alloys [M]. Montreal, Canada: Master Thesis of Concordia University,2005.
    [63]陈刚,陈鼎.深冷处理对Al-Fe-V-Si耐热铝合金力学性能的影响[J].金属热处理,2002,27(10):26~27
    [64] Zhirafar S,Pugh M. Effect of cryogenic treatment on the mechanical properties of steel(4340)and aluminum alloy(7075)[J]. Journal of the Minerals, Metals&MaterialsSociety(JOM),2004.56(11):66
    [65]赵祖德,王秋成等,7A04铝合金构件深冷处理过程瞬态温度场的数值模拟,低温工程,2007.2:21~23
    [66]晋芳伟,黄晓因,深冷处理对Al-Si合金组织和力学性能的影响,金属热处理,2005,30(8):55~57
    [67]夏树人,两种工程材料深冷处理研究,湖南大学硕士论文,2007.09.10
    [68]教晓冬,轻质合金的低温物性研究,中国科学院研究生院(理化技术研究所)硕士论文,2006.09.01
    [69]晋芳伟,黄云战,深冷处理对铸造铝合金活塞体积稳定性的影响[J],新技术新工艺,2000(5):24~24
    [70]钱士强,李曼萍,赵亚萍,深冷处理对Al-Cu合金时效的影响[J],金属热处理,2001.26(12):28~31
    [71]葛凯晨,AZ80镁合金的深冷处理[J],热处理,2010.25(2):42~45
    [72] JIANG Yong, CHEN Ding, CHEN Zhen-hua. Effect of cryogenic treatment on themicrostructure and mechanical properties of AZ31magnesium alloy [J].Materials andManufacturing Processes,2010.25(8):837-841
    [73]仲伟深,李智超,深冷处理对金属材料性能的影响及机理探讨,阜新矿业学院学报,1989.8(3):77~83
    [74]吴志生,单平,廉金瑞等,深冷处理提高镀锌钢板点焊电极寿命的机理,焊接学报,2003.4,vol.24, No.2
    [75]吴志生,深冷处理的铝合金点焊电极寿命研究,机械工程学报,2005.41(3):146~150
    [76]吴志生,电极深冷处理与铝合金点焊的铜铝合金化,中国机械工程,2005.16(2):172~175
    [77]王晓峰,深冷处理的Cu-Cr-Zr电极合金组织与性能研究,天津大学博士论文,2006.01.01
    [78]孔祥芬,胡绳荪,廉金瑞,吴志生,电极深冷处理对镀锌钢板点焊质量的影响,焊接,2003(9):27~29
    [79]刘翠荣,闫献国,郭建刚,吴志生,单平,程方杰,深冷处理对铝合金点焊电极烧损的影响,焊接学报,2004.6,vol.25, No.3
    [80]滕杰,刘芳,姜勇,陈健,陈鼎,紫铜的深冷处理研究,金属热处理,2008年,vol.33(4):49~51
    [81]刘芳,深冷处理对铜合金、锌合金组织与性能的影响,湖南大学硕士论文,2009.04.12
    [82]黄敏纯,超低温温度场中Cu-Zr-Cr合金显微结构转变规律[J],安徽大学学报:自然科学版,2004.28(2):50~53.
    [83]陈文革,沈宏芳,丁秉均等.深冷处理对W-Cu合金组织与性能的影响[J].金属热处理,2005.30(4):28~31.
    [84]董世知,周鹏,李智超,固溶深冷处理对铸造铝合金组织及性能的影响,材料热处理技术,2011,vol.40,No.14:174~176.
    [85] Gearmaking. Increasing Hardness Through Cryogenics. Tooling&Production,1996(10):93~94
    [86] LESKOVSEK. Influence of microstructure on the fracture toughness of AISI M2high-speed steel. Steel Research,2000(8):310~315
    [87] Yon D., Xiaoping L,Hongshen X. Deep cryogenic treatment of high-speed steel and itsmechanism. Heat Treatment of Metals,1998.25(3):55~59
    [88] Dullberg E, Meyer M.Metallurgical and production developments of cryogenicquenching[J].SAE-Paper690343,1969:14
    [89] Sreerama Reddy T V, Sornakumar T, Venkatarama Reddy M,et al.Machinability ofC45steel with deep cryogenic treated tungsten carbide cutting tool inserts [J].Int. J.Refract. Met. Hard. Mater.,2009,27:181-185.
    [90] Johan S P,Guha B,Achar D R. Fatigue life improvement of AISI304L cruciform weldedjoints by cryogenic treatment[J].Engineering Failure Analysis,2003,10(1):1~12
    [91] Singh P J,Mannan S L,Jayakumar T,et al. Fatigue life extension of notches in AISI304L weldments using deep cryogenic treatment[J].Engineering Failure Analysis,2005,12(2):263~271
    [92] Mohan L D,Renganarayanan S,Kalanidhi A.Cryogenic treatment to augment wearresistance of tool and die steels[J].Cryogenics,2001,41(3):149~155
    [93] Dokukin M E,Perov N S,Chong-oh K,et al.The cryogenic treatment effect on themagneto-impedance properties of the Co-and Fe-based amorphous ribbons[J].PhysicaStatus Solidi A,2004,201(8):1988~1991
    [94] Poperenko L V,Yurgelevich I V.Optical properties of iron-based amorphous alloys aftercryogenic treatment[J].Physics of Metals and Metallography,2003,95(4):25~27
    [95] Leskovsek V, Ule B.Influence of deep cryogenic treatment on microstructure,mechanical properties and dimensional changes of vacuum heat-treated high-speedsteel[J]. Heat Treatment of Metals,2002,29(3):72~76
    [96] Huang J Y,Zhu Y T,Liao X Z,et al. Microstructure of cryogenic treated M2tool steel[J].Materials Science and Engineering A,2003,339(1-2):241~244
    [97] Soundararajan V,Alagurmurthi N,Palaniradja K.On the enhancement of wear resistanceof hardened carbon tool steel (AISI1095)with cryogenic quenching [J]. Transactions ofMaterials and Heat Treatment,2004,25(5):531~535
    [98] A.Molinari. Effect of Deep Cryogenic Treatment on the Mechanical Properties of ToolSteels.Journal of Materials Processing Technology,2001(118):350~355
    [99] YAN Xianguo. Development of the device on cryogenic treatment of cutters. ICPMT,2002:52~55
    [100] Collins D N,Dormer J. Deep cryogenic treatment of Cold-work tool steel.HeatTreatment of Metals,1997.24(3):71~74
    [101]刘浩怀,王均,杨宏山,等,深冷处理对Cr14Mn2V2高铬铸铁组织转变和磨损性能的影响[J].铸造,2006,55(4):72~75
    [102]李寰,李家宝,孙立志,低温处理对SiCp/6061AI复合材料残余应力的影响[J],金属学报,1996.32(12):1279~1284
    [103]董允,林晓娉,姜延飞,高速钢强韧化深冷处理研究[J],河北工业大学学报,1998.2(27):36~41
    [104]赵国华.深冷处理对Cr12MoV钢组织和耐磨性能的影响[J].热处理,2010,25(6):59~62.
    [105] Barron R F,Mulhern C R. Cryogenic treatment of AISI-T8and C1045steels
    [A].Advances in Cryogenic Engineering.Materials.Vol.26.Proceedings ofthe ThirdInternational Cryogenic Materials Conference[C],1980,171~179
    [106]杨宏山,王均,沈保罗等,深冷处理对13Cr-2Mn-2V高铬白口铸铁显微组织和硬化行为的影响[J],热加工工艺,2005(5):17~20
    [107] Hayakawa N,Kito Y,Matsumura T.Study of a future metropolitan electric networkadapted to introduction of cryogenic high-power cables[J].Electrical Engineering inJapan(English translation of Denki Gakkai Ronbunshi),1991,111(5):38~48
    [108] Herring D H. Cold and cryogenic treatments[J]. Industrial Heating.2005.72(5):16~18
    [109]刘良绅,刘建忠,姜冶平等,深冷及磁场深冷处理对钢中残留奥氏体的影响[J],金属热处理,2001(2):21~22
    [110]林晓娉,王亚红,高速钢深冷处理及其机理研究[J],金属热处理学报,1998.19(2):21~25
    [111]晁拥军,吴百中,王霖等,D钢的强韧化及深冷处理在冷挤压模上的应用[J],金属热处理,2004.9(05):49~52
    [112] Wojcieszynski A L.Cryogenic treatment a mystery or misery of heat treatment [A].ASMProceedings:Heat Treating[C],1999,237~243
    [113] Barron R F, Thompson R H.Effect of cryogenic treatment on corrosionresistance[A].Advances in Cryogenic Engineering[C],1990,36(pt B):1375~1379
    [114] Lulay K E,Khan K,Chaaya D. The effect of cryogenic treatments on7075aluminumalloy[J].Journal of Materials Engineering and Performance,2002.11(5):479~480
    [115]陈文革,沈宏芳,丁秉均,等.W-Cu合金深冷处理及其组织性能研究[J].材料热处理学报,2004,25(6):44~47
    [116] Pete Paulin.Mechanism and applicability of heat treatment at cryogenic temperatures[J].Industrial Heating,1992,58(8):24~57.
    [117] Stewart H A.Cryogenic treatment of tungsten carbide reduces tool wear whenmachining medium density fiberboard[J].Forest Products Journal,2004,54(2):53~56
    [118] Ray B C.Effects of thermal and cryogenic conditionings on mechanical behavior ofthermally shocked glass fiber-epoxy composites[J].Journal of Reinforced Plastics andComposites,2005,24(7):713~717
    [119] Indumathi J,Bijwe J,Ghosh A K.On the feasibility of using cryo-treatment as a tool toenhance the abrasive wear behaviour of solid-lubricated polymeric composites[J].Journalof Synthetic Lubrication,2000,17(2):123~134
    [120] Indumathi J,Bijwe J,Ghosh A K.Preliminary studies of the influence of cryo-treatmenton the mechanical and tribological properties of PTFE and composites[J].Journal ofSynthetic Lubrication,2001,17(4):309~331
    [121] Csokan P,Balassa B.Mechanical properties of hard chrome coatings at very lowtemperatures[J].Metalloberflaeche-Angewandte Elektrochemie(inGerman)1976,30(2):74~77
    [122]卢斌,易丹青,超高强度钢TRm80的深冷处理[J],钢铁研究学报,2000.12(4):31~35
    [123]Barron R F.Cryogenic treatment of metals to improve wear resistance [J]. Cryogenics,1982.22(8):409~413
    [124] Hayakawa M,Tanigami M,Oka M.Low temperature aging of the freshly formedmartensite in an Fe-Ni-C alloy[J].Metallurgical Transactions A (Physical Metallurgy andMaterials Science),1985,16A(10):1745~1750
    [125] Uwakweh O N,Genin J,Silvain J.Electron Microscopy study of the aging and firststage of tempering of high-carbon Fe-C martensite[J].Metallurgical TransactionsA(Physical Metallurgy and Materials Science),1991,22A(4):797~806.
    [126] Meng F,Tagashira K,Sohma H.Wear resistance and microstructure of cryogenic treatedFe-1.4Cr-1C bearing steel[J].Scripta Metallurgica et Materialia,1994,31(7):865~868.
    [127] Popandopulo A N,Zhukova L T.Transformations in high-speed steels during coldtreatment[J].Metal Science and Heat Treatment,1980,22(10):9~11.
    [128] Hoque M E,Ford R M,Roth J T.Automated image analysis of microstructure changesin metal alloys[A].Proc SPIE Int Soc Opt Eng[C],2005,5679:1~9
    [129] Pete. Paulin. Mechanism and Applicability of Heat Treating at cryogenic Temperatures.Industrial Heating1992.59(8):24~27
    [130] Shen Liqun. Deep cryogenic treatment of tool steels and mould steels. Heat Treatmentof metals,1985,12(2):3~5
    [131] Dreger D R. Promise of cryogenic processing[J]. Machine Design,1981.53(2):73~78
    [132]叶茂,刘权等,深冷处理对钎焊接头性能的影响与机理研究,金属加工,2012(1):57~58
    [133]宋时兰,李万英,圆环链闪光对焊的深冷处理,佳木斯大学学报,2000.18(1):22~24.
    [134]赵洪运,张广传,吴剑谦,杨贤群,徐春华,400MPa超细晶粒钢焊接接头的强化工艺研究,金属热处理,2008.6,vol.33, No.10:91~94
    [135]晋芳伟,深冷处理改善Al-Si合金性能及机理研究,云南农业大学学报,2005-10-30
    [136]靳鹏飞,吴志生等,深冷处理对5A06铝合金焊接接头组织与性能的影响,焊接技术,2011.1(1),vol.40
    [137]吴志生,高珊,刘翠荣,靳鹏飞,5A06铝合金焊接接头深冷强化机理研究,第十六次全国焊接学术会议论文摘要集,2011-10-20
    [138]吴志生.铝合金点焊电极端面温度数值模拟与电极寿命的研究[D],天津大学,2003.
    [139]景转珍,深冷处理对AZ31镁合金TIG焊接接头组织和性能的影响,太原科技大学硕士论文,2011.6
    [140]潘金生.材料科学基础.北京:清华大学出版社.1998
    [141]杨顺华.晶体位错理论基础.北京:科学出版社.1988
    [142]侯增寿,卢光熙.晶体缺陷与金属学热处理.北京:机械工业出版社,1988
    [143]李亚江.焊接材料的选择[M].北京:化学工业出版社,2004:275~280
    [144]中国机械工程学会焊接学会编,焊接手册[M],第3版,焊接方法及设备,北京:机械工业出版社,2007
    [145]李亚江,王娟等,有色金属焊接及应用,北京:化学工业出版社,2006
    [146]李志远,钱乙余,张九海,等编著,先进连接方法[M],北京:机械工业出版,2000.3
    [147]冯端,丘第荣,金属物理(第一卷)[M],北京:科学出版社,1998
    [148]刘洪文.材料力学(第4版)[M]。北京:高等教育出版社,2004
    [149] Henderson B著,范印哲译,晶体缺陷,北京:高等教育出版社,1983,207~212
    [150]屠世润,高越,金相原理与实践[M],北京:机械工业出版社,1990
    [151]虞觉奇,易文质,陈邦迪等,二元合金状态图集[M],上海:上海科学技术出版社,1987:317~354
    [152]褚武扬,宿彦京,高克玮.材料科学中的分形[M].北京:化学工业出版社,2004,26~40
    [153]麻凤海,杨维,杨帆等,应用改进BP神经网络进行用水量预测[J],辽宁工程技术大学学报:自然科学版,2004,23(2):191~193
    [154]姜绍飞,基于神经网络的结构优化与损伤检测[M],北京:科学出版社,2002,1~29
    [155]夏宏泉,刘之的,陈平等,基于BP神经网络的岩石可钻性测井计算研究[J].
    [156]孟宏睿,基于BP神经网络的工程项目安全耐久性评价[J],陕西工学院学报,2004.20(1):48~50.
    [157]张际先,宓霞,神经网络及其在工程中的应用[M],北京:机械工业出版社,1996,38~39.
    [158]张忠典,徐清,人工神经元网络法估测点焊接头力学性能[J],焊接学报,1997.18(1):1~5
    [159]吴瑞尊,徐西鹏,基于BP神经网络的金刚石锯片寿命预测[J],华侨大学学报:自然科学版,2000,21(1):57~60
    [160]于洋洋,彭志方,李军伟.人工神经网络法在镍基变形合金蠕变断裂寿命预测中的应用[J].材料导报,2004,18(5):62~64
    [161] G V W,J V D W P,P D W A.Prediction of jominy hardness profiles of steels usingartificial neural networks[J].Journal of Materials Engineering and Performance,1996,5(1):30~36
    [162]陈振华,杨春花,黄长清等,镁合金塑性变形中孪生的研究[J],材料导报,2006,20(8):107-113
    [163]谷亦杰等,材料分析检测技术[M],中南大学出版社,2009
    [164]上海市机械制造工艺研究所主编,定量金相分析(金相分析技术)[M],上海:上海科学技术文献出版社,1983
    [165]汪洋,汪德涛.显微组织定量参数的物理意义和应用(1)[J],轻合金加工技术,1998.26(1):37~41
    [166]徐祖耀,李麟,材料热力学[M],北京:科学出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700