用户名: 密码: 验证码:
复杂多孔介质中的地震波传播机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
孔隙介质中的地震波传播研究一直是地球物理与石油勘探领域的一个热点。该问题源自不同尺度的孔隙、裂缝、溶洞与岩石骨架之间的耦合作用所产生的复杂地震特征。目前的研究主要集中于探索孔隙介质的地震衰减机制,存在的问题包括复杂多孔介质的物理描述以及数值实现。针对该问题,本文分析了松弛骨架机制、松弛耗散机制的地震波响应特征,基于傅立叶变换数值模拟了含中观流双孔介质的地震波场。
     实际储层中的岩石是一种非完全弹性的材料,特别是当流体渗入后,岩体往往表现出较强的粘弹性。本文基于Biot理论,考虑了多孔介质中的固体骨架的松弛特征。引入纵波品质因子、横波品质因子与耗散品质因子三参数描述孔隙介质中的松弛机制,采用虚谱法在地震频段进行波场模拟,数值模拟得到的结果,与Carcione1999年的计算结果以及其2006年得到的结论不符,本文的模拟结果证实,松弛骨架机制不仅适用于高频段,也可用于解释地震频段下的弹性波衰减现象,以描述固体微细颗粒的中观松弛特征。
     为进一步从反演角度验证松弛骨架对低频地震的重要影响,本文对地震降噪与浅层粘弹性反演问题进行了研究。针对地震反演预处理的地震降噪问题,本文结合小波分析设计了一种过零点滤波器,对多分量地震资料进行了面波剔除研究。采用小生境遗传算法对虚拟模型以及中国东部某地区的低频资料进行了多参数反演,反演结果显示浅土层具有可从地震资料直接观测的品质因子,这一点证明了松弛骨架模型的合理性与有效性。
     为调查孔隙流体流动与地震衰减之间的内在联系,本文推导了含中观流双孔介质中Biot绝对位移格式的波动方程,基于伪谱法给出一种离散傅立叶变换求解中观流的数值算法,模拟了含Biot耗散与中观流多孔介质中的地震波场。对无流体流动、含中观流体流动与含两种流体流动的三个模型进行了对比模拟,结果显示:中观流体流动会将快纵波的能量转移给慢纵波,慢纵波的能量迅速衰减仍然需要归因于Biot耗散机制。
The research of seismic waves propagation in porous medium is one of the hotspot in the field of Geophysics and petroleum Exploration research. Problems of these kinds of porosity come from the different-scale coupling effects between pores, fractures, caves and solid skeletons. Current work is focused on seismic attenuation mechanism in porous rocks, and the remaining problems include physical description and numerical simulation about complex porous rocks. This thesis analyzes the skeletion-relaxed mechanism and the diffusion-relaxed mechanism in porovisco- elastic medium, and simulates the wavefields through a pesudo-spectral method in the double-porosity rocks with mesoscopic fluid flow(MFF).
     Actual reservoir rocks are anelastic materials, especially when they are saturated with some kind of fluid, which will make the viscoelastic characteristics more significant. In the poroviscoelasticity theory, the relaxation effect is considered based on the Biot’s theory. Three parameters of P wave quality factor, S wave quality factor and diffusion quality factor are introduced to describe the relaxation effect in porous medium. A pseudo-spectral method is used in forward modelling, and simulation results disagree with Carcione’s points(1999, 2006). Low-frequency poroviscoelastic modelling shows that the skeleton-relaxed mechanism can also be used to describe the seismic band attenuation for elastic waves. It has the physical meaning of mesoscopic relaxation effect between the small grain particles.
     Furthermore, the thesis also studies the problems in seismic denoising and parameters inversion to assess a relaxed solid skeleton’s influence on low frequency band attenuation. In the denoising and preprocessing for seismic inversion, a zero-crossing filter is developed based on wavelet analysis to remove surface waves from the multi-component seismic data. Niche Genetic Algorithms Inversions on the numercial models and actual seismic records from east China show that shallow layer soil has a viscoelastic nature in solid particles, and its quality factor can be directly estimated from observation. The inversion also proves the skeleton-relaxed mechanism’s reasonability and validity.
     To investigate the intrinsic relationships between seismic attenuation and pore fluid flow, the thesis derives the Biot’s absolute displacement form of the wave equations in double-porosity rocks, and provides a discrete algorithm to numerically solve the fluid increments caused by MFF. Wavefield is simulated in double-porosity rocks with MFF and Biot diffusion, and the three models are compared in the numerical experiment, which include model with none fluid flow, model with MFF, and model with MFF and Biot flow. Results show MFF will transfer the fast waves’energy to slow waves, and the high attenuation of the second kind of slow P wave can be explained with the Biot diffusive mode.
引文
[1]牟永光.储层地球物理学.北京:石油工业出版社, 1996:1-4.
    [2]杨慧珠,巴晶,唐建侯,等.油气勘探中常规地球物理方法的发展.石油地球物理勘探, 2006, 41(2):231-236.
    [3]徐建斌,李学义,青銮文,等.四川碳酸盐岩山地地震勘探综述.石油地球物理勘探, 2000, 35(3):386-394.
    [4]王西文.面对油气勘探的新领域加快石油地球物理勘探技术进步——2006年《石油地球物理勘探》评述.石油地球物理勘探, 2006, 42(3):353-361.
    [5]地震勘探技术成为油气勘探主角.中国科技信息, doi:CNKI:SUN:XXJK. 0.2007-18- 003.
    [6]杨顶辉,张中杰,滕吉文,等.双相各向异性研究、问题与应用前景.地球物理学进展, 2000, 15(21):7-21.
    [7]杨慧珠,朱亚平,倪逸.从力学角度看地球物理勘探的发展.面向二十一世纪的能源科技.北京:石油工业出版社, 1997:15-21.
    [8] Pride S R, Berryman J G, Harris J M. Seismic attenuation due to wave-induced flow. J. Geophys. Res., 2004, 109, B01201, doi:10.1029/2003JB002639.
    [9] Carcione J M, Picotti S. P-wave seismic attenuation by slow wave diffusion: Effects of inhomogeneous properties. Geophysics, 2006, 71:O1-O8.
    [10] Biot M A. Le problème de la Consolidation des Matières argileuses sous une charge. Ann. Soc. Sci. Bruxelles, 1935, B55:110-113.
    [11] Biot M A. General theory of three-dimensional consolidation. J. Appl. Phys., 1941, 12(2):155-164.
    [12] Gassmann F. Uber die elastizitat, poroser medien. Vierteljahrsschrift der Natruforschenden Gesellschaft in Zurich, 1951, 96:1-23.
    [13] Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid: I. Low-frequency range. J. Acoust. Soc. Am., 1956, 28(2):168-178.
    [14] Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid: II. Higher frequency range. J. Acoust. Soc. Am., 1956, 28(2):179-191.
    [15] Biot M A, Willis D G. The elastic coefficients of the theory of consolidation. Applied Mechanics Division Summer Conference, 1957, 24:594-601.
    [16] Biot M A. Generalized theory of acoustic propagation in porous dissipative media. J. Acoust. Soc. Am., 1962, 34(9):1254-1264.
    [17] Biot M A. Mechanics of deformation and acoustic propagation in porous media. J. Appl.Phys., 1962, 33(4):1482-1498.
    [18] Biot M A. Nonlinear and semilinear rheology of porous solids. J. Geophys. Res., 1973, 78(23):4924-4937.
    [19] Grinfeld M A, Norris N A. Acoustoelasticity theory and applications for fluid-saturated porous media. J. Acoust. Soc. Am., 1996, 100(3):1368-1374.
    [20] Plona T J. Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies. Appl. Phys. Lett., 1980, 36(4):259-261.
    [21] Kelder O, Smeulders D M J. Observation of the Biot slow wave in water-saturated Nivelsteiner sandstone. Geophysics, 1997, 62:1794-1796.
    [22]诸国桢,朱喜福,刘亮.用光学的方法验证流体饱和孔隙介质中慢纵波的存在.声学学报, 2000, 25(1):1-4.
    [23] Pride S R, Berryman J G. Linear dynamics of double-porosity dual-permeability materials. I. Governing equations and acoustic attenuation. Phys. Rev. E, 2003, 68, 036603. doi: 10.1103/ PhysRevE.68.036603.
    [24] Pride S R, Berryman J G. Linear dynamics of double-porosity dual-permeability materials. II. Fluid transport equations. Phys. Rev. E, 2003, 68, 036604. doi:10.1103/PhysRevE. 68.036604.
    [25] Pride S R, Moreau F, Gavrilenko P. Mechanical and electrical response due to fluid- pressure equilibration. J. Geophys. Res., 2004, 109, B03302.
    [26] Ba J, Nie J X, Cao H, et al. Mesoscopic fluid flow simulation in double-porosity rocks. Geophys. Res. Lett., 2008, 35, L04303, doi:10.1029/2007GL032429.
    [27] Liu Q R, Katsube N. The discovery of a second kind of rotational wave in a fluid-filled porous material. J. Acoust. Soc. Am., 1990, 88(2):1045-1053.
    [28]刘洋,李承楚,牟永光.双相横向各向同性介质分界面上弹性波反射与透射问题研究.地球物理学报, 2000, 43(5):691-698.
    [29] Carcione J M, Helle H B. Numerical solution of the poroviscoelastic wave equation on a staggered mesh. Journal of Computational Physics, 1999, 154:520-527.
    [30] Carcione J M. Wave fields in real media: wave propagation in anisotropic, anelastic and porous media: Handbook of Geophysical Exploration, 31. Oxford, Pergamon Press, 2001: 219-293.
    [31] Arntsen B, Carcione J M. Numerical simulation of the Biot slow wave in water-saturated Nivelsteiner sandstone. Geophysics, 2001, 66:890-896.
    [32]卢明辉.双相复杂介质中弹性波传播机理研究[博士论文].北京:清华大学工程力学系, 2006.
    [33]裴正林.双相各向异性介质弹性波传播交错网格高阶有限差分法模拟.石油地球物理勘探, 2006, 41(2):137-143.
    [34]裴正林.三维双相各向异性介质弹性波方程交错网格高阶有限差分法模拟.中国石油大学学报(自然科学版), 2006, 30(2):16-20.
    [35]魏修成,卢明辉,巴晶.含黏滞流体各向异性孔隙介质中弹性波的频散和衰减.地球物理学报, 2008, 51(1):214-221.
    [36]杜启振,刘莲莲,孙晶波.各向异性粘弹性孔隙介质地震波场伪谱法正演模拟.物理学报, 2007, 56(10):6143-6149.
    [37]杜启振,刘莲莲,孙晶波.各向异性粘弹性孔隙介质伪谱法波场正演模拟.油气地球物理, 2007, 5(1):22-26.
    [38] Mochizuki S. Attenuation in partially saturated rocks. J. Geophys. Res., 1982, 87:8598- 8604.
    [39] Dvorkin J, Mavko G, Nur A. Squirt flow in fully saturated rocks. Geophysics, 1995, 60:97-107.
    [40] Jones T D. Pore-fluids and frequency dependent-wave propagation rocks. Geophysics, 1986, 51:1939-1953.
    [41] O’Connell R, Budiansky B. Seismic velocities in dry and saturated cracked solids. J. Geophys. Res., 1974, 79:5412-5426.
    [42] Mavko G, Mukerji T, Dvorkin J. The rock physics handbook: Tools for seismic analysis in porous media. Cambridge, Cambridge University Press, 1998, 1-10.
    [43] Dvorkin J, Nur A. Dynamic poroelasticity: A unified model with the Squirt and the Biot mechanisms. Geophysics, 1993, 58(4):524-533.
    [44] Dvorkin J, Nolen-Hoeksema R, Nur A. The Squirt-flow mechanism: Macroscopic description. Geophysics, 1994, 59(3):428-438.
    [45] Parra J O. The transversely isotropic poro-elastic wave equation including the Biot and the Squirt mechanisms: Theory and application. Geophysics, 1997, 62:309-318.
    [46] Parra J O. Poroelastic model to relate seismic wave attenuation and dispersion to permeability anisotropy. Geophysics, 2000, 65:202-210.
    [47] Diallo M S, Appel E. Acoustic waves attenuation and velocity dispersion in fluid-filled porous media: Theoretical and experimental investigations[Ph.D. thesis]. Tübingen, Germany, Eberhard Karls Univ, 2000.
    [48] Diallo M S, Appel E. Acoustic wave propagation in saturated porous media: reformulation of the Biot/Squirt flow theory. J. Appl. Geophys., 2000, 44:313-325.
    [49] Diallo M S, Prasad M, Appel E. Comparison between experimental results and theoretical predictions of P-wave velocity and attenuation at ultrasonic frequency. Wave Motion, 2003, 37:1-16.
    [50] Han D H, Nur A, Morgan D. Effect of porosity and clay content on wave velocities in sandstones. Geophysics, 1986, 51:2093-2107.
    [51] Klimentos T, MacCann C. Relationships among compressional wave attenuation, porosity, clay content and permeability in sandstones. Geophysics, 1990, 55:998-1014.
    [52] Mavko G M, Jizba D. Estimating grain-scale fluid effects on velocity dispersion in rocks. Geophysics, 1991, 56, 1940-1949.
    [53] Gist G A. Fluid effects on velocity and attenuation in sandstones. J. Acoust. Soc. Am., 1994, 96:1158-1173.
    [54] Wang Z. Fundamental of seismic rock physics. Geophysics, 2001, 66:398-412.
    [55]赵海波.不相混溶气液饱和孔隙介质声场研究[博士论文].北京:中国科学院声学所, 2007.
    [56]杨顶辉.孔隙各向异性介质中基于BISQ模型的弹性波传播理论及有限元方法[博士后研究报告].北京:石油大学, 1998.
    [57] Yang D H, Zhang Z J. Effects of the Biot and the Squirt-flow coupling interaction on anisotropic elastic waves. Chinese Science Bulletin, 2000, 45(23):2130-2138.
    [58] Yang D H, Zhang Z J. Poroelastic wave equation including the Biot/Squirt mechanism and the solid/fluid coupling anisotropy. Wave Motion, 2002, 35(3):223-245.
    [59] Cheng Y F, Yang D H, Yang H Z. Biot/Squirt model in viscoelastic porous media. Chinese Physics Letters, 2002, 19(3):445-448.
    [60] Yang K D, Yang D H, Wang S Q. Numerical simulation of elastic wave propagation based on the transversely isotropic BISQ equation. ACTA Seismologica Sinica, 2002, 15(6):628-635.
    [61]杨宽德,杨顶辉,王书强.基于Biot-Squirt方程的波场模拟.地球物理学报, 2002, 45(6):853-861.
    [62]杨宽德,杨顶辉,王书强.基于BISQ高频极限方程的交错网格法数值模拟.石油地球物理勘探, 2002, 37(5):463-468.
    [63]申义庆,杨顶辉.基于BISQ模型的双相介质位移场Green函数.地球物理学报, 2004, 47(1):101-105.
    [64]朱建伟.含流体孔隙介质基于BISQ机制的弹性波波动方程及传播特性[博士论文].长春:长春科技大学, 2000.
    [65]朱建伟,何樵登,田志禹.基于BISQ机制的含油水孔隙介质地震波波动方程.石油物探, 2001, 40(4):8-13.
    [66]孟庆生,何樵登,朱建伟,等.基于BISQ模型双相各向同性介质中地震波数值模拟.吉林大学学报(地球科学版), 2003, 33(2):217-221.
    [67]崔志文,王克协,曹正良,等.多孔BISQ模型中的慢纵波.物理学报, 2004, 53(9): 3083-3089.
    [68]胡恒山,刘家琦,王洪滨,等.基于简化的Pride理论模拟声电效应测井响应.地球物理学报, 2003, 46(2):259-264.
    [69]聂建新.含流体非饱和多孔隙介质的BISQ模型及储层参数反演[博士论文].北京:清华大学工程力学系, 2005.
    [70] Nie J X, Yang D H, Yang H Z. Wave dispersion and attenuation in partially saturated sandstones. Chin. Phys. Lett., 2004, 21(3):572-575.
    [71]聂建新,杨顶辉,杨慧珠.基于非饱和多孔隙介质BISQ模型的储层参数反演.地球物理学报, 2004, 47(6):1101-1105.
    [72] Nie J X, Tang J H, Yang H Z. Wave propagation in viscoelastic porous media: a modified Biot/Squirt model. Progress in Environmental and Engineering Geophysics. Elmhurst: Science Press New York Ltd, 2004, 135-137.
    [73] White J E. Computed seismic speeds and attenuation in rocks with partial gas saturation. Geophysics, 1975, 40:224-232.
    [74] White J E, Mikhaylova N G, Lyakhovitskiy F M. Low-frequency seismic waves in fluid saturated layered rocks. Izvestija Academy of Sciences USSR, Physics of the Solid Earth. 1975, 11:654-659.
    [75] Dutta N C, OdéH. Attenuation and dispersion of compressional waves in fluid-filled porous rocks with partial gas saturation(White model)-Part I:Biot theory. Geophysics, 1979, 44:1777-1788.
    [76] Dutta N C, OdéH. Attenuation and dispersion of compressional waves in fluid-filled porous rocks with partial gas saturation(White model)-Part II:Results. Geophysics, 1979, 44:1789-1805.
    [77] Dutta N C, Seriff A J. On White’s model of attenuation in rocks with partial saturation. Geophysics, 1979, 44:1806-1812.
    [78] Norris A N. Low-frequency dispersion and attenuation in partially saturated rocks. J. Acoust. Soc. Am., 1993, 94:359-370.
    [79] Gurevich B, Lopatnikov S L. Velocity and attenuation of elastic waves in finely layered porous rocks. Geophys. J. Int., 1995, 121:933-947.
    [80] Gelinsky S, Shapiro S A. Dynamic-equivalent medium approach for thinly layered saturated sediments. Geophys. J. Int. 1997, 128:F1-F4.
    [81] Gurevich B, Zyrianov V B, Lopatnikov S L. Seismic attenuation in finely layered porous rocks: Effects of fluid flow and scattering. Geophysics, 1997, 62:319-324.
    [82] Shapiro S A, Müller T M. Seismic signatures of permeability in heterogeneous porous media. Geophysics, 1999, 64:99-103.
    [83] Johnson D L. Theory of frequency dependent acoustics in patchy-saturated porous media. J. Acoust. Soc. Am., 2001, 110:682-694.
    [84] Müller T M, Gurevich B. One-dimensional random patchy saturation model for velocityand attenuation in porous rocks. Geophysics, 2004, 69:1166-1172.
    [85] Müller T M, Gurevich B. Seismic attenuation and dispersion due to wave-induced flow in 3-D inhomogeneous porous rocks. 74th Annual International Meeting of the Society of Exploration Geophysicists, Expanded Abstracts.
    [86] Murphy W F. Effects of microstructure and pore fluids on the acoustic properties of granular sedimentary materials[Ph.D. thesis]. Stanford University.
    [87] Knight R, Nolen-Hoeksema R. A laboratory study of the dependence of elastic wave velocities on pore scale fluid distribution. Geophys. Res. Lett., 1990, 17:1529-1532.
    [88] Cadoret T, Marion D, Zinszner B. Influence of frequency and fluid distribution on elastic wave velocities in partially saturated limestones. J. Geophys. Res., 1995, 100:9789-9803.
    [89] Helle H B, Pham N H, Carcione J M. Velocity and attenuation in partially saturated rocks- Poroelastic numerical experiments. Geophysical Prospecting, 2003, 51:551-566.
    [90] Carcione J M, Helle H B, Pham N H. White’s model for wave propagation in partially saturated rocks: Comparison with poroelastic numerical experiments. Geophysics, 2003, 68: 1389-1398.
    [91] Barenblett G I, Zheltov Y P. Fundamental equations of filtration of homogeneous liquids in fissured rocks. Sov. Phys. Doklady., 1960, 5:522-525. [English translation of: Doklady Akademii Nauk SSSR 132. 545-548]
    [92] Warren J E, Root P J. The behavior of naturally fractured reservoirs. Soc. Pet. Eng. J., 1963, 3:245-255.
    [93] Wilson R K, Aifantis E C. On the theory of consolidation with double porosity. Int. J. Eng. Sci., 1982, 20:1009-1035.
    [94] Wilson R K, Aifantis E C. A double porosity model for acoustic-wave propagation in fractured porous rock. Int. J. Eng. Sci., 1984, 22:1209-1217.
    [95] Khaled M Y, Beskos D E, Aifantis E C. On the theory of consolidation with double porosity-III A finite element formulation. Int J. Num. Anal. Methods. Geomech., 1984, 8:101-123.
    [96] Beskos D E, Aifantis E C. On the theory of consolidation with double porosity-II. Int. J. Eng. Sci., 1986, 24:1697-1716.
    [97] Bourgeat A, Quintard M, Whitaker S. Comparison between homogenization theory and volume averaging method with closure problem. Comptes Rendus de l Academie des Sciences Serie II, 1988, 306(7):463-466.
    [98] Mei C C, Auriault J-L. Mechanics of heterogeneous porous-media with several spatial scales. Proceedings of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences, 1989, 426(1871):391-423.
    [99] Arbogast T, Douglas J, Hornung U. Derivation of the double porosity model of single-phase flow via homogenization theory. SIAM J. Appl. Math., 1990, 21(4):823-836.
    [100] Elsworth D, Bai M. Continuum representation of coupled flow-deformation response of dual porosity media. In Mechanics of Jointed and Faulted Rock[edited by Roesmanith], Balkema, Rotterdam, 1990:681-688.
    [101] Elsworth D, Bai M. Flow-deformation response of dual-porosity media. ASCE J. Geotech. Eng., 1992, 118:107-124.
    [102] Bai M, Elsworth D, Roegiers J-C. Modelling of naturally fractured reservoirs using deformation dependent flow mechanism. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1993, 30:1185-1191.
    [103] Auriault J-L, Boutin C. Deformable porous-media with double-porosity .3. Acoustics. Transp. Porous Media, 1994, 14(2):143-162.
    [104] Berryman JG, Wang HF. The elastic coefficients of double-porosity models for fluid transport in jointed rock. J. Geophys. Res., 1995, 100(B12):24611-24627.
    [105] Wang HF, Berryman JG. On constitutive equations and effective stress principles for deformable, double-porosity media. Water Resour. Res., 1996, 32(12):3621-3622.
    [106] Berryman JG, Wang HF. Double porosity modelling in elastic wave propagation for reservoir characterization. SPIE Conference on Mathematical Methods in Geophysical Imaging V, 1998, San Diego California.
    [107] Berryman JG, Pride SR. Models for computing geomechanical constants of double- porosity materials from the constituents' properties. J. Geophys. Res., 2002, 107(B3):2052. doi: 10.1029/2000JB000108.
    [108] Berryman JG, Wang HF. Dispersion in poroelastic systems. Phys. Rev. E, 2001(1), 64:011303.
    [109] Tuncay K, Corapciaglu M Y. Effective stress principle for saturated fractured porous mdia. Water Resour. Res., 1995, 31(12):3103-3106.
    [110] Tuncay K, Corapciaglu M Y. Wave propagation in fractured porous media. Transp. Porous Mdia, 1996, 23(3):237-258.
    [111] Tuncay K, Corapciaglu M Y. Body waves in fractured porous media saturated by two immiscible Newtonian fluids. Transp. Porous Mdia, 1996, 23(3):259-273.
    [112] Royer P, Auriault J-L, Strzelecki T. Macroscopic behavior of gas flow with adsorption through a fractured porous medium. Mech. Res. Commun., 1996, 23(1):67-73.
    [113] Royer P, Auriault J-L, Boutin C. Macroscopic modeling of double-porosity reservoirs. J. Pet. Sci. Eng., 1996, 16(4):187-202.
    [114] Moutsopoulos K N, Eleftheriadis I E, Aifantis E C. Numerical simulation of transport phenomena by using the double porosity/diffusivity continuum model. Mech. Res. Commun. 1996, 23(6):577-582.
    [115] Moutsopoulos K N, Konstantinidis A A, Meladiotis I D, et al. Hydraulic behavior and contaminant transport in multiple porosity media. Tranp. Porous Media, 2001, 42(3): 265-292.
    [116] Kosloff D, Reshef M, Loewenthal D. Elastic waves calculation by the Fourier method. Bull. Seism. Soc. Am., 1984, 74:875-891.
    [117] Carcione J M, Kosloff D, Kosloff R. Wave propagation simulation in a linear viscoacoustic medium, Geophys. J. R. Astr. Soc., 1988, 93:393-407.
    [118] Carcione J M, Kosloff D, Kosloff R. Viscoelastic wave propagation simulation in the earth. Geophysics, 1988, 53:769-777.
    [119] Carcione J M, Kosloff D, Kosloff R. Wave propagation simulation in a linear viscoelastic medium, Geophys. J. R. Astr. Soc., 1988, 95:597-611.
    [120] Buchen P W. Plane waves in linear viscoelastic media. Geophys. J. R. Astr. Soc., 1971, 23:531-542.
    [121] Carcione J M, Cavallini F. Energy balance and foundamental relations in anisotropic- viscoelastic media. Wave Motion, 1993, 18:11-20.
    [122] Lamb J, Richter J. Anisotropic acoustic attenuation with new measurements for quartz at room temperatures. Proc. R. Soc. London A, 1966, 293:479-492.
    [123] Alud B A. Acoustic fields and waves in solids, 2nd edition. Charles Krieger Publishers, Melbourne, Florida, 1991.
    [124] Christension R M. Theory of viscoelasticity, an introduction. Academic Press, New York, 1982.
    [125] Christension R M.郝松林,老亮译.粘弹性力学引论,北京:科技出版社, 1990.
    [126] Carcione J M. Wave propagation in anisotropic linear viscoelastic media: theory and simulated wavefields. Geophys. J. Int., 1990, 101:739-750.
    [127] Carcione J M. Seismic modelling in viscoelastic media. Geophysics, 1992, 57:781-792.
    [128] Arts R J, Rasolofosaon P N J, Zinsner B E. Experimental determination of the complete anisotropic viscoelastic tensor in rocks. 62nd Ann. Int. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 1992:636-639.
    [129] Geertsma J, Smit D C. Some aspects of elastic wave propagation in fluid-saturated porous solids. Geophysics, 1961, 26:169-181.
    [130] Carcione J M. Constitutive model and wave equations for linear, viscoelastic, anisotropic media. Geophysics, 1995, 60:537-548.
    [131] Ben-Menahem A, Singh S G. Seismic Waves and Sources. Springer-Verlag New-York Inc, 1981.
    [132] Tal-Ezer H, Carcione J M, Kosloff D. An accurate and efficient sheme for wavepropagation in linear viscoelastic media. Geophysics, 1990, 55:1366-1379.
    [133]杜启振,杨慧珠.线性粘弹性各向异性介质速度频散和衰减特征研究.物理学报, 2002, 51(9):2101-2108.
    [134]杜启振,杨慧珠.裂缝性地层黏弹性地震多波波动方程.物理学报, 2004, 53(8):2801-2806.
    [135]杜启振,杨慧珠.各向异性黏弹性介质伪谱法波场模拟.物理学报, 2004, 53(12): 4428-4434.
    [136]杜启振,杨慧珠,方位各向异性黏弹性介质波场有限元模拟.物理学报, 2003, 52(8): 2010-2014.
    [137]杜启振.方位各向异性粘弹性介质地震多波勘探机理研究[博士论文].北京:清华大学工程力学系, 2002.
    [138] Santos J E, CorberóJ M, Douglas J. Static and dynamic behavior of a porous solid saturated by a two-phase fluid. J. Acoust. Soc. Am., 1990, 87:1428-1438.
    [139] Santos J E, Douglas J, CorberóJ M, et al. A model for wave propagation in a porous medium saturated by a two-phase fluid. J. Acoust. Soc. Am., 1990, 87:1439-1448.
    [140] Ravazzoli C L, Santos J E, Carcione J M. Acoustic and mechanical response of reservoir rocks under variable saturation and effective pressure., J. Acoust. Soc. Am. 2003, 113(4): 1801-1811.
    [141]牟永光,裴正林.三维复杂介质地震数值模拟.北京:石油工业出版社, 2005. 62~71.
    [142] Carcione J M, Guiroga-Goode G. Some aspects of the physics and numerical modelling of Biot compressional waves. J. Comput. Acoust., 1995, 3:261-272.
    [143] Carcione J M, Guiroga-Goode G. Full frequency-range transient solution for compressional waves in a fluid-saturated viscoacoustic porous medium. Geophysical Prospecting, 1996, 44:99-126.
    [144] Cerjan C, Kosloff D, Kosloff R, et al. A nonreflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics, 1985, 50(4):705-708.
    [145] Sochacki J, Kubichek R, George J, et al. Absorbing boundary conditions and surface waves. Geophysics, 1987, 52(1):60-71.
    [146] Huang B-S. A program for two-dimensional seismic wave propagation by the pseudo- spectrum method. Computers & Geosciences, 1992, 18(2/3):289-307.
    [147] Coutant O, Virieux J, Zollo A. Numerical source implementation in a 2D finite difference scheme for wave propagation. Bulletin of the Seismological Society of America, 1995, 85(5):1507-1512.
    [148] Dai N, Vafidis A, Kanasewich E R. Wave propagation in heterogeneous, porous media: A velocity-stress, finite-difference method. Geophysics, 1995, 60(2):327-339.
    [149]吴剑华,刘贵忠.基于小波变换域上的KL变换的地震信号去噪方法.信号处理, 1997, 13(4): 298-305.
    [150]宗涛,孟鸿雁,贾玉兰,刘贵忠.小波包F-X域前后向预测去噪.地球物理学报, 1998, 41(suppl.): 337-346.
    [151]付燕. KL变换与小波变换联合去噪新方法,煤田地质与勘探, 2003, 31(5): 51-54.
    [152] Donoho D L. De-Nosing by Soft-Thresholding[J]. IEEE Transaction on Information Theory, 1995, 41(3): 613-627.
    [153]谭桂华,聂建新,杜祥,等.小生境遗传算法在井间走时地震层析成像中的应用.工程力学, 2004, 21(4):97-100.
    [154]杨慧珠,聂建新,谭桂华.反射波地震层析成像算法研究.辽宁工程技术大学学报, 2004, 23(2):159-161.
    [155]卢明辉,唐建候,杨慧珠,等.正交各向异性介质P波走时分析及Thomsen参数反演.地球物理学报, 2005, 48(5):1167-1171.
    [156]卢明辉,彭立才,杨慧珠,等.小生境遗传算法AVOA反演.石油地球物理勘探, 2006, 41(4):447-450.
    [157]卢明辉,聂建新,杨慧珠.井间地震资料中纵波各向异性参数反演.工程力学, 2006, 23(1):58-61.
    [158]何樵登,陶春辉.用遗传算法反演裂隙各向异性介质.石油物探, 1995, 34(3):46-50.
    [159]张美根,王妙月,李小凡,等.时间域全波场各向异性弹性参数反演.地球物理学报, 2003, 46(1):96-100.
    [160] Johnson D L. Recent developments in the acoustic properties of porous media: Frontiers in Physical Acoustics XCIII. 1986, edited by Sette D, North Holland Elsevier, New York, 255-290.
    [161] Berryman J G. Theory of elastic properties of composite-materials. Appl. Phys. Lett., 1979, 35(11):856-858.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700