用户名: 密码: 验证码:
鸡传染性喉气管炎病毒gB基因的克隆及表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸡传染性喉气管是一种遍布世界各地的急性接触性呼吸道传染病,由传染性喉气管炎病毒(ILTV)引起,以呼吸困难、咳嗽、常咳出带血渗出物为发病特征。ILTV属于疱疹病毒科α疱疹病毒亚科,目前多用鸡传染性喉气管炎的弱毒疫苗进行预防,其中大部分弱毒疫苗株具有温和的致病性,因此可能有毒力返强的危险。
     近年,ILTV基因组的大部分序列及其功能已经确定,这为基因工程疫苗的研制奠定了基础。研究表明ILTV属于疱疹病毒D型基因组,gB基因编码205KD糖蛋白复合物,能诱导体液免疫和细胞免疫,是该病毒的主要保护性抗原基因,也是研究基因工程疫苗的首选目的基因,表达gB糖蛋白是预防传染性喉气管炎的新方法。
     本论文以疫苗株ILTV基因组为模板扩增出gB基因片段连接到载体DGEM-T Vector,对目的片段gB基因进行了序列测定和同源性分析,与英国Thome V882毒株、美国ILTV632毒株、澳大利亚SA 2毒株gB基因的核苷酸同源性分别为100%、100%和99.4%,氨基酸同源性分别为99.8%,99.9%和98.7%,说明它是十分保守的。然后将gB基因定向克隆于原核表达载体pBV221中构建了重组质粒pBV-gB,将其转化到受体菌DH5α中,菌株DH5α(pBV-gB)经温控诱导后,SDS-PAGE电泳可见表达的特异蛋白条带。ELISA检测说明gB基因在大肠杆菌中的表达产物具有很好的反应原性,但是鸡胚中和试验结果表明该重组菌株仅能部分中和1个EID_(50)剂量的北京株ILTV强毒。
     原核表达的目的蛋白缺少生物活性和免疫原性,活载体疫苗可以克服这一缺点,因此本论文又构建了大肠杆菌一分枝杆菌穿梭表达质粒pRR-α-gB,并将其电转化至耻垢分枝杆菌,ELISA检测表明重组菌株M.smegmatis mc~2 155(pRR-α-gB)的表达产物具有很好的反应原性。Western blot检测说明ILTV的gB基因在分枝杆菌中获得了表达并具有良好的免疫原性。鸡胚中和试验结果表明该重组菌株可以中和1个EID_(50)剂量的ILTV强毒,能够保护SPF鸡胚抵抗强毒攻击。它在安全性方面比弱毒疫苗更加优越,不形成潜伏感染,不会散毒。此外,该重组菌株免疫的鸡可以通过血清学方法与自然感染ILTV的鸡加以区别。因此本实验研究的工程菌M.smegmatis mc~2 155(pRR-α-gB)将有希望取代现用的ILTV弱毒疫苗,彻底改变ILT防制现状。
Avian infectious laryngotracheitis(ILT) is a world-wide-occurring and severe respiratory disease of chickens, which characterized by signs of respiratory depression, gasping, expectoration of bloody mucus, and high mortality. The causative agent was designated infectious laryngotracheitis virus (ILTV), or gallid herpesvirus 1, and classified as a member of the Alphaherpesvirinae subfamily of the Herpesviridae. For prevention, chickens are immunized with conventionally attenuated live vaccines. Most of these genetically uncharacterized virus strains are still moderately pathogenic, and they bear the risk of spontaneous reversion to a more virulent phenotype.
    As a prerequisite for the development of genetically engineered vaccines, most of the ILTV genome has been characterized by DNA sequencing over the last few years. These studies confirmed that ILTV possesses a herpesvirus type D genome. Research showed that the glycoprotein gB of is a major protective antigen. It can make body generating the antibody to eliminate infection. So gaining gB gene and its expressing product is key to the preparation of a new type vaccine. The expression of gB gene provided the basis on the preparation of vaccine and a new method to prevent chicks from ILTV infection.
    According to the published nucleotide suquences of gB gene of ILTV, a pair of primers used to amplify gB gene were designed and synthesized . The complete gB gene of a domestic isolation stain were amplified by PCR, and obtained about 2.6 kb fragment. A recombinant plasmid was constructed by cloning PCR product into pGEM-T vector. The sequence analysis showed that the nucleotide sequence consists of 2622 bp, encoding 874 amino acids. Comparing the isolate virus with Thome V882(England), ILTV 632 (US),and SA 2(Australia), we found that their nucleotide sequences homologies were 100%, 100% and 99.4% respectively, their amino acids sequences homologies were 99.8%, 99.9% and 98.7% respectively. The sequence comparison indicated that the gB gene of ILTV strain shares high homologies with those of strain Throne V882, strain 632 and a vaccine strain SA 2.
    The recombinant plasmid pGEM-T-gB was digested with EcoR I/BamH I, and the resulting fragment was inserted into the EcoR I/BamH I site of the pBV221, which was the multiple cloning sites of the vector.' The recombinant plasmids were selected and identified by
    
    
    restriction enzyme digestion which indicate a prokaryotic expression plasmid pBV-gB was constructed successfully. E.coli component host DH5 a was transformed with the expression plasmid. The recombinant bacterial stain could express the gB glycoprotein after induced by temperature, and the recombinant proteins were analyzed on 12% SDS-PAGE, and detected by ELISA with anti-ILTV serum which was prepared iii SPF chick immumized with live vaccine. The recombinant bacterial stain DH5 a (pBV-gB) can partly protect SPF chickens from a lethal dose(aEID50)of ILTV.
    According to the nucleotide suquences of gB gene of ILTV and the restriction enzyme digestion of the shuttle vector, two pairs of primers used to amplify gB gene were designed and synthesized. Firstly, a recombinant plasmid was constructed by cloning PCR product into pY-a vector. Then the shuttle expressive vector system was constructed by cloning the hsp- a -gB gene into the downstream sequences of pRR3 vector. The recombinant plasmid was identified by restriction enzyme digestion and electrophoreted into M.smegmatis me2 155. At last the recombinant proteins were detected successfully by ELISA and western blot, which seems to be immunogenic crucially. The recombinant bacterial stain M.smegmatis me2 155 (pRR-a -gB ) can protect SPF chickens from a lethal dose (a EID50) of ILTV. As the current commercial ILTV vaccines have several disadvantages as mentioned above, the recombinant bacterine M.smegmatis me2 155 (pRR-a -gB) can be considered very safe and therefore a promising substitution of live attenuated ILT
    V vaccines for future eradication of avian infectious laryngotracheitis in combination with a differential dia
引文
[1] Abbas F, Andreasen J R, Jackwood M W. Development of a polymerase chain reaction and a nonradioactive DNA probe for infectious laryngotracheitis virus [J]. Avian Dis, 1996, 40 (1): 56-62.
    [2] Bhatt A, Kieser T. Transposition of IS117 of Streptomyces coelicolor A3(2) in Mycobacterium smegmatis[J]. Microbiology,1999,145(Pt5):1201-1207.
    [3] Blacklaws B A. Specificity if the immune response of mice to herpes simplex virus glycoprotein band D constitutively expressed on L-celllines. Journal of General Virology, 1987, 68:1103-1114.
    [4] Calnek B M. laryngotracheitis in Disease of Poultry, 10th Ed, Iowa State University Press, Ames, Iowa, USA, 1997.
    [5] Chang P C, Chen K T, Shien J H, et al. Expression of infectious laryngotracheitis virus glycoproteins in Escherichia coli and their application in enzyme-linked immunosorbent assay[J]. Avian Dis. 2002, 46(3): 570-580.
    [6] Chang P C, Lee Y L, Shien J H, et al. Rapid differentiation of vaccine strains and field isolates of infecious laryngotracheitis virus by restriction fragment length polymorphism of PCR products [J]. J Virol Methods, 1997, 66 (2): 179-186.
    [7] Cheng J, Huangfu Y, Feng Z, et al. Expression of foreign gene in mycobacterium regulated by human Mycobacterium tuberculosis heat shock protein 70 promoter[J]. J Tongji Med Univ,1997,17(4): 193-199.
    [8] Cheng J, Huangfu Y, Feng Z, Liang J, et al. Expression of foreign gene in mycobacterium regulated by human Mycobacterium tuberculosis heat shock protein. 70 promoter[J]. J Tongfi Med Univ, 1997, 17(4): 193-199.
    [9] Clavijo A, Nagy E. Differentiation of infectious laryngotracheitis virus strains by polymerase chain reaction [J]. Avian Dis, 1997, 41(1): 241-246.
    [10] Daikoku, T, Ikenoya, K, Yamada, H, et al. Identification and characterization of the herpes simplex virus type 1 UL51 gene product[J].Journal of General Virology.1998, 79:3027-3031.
    [11] Ghedrighiu M, Lagranderie M R R, Ciequel B M E, et al. Mycobacterium Bovis BCG priming induces a strong potentiation of the antibody response induced by recombinant BCG expressing a foreign antigen. Infect Immun, 1994, 62(10): 4287-4295.
    [12] GormLey E P, Davies J. Transfer of plasmid RSF1010 by conjugation from Escherichia coli to
    
    Streptomyces lividans and Mycobacterium smegmatis[J]. J Bacteriol, 1991, 173(21): 6705-6708.
    [13] Granzow H, Klupp B G, Fuchs W, et al. Egress of alphaherpesviruses: comparative ultrastructural study[J]. J Virol. 2001, 75(8): 3675-3684.
    [14] Griffin A M. The nucleotide sequence of the glycoprotein gB gene of infectious larynogotracheitis: analysis and evolutionary relationship to homLogous gene from other herpeviruses [J]. J Gen Virol, 1991, 72: 393-398.
    [15] Grittin A M, Boursnell M E C. Analysis of the nucleotide sequence of DNA from the region of the TK geneof ILTV potential evoltionary relationships between the Herpesbirus subfamilies [J]. J gen Vird, 1990, 71 (4): 841-850.
    [16] Grriggin A M. Identification of 21 genes of infectious laryngotracheitis virus using random sequencing of genomic DNA. J Gen Virol, 1989, 70: 3085-3089.
    [17] Han M G, Kim S J. Analysis of Korean strains of infectious laryngotracheitis virus by nucleotide sequences and restriction fragment length polymorphism[J]. Vet Microbiol. 2001, 83(4): 321-331.
    [18] Han M G, Kweon C H, Mo I P, et al. Pathogenicity and vaccine efficacy of a thymidine kinase gene deleted infectious laryngotracheitis virus expressing tile green fluorescent protein gene[J]. Arch Virol. 2002, 147(5): 1017-1031.
    [19] Howard S T, Byrd T F, Lyons C R. A polymorphic region in Mycobacterium abscessus contains a novel insertion sequence element[J]. Microbiology.2002,148:2987-2996.
    [20] Humberd J, Garcia M, Riblet S M, et al. Detection of infectious laryngotracheitis virus in formalin-fixed, paraffin-embedded tissues by nested polymerase chain reaction[J]. Avian Dis. 2002, 46(1): 64-74.
    [21] Isabella Rauh. Pseudorabies virus mutants lacking the essential glycoproteing can be complenented by glycoproteing of bovine herpesvirus. Journal of virology, 1991, 65:621-631.
    [22] Izumiya Y, Jang H K, Kashiwase H, et al. Identification and transcriptional analysis of the homologues of the herpes simplex type 1 UL41 to UL51 genes in the genome of nononco-genic Marek's disease virus serotype 2[J].Journal of General Virology. 1998, 79:1997-2001.
    [23] Izumiya Y, Jang, H K, Cai C S, et al. Identification and sequence analysis of the Marek's di- sease virus serotype 2 gene homologous to the herpes simplex virus type 1 UL52 protein [J]. Journal of Veterinary Medical Science. 1999, 61:683-687.
    
    
    [24] Johnson M A, Tyack S G, Prideaux C T, et al. Nucleotide sequence of the left-terminus of infectious laryngotracheitis virus (gallid herpesvirus 1) SA-2 strain[J].Archives of Virology. 1997,142: 1903-1910.
    [25] Jns A, Gerdts V, Lange E, et al. Attenuation of dUTPase-deficient pseudorabies virus for the natural host [J].Veterinary Microbiology. 1997, 56: 47-54.
    [26] Keeler C L Jr, Kingsley D H, Burton C R A. Identification of the TK gene of ILTV [J]. Avian Dis, 1991, 35(4): 920-929.
    [27] Keeler C L, Kingsley D H, Burton C R. Identification of the thymidine kinase gene of infectious lhryngotracheitis virus [J]. Avian Dis, 1991,35 (4): 920-929.
    [28] Kingsley D H, Hazel J W, Keeler C L Jr. Identification and characterization of an ILTV gC gene [J]. Virology, 1994, 203 (2): 336-343.
    [29] Kongsuwan K, Johoson M A, Prideaux C T, et al. Identification of an ILTV gene encoding an immunogenic protein with a predicted Mr of 32 ku [J]. Virus Res, 1993, 29(2): 125-140.
    [30] Kongsuwan K, Prideaux C T, Johnson A, etal. Nucleotide sequence of the gene encoding ILTV gB[J]. Virology, 1991, 184 (1): 404-410.
    [31] Kremmer E, Sommer P, Holzer D, et al. Kaposi's sarcoma-associated herpesvirus (human herpesvirus-8) ORF54 encodes a functional dUTPase expressed in the lytic replication cycle[J].Journal of General Virology.1999, 80:1305-1310.
    [32] Lazraq R, Clavel-Seres S, David H L, et al. Conjugative transfer of a shuttle plasmid from Escherichia coli to Mycobacterium smegmatis [corrected] [J]. FEMS Microbiol Lett, 1990,57(1-2): 135-138.
    [33] Loudovaris T, Calnek B W, Yoo B H, et al. Genetic Susceptibility of Chicken Macrophages to in Vitro infection with ILTV [J]. Avian Pathol, 1991, 20 (2): 291-302.
    [34] Matsuo K, Yamaguchi R, Yamaguchi A, et al. Cloning and expressing of the gene for the crossing-reactive a antigen of Mycobacterium kansasii. Infectimmun, 1990, 58(2): 550-556.
    [35] Medeiros M A, Dellagostin O A, Armoa G R, et al. Comparative evaluation of Mycobacterium vaccae as a surrogate cloning host for use in the study of mycobacterial genetics[J]. Microbiology,2002,148(Pt 7):1999-2009.
    [36] Mittal S K, Perevec L, Graham F, et al. Protection of cattle from brovine adenovirus type-3 based expression vector [J]. J Gen Virol, 1995, 76: 93-102.
    [37] Nielsen O L, Handberg K J, Jorgensen P H. In situ hybridization for the detection of infectious
    
    laryngotracheitis virus in sections of trachea from experimentally infected chickens [J]. Acta Vet Scand, 1998, 39 (4): 415-421 .
    [38] P. Guo, E schelz, B Maloney, etal. Lonstruction of recombinant Avian infections laryngotracheitis Virus expressing the galactosidase gene and DNA sequencing of the insertion region [J]. Virology, 1994, 202: 771-781.
    [39] Pashley C A, Parish T, McAdam R A, et al. Gene replacement in mycobacteria by using incompatible plasmids[J]. Appl Environ Microbiol, 2003,69(1): 517-523.
    [40] Patel M P, Blanchard J S. Expression, purification, and characterization of Mycobacterium tuberculosis mycothione reductase[J]. Biochemistry, 1999, 38(36): 11827-11833.
    [41] Scholz E, Porter R E, Guo P. Differential diagnosis of infectious laryngotracheitis from other avian respiratory diseases by a simplified PCR procedure [J]. J Virol Methods, 1994, 50 (1-3): 313-321 .
    [42] Snapper S B, Lugosi L, Jekkel A, et al. Lysogeny and transformation in mycobacteria: stable expression of foreign genes[J]. Proc Natl Acad Sci USA, 1988,85(18): 6987-6991.
    [43] Thomas C M, Isabella R. A glycoprotein gX- β -galactosidase of fusion gene as insertional marker for rapid identification of pseudorabies virus mutants. Journal of Virological Method, 1990,30: 55-66.
    [44] Vogtlin A, Bruckner L, Ottiger H P. Use of polymerase chain reaction (PCR) for the detection of vaccine contamination by infectious laryngotracheitis virus [J]. Vaccine, 1999, 17 (20-21): 2501-2506.
    [45] Walter Fuchs, Katharina Ziemann, Jens P. Teifke, et al. The non-essential UL50 gene of avian infectious laryngotracheitis virus encodes a functional dUTPase which is not a virulence factor[J]. Journal of General Virology, 2000, 81:627-638.
    [46] Wang J, Parsons L M, Derbyshire K M. Unconventional conjugal DNA transfer in mycobacteria[J]. Nat Genet, 2003, 34(1): 80-84.
    [47] Wards B J, Collins D M. Electroporation at elevated temperatures substantially improves transformation efficiency of slow-growing mycobacteria[J]. FEMS Microbiol Lett, 1996, 145(1): 101 - 105.
    [48] Willams R A, Bennett M, Bradbury JM, etal. Demonstration of sites of latency of ILTV using the PCR [J]. J Gen Virol, 1992, 73 (10): 2415-2420.
    [49] York J J, Fahey K J. Vaccination with affinity-purified glycoproteins protects checkens against infectious laryngotracheitis herpesvirus [J]. Avain Pathol, 1991, 20: 693-704.
    [50] York J J, Sonza S, Fahey K J, et al. Immuogenic glycoproteins of ILTV [J]. Virology, 1987, 161 (2): 340-347.
    
    
    [51] Zheng C, Xie P, Chen Y. Molecular cloning and sequencing of the circumsporozoite protein gene from Plasmodium falciparum strain FCC-1/HN and expression of the gene in Mycobacteria[J]. J Clin Microbiol,2001,39(8): 2911-2915.
    [52] Zheng C, Xie P, Chen Y. Molecular cloning and sequencing of the merozoite surface antigen 2 gene from Plasmodium falciparum strain FCC-1/HN and expression of the gene in mycobacteria[J]. J Eukaryot Microbiol, 2003, 50(2): 140-143.
    [53] J.萨姆布鲁克,D.W.拉塞尔著.黄培堂等译.分子克隆实验指南(第三版).科学出版社,2002年.
    [54] BW 卡尔尼克 主编.高福,苏敬良译.禽病学(第十版)[M].北京:中国农业出版社,1999,674-690.
    [55] 艾国良,陶钧,单柏舟.鸡传染性喉气管炎的诊治,动物科学与动物医学 [J].2001,18(6):54-55.
    [56] 程继忠,皇甫永穆,海涛,等.HSP70基因上游调控序列对GST基因在耻垢分枝杆菌中表达效率的影响[J].微生物学报,1999,39(2):100-107.
    [57] 程继忠,郊波,海涛,等.大肠杆菌—分枝杆菌穿梭表达质粒pBCG 2100的构建及应用[J].生物工程学报,1999,15(2):225-229.
    [58] 郭霄峰.鸡传染性喉气管炎病gB基因核酸探针的研究 [J].华南农业大学学报,1997,18(3):105-109.
    [59] 何国先,曹义宝,吴忠良,等.河北省鸡传染性喉气管炎发病情况调查及地方毒株的分离与鉴定[J].中国兽医科学与技术杂志,2001.31(4):34.
    [60] 何召庆,童光志,徐宾蕊,等.鸡传染性喉气管炎病毒王岗株gE基因的克隆及序列分析[J].中国兽医科技,2002,32(8):20-22.
    [61] 胡功政,刘春奇,岳永信.速效候安防治传染性喉气管炎的试验[J].中国兽医科技,1996,26(1):35-36.
    [62] 黄金华,李成.传染性喉气管炎病毒增殖特性研究进展[J].中国兽药杂志,1998,32(2):49-51.
    [63] 姜力,张明波,张颖.黄芪多糖注射液对鸡传喉的防治试验[J].黑龙江畜牧兽医,1997,(1):23-24.
    [64] 康懋秦,潘术喜,葛铭.应用新中成药外治法抢救鸡传染性喉气管炎重症患鸡试验观察[J].中国兽医杂志,1996,22(2):6-7.
    
    
    [65] 刘加波,谢芝勋,谓志勤,等.应用聚合酶链反应扩增鸡传染性喉气管炎病毒TK基因的研究[J].中国兽医科技,2000,30(4):10-12.
    [66] 卢圣栋 主编.现代分子生物学实验技术 (第二版).中国协和医科大学出版社,1999年,233-295.
    [67] 路艳艳,冯作化,皇甫永穆,等.新型大肠杆菌-分枝杆菌穿梭载体的构建及卡那霉素抗性基因表达的研究[J].同济医科大学学报,1998,27:89-93.
    [68] 路艳艳,皇甫永穆.电穿孔法对分枝杆菌进行高效基因转化[J].北京医科大学学报,2000,32(2):178-181.
    [69] 孟松树,郭鑫,张绍杰,等.鸡传染性喉气管炎病毒王岗株gC和gD基因的克隆及序列分析[J].中国预防兽医学报,2000,20(2):107-110.
    [70] 孟松树,郭鑫,张绍杰等.鸡传染性喉气管炎病毒王岗株gC和gD基因的克隆及序列分析[J].中国兽医学报.2000,20(2):108-111.
    [71] 孟松树,张绍杰,童光志.鸡传染性喉气管炎病毒DNA疫苗免疫效果观察[J].中国预防兽医学报,2000,22(3):179-181.
    [72] 彭大新,甘军纪,高崧,等.PCR扩增TK基因检测鸡传染性喉气管炎病毒的研究[J].动物医学进展,2001,22(3):59-61.
    [73] 秦建华,赵月兰,杨不成,等.双炎散对鸡传染性喉气管炎的疗效试验[J].中国家禽,1996,(7):30.
    [74] 王凤龙,顾玉芳,刘月焕.鸡传染性喉气管炎的病理学研究[J].动物医学进展,1999,20(3):83-85.
    [75] 王琴,王长江.新型动物疫苗的研究进展及应用前景[J].中国兽药杂志,2001,35(6):54-58.
    [76] 王世若,王兴龙,韩文瑜 主编.现代动物免疫学 (第二版).吉林科学技术出版社.2001年,465-473.
    [77] 王秀清,金宁一,田梅,等.应用PR-PL串联启动子表达HIV2gag蛋白[J].中国免疫学杂志,2000,16(6):293-294.
    [78] 王云峰,智海东,王玫,等.表达传染性喉气管炎病毒gB基因重组鸡痘病毒疫苗的安全性试验与最小免疫剂量测定[J].中国预防兽医学报,2001,23(6):441-444.
    [79] 王云峰,智海东,王玫,等.表达传染性喉气管炎病毒gB基因重组鸡痘病毒疫苗的遗传稳定性评价[J].中国预防兽医学报,2001,23(6):426-429.
    
    
    [80] 吴红专,刘福安.禽传染性喉气管炎病毒TK基因狄高辛探针的研制及应用[J].中国兽医学报,1998,18(5):424-426.
    [81] 吴红专,刘福安.用聚合酶链反应对传染性喉气管炎病毒北京E2株TK基因的克隆与鉴定 [J].中国兽医科技,1997,27(11):21-22.
    [82] 吴红专,刘福安.鸡传染性喉气管炎研究进展[J].中国兽医科技,1998,20(3):30-33.
    [83] 严隽端,王秀荣,石忠航,等.抗鸡传染性喉气管炎病毒单克隆抗体的研制及在诊断上的应用[J].中国畜禽传染病,1997,(4):47-52.
    [84] 姚建忠,许崇波,靳风烁,等.人结核分枝杆菌热休克蛋白70基因启动子的序列分析[J].中国兽医学报,1998,6:552.
    [85] 于雪梅,朱振宇,傅祖植,等.人肥胖基因在pBV221中的克隆及在大肠杆菌中的表达[J].中山医科大学学报,1998,19(4):262-264.
    [86] 岳治权,宋哓平,张德刚.喉炎康对人工感染鸡传染性喉气管炎的防治试验[J].西北农业大学学报,1996,24(3):21-29.
    [87] 曾星,杨明,祁学忠,等.大肠杆菌—分支杆菌穿梭表达质粒的构建及外源基因人白细胞介素-2在大肠杆菌和卡介苗中的表达[J].中华结核和呼吸杂志,1997,20(6):336-339.
    [88] 张绍杰,孟松树,仇华吉,等.鸡传染性喉气管炎病毒(ILTV)王岗株糖蛋白gB基因序列比较分析,中国兽医学报[J].2000,20(6):544-547.
    [89] 张绍杰,倪健强,孟松树,等.传染性喉气管炎病毒王岗株糖蛋白gB基因在重组杆状病毒中的表达[J].中国预防兽医学报,2001,23(5):321-324.
    [90] 张绍杰,宋程,于力,等.鸡传染性喉气管炎病毒中国王岗株gX基因的克隆及鉴定,中国兽医学报[J].1997,17(3):219-221.
    [91] 张绍杰,于力,宋程,等.鸡传染性喉气管炎病毒中国王岗珠糖蛋白gB基因克隆及鉴定[J].中国兽医科技,1996,29(9):20-21.
    [92] 张绍杰,于力,王玫,等.传染性喉气管炎病毒中国王岗株TK基因的克隆及鉴定[J].中国兽医学报,1994,14(3):236-241.
    [93] 张绍杰,倪健强,孟松树等.鸡传染性喉气管炎病毒(ILTV)王岗株糖蛋白gB基因在重组杆状病毒的表达[J].中国预防兽医学报,2001,23(5):321-324.
    [94] 张绍杰,童光志,王柳等.鸡传染性喉气管炎病毒ILTV糖蛋白gB在重组痘病毒中的表达[J].中国预防兽医学报,2000,22(3):205-207.
    [95] 张秀美,艾武,王莉莉,等.鸡传染性喉气管炎病毒PCR诊断方法的研究,山东农业科学[J].
    
    1999,6:13-15.
    [96] 张秀美,王莉莉,艾武,等.鸡传染性喉气管炎病毒gp60基因核酸探针的研究[J].山东农业科学,2000,1:16-18.
    [97] 张拥军,盛涛,夏翠梅.鸡传染性喉气管炎的诊治[J].甘肃畜牧兽医,1999,4:24.
    [98] 赵宝华,杨虹,许崇波,等.大肠杆菌分枝杆菌穿梭表达质粒pY-α的构建[J].河北师范大学学报(自然科学版),2002,26(2):187-189.
    [99] 郑波,肖红,梁驹卿,等.结核杆菌HSP70在耻垢分枝杆菌中的表达及其免疫原性研究程继忠[J].中华微生物学和免疫学杂志,1998,18(5):337-341.
    [100] 郑玉妹,智海东,王云峰,等.传染性喉气管炎病毒糖蛋白gC在原核系统中的高效表达[J].中国比较医学杂志,2003,13(6):229-331.
    [101] 智海尔,刘红全,童光志.新型动物疫苗的研究进展[J].生物技术通报,2000,4:28-31.
    [102] 中华人民共和国兽用生物制品规程(二000年版),中华人民共和国农业部兽用生物制品规程委员会编.化学工业出版社,228-230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700