用户名: 密码: 验证码:
电致化学发光及其在DNA序列分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电致化学发光(Electrochemiluminescence)简称ECL,是由电极反应而引发的一种化学发光(Chemiluminescence,CL)现象。它是通过电极对含有CL物质的体系施加一定的电压或通过一定的电流,电极产物之间或电极产物与体系中某种物质之间发生化学反应而产生CL,或发光物质直接在电极上发生氧化还原反应后生成某种不稳定的中间态物质分解而发光。通过光电倍增管或其他光学仪器测量发光强度,从而对物质进行定性和定量分析,即为ECL分析。
     脱氧核糖核酸(DNA)是遗传信息的承担者,被称为生命体内的遗传物质。具有存储和传递信息的功能,人类的许多遗传疾病都与DNA分子中碱基序列的变异有关。检测与疾病有关的变异对基因筛选、遗传疾病的早期诊断和治疗具有十分深远的意义。
     DNA杂交分析技术是目前生物化学和分子生物学研究中应用最广泛的技术之一,是定性或定量检测特异DNA片段的有力工具。目前,它已被广泛应用在生命科学,尤其是医学的各个领域。传统的DNA分子杂交采用的是放射性标记的检测方法,这种方法虽然灵敏度高,但存在放射性物质对人体及环境的危害。各种非同位素如酶、荧光素、生物素、地高辛标记的化学发光法和荧光分析法以及以电活性物质做标记的电化学方法相继问世,但所需仪器昂贵,且难以实现自动化。因此寻求简单、灵敏、可靠、价廉的非放射性标记的DNA检测方法具有十分重要的现实意义。
     电致化学发光(ECL)分析是利用电解技术在电极表面产生某些氧化还原物质而导致的化学发光,较一般的化学发光方法相比具有装置简单、仪器价格便宜、重现性好、可进行原位发光等特点,近几年来在分析化学,尤其在生物分析领域引起了人们的极大关注。本论文研究了电致化学发光活性物质的发光性能,并以这些物质为标记物制备了多种高灵敏度的DNA-ECL探针,结合DNA杂交技术和DNA固定化技术,将高灵敏度的ECL检测手段应用于生命物质DNA的序列识别及含量测定,为DNA传感器的研究和基因芯片的开发提供了新的思路和方法。
    
    摘要
    本论文主要研究内容如下:
    第一章绪论
     简单介绍了ECL分析方法的概念、原理和特点,重点介绍了各种ECL反应类
    型及其在分析化学中的应用,系统总结了各种ECL传感器,展望了ECL分析的
    未来发展方向。介绍DNA传感器的构造和各种DNA传感器的原理、特点及分析应
    用。最后阐述了本论文的目的和意义,指出论文的创新之处及主要研究内容。
    第二章ECL活性物质发光性能的研究
    1 FCA催化Lumino1EcL反应的研究及其ECL分析体系的建立
     梭基二茂铁(FCA)是一种电化学活性物质,其分子结构上的梭基能够和生
    物大分子作用,因而可用于标记生物大分子。本文研究发现在低电位下,FCA可
    极大地催化Lumin。1和HZoZ的EcL反应,而且催化信号与FcA的浓度在5.0只10一9-
    2.0又10‘4m。1/L的范围内呈现良好的线性关系,检出限可以达到1.5又10一”mol/L。
    2齐敦果酸的ECL行为
     齐敦果酸是一种五环三菇类药物,是治疗急性黄胆型肝炎和慢性病毒性肝炎
    比较理想的药物,但有关其ECL性能的研究较少。本论文详细研究了齐墩果酸的
    电致化学发光性能,确定了发光的最佳条件,探讨了可能的发光机理。发现在最
    佳条件下,ECL信号与齐敦果酸的浓度在4.38义10一7一4.38又10一,mol/L范围内呈良
    好的线性关系,检出限可达到2.oxlo一7 mol/L。为测定药物中齐敦果酸的含量提
    供了一种可靠的方法。
    第三章DNA一ECL探针的制备及其在DNA分析中的应用
     采用直接标记法和纳米颗粒间接标记法制备了不同的SSDNA一ECL探针,与
    固定在电极上的目标SSDNA进行杂交反应,通过ECL检测实现对目标DNA的序列
    识别及含量测定,获得满意结果。
    FCA一DNA探针的制备及应用
    在EDAC的活化下,FCA分子结构上的梭基与NHZ一ssDNA上的氨基作用,将
    
     摘要
    FCA直接标记在NHZ一ssDNA上,制备成FCA一SSDNA探针。分别用ECL法、紫外-
    可见光谱法和电化学法对其进行表征。然后与固定在电极上的SSDNA进行杂交反
    应,用ECL法测定杂交信号,根据发光信号的大小对目标DNA进行识别及定量。
    实验结果证明,该探针能准确识别出三碱基错配序列,对互补序列的响应可以达
    到5x10一“mol/L。
    2 Luminol一5102纳米颗粒标记SSDNA探针的制备及应用
     纳米技术以其独特的优势引起了人们的极大关注。纳米颗粒标记是DNA分析
    中的一个崭新课题。本文首次以Luminol为核材料,利用反相微乳液技术,制备
    了掺杂有Lumin。1的5102纳米颗粒,并在纳米颗粒表面修饰一层壳聚糖,使其
    能与DNA结合,从而制备成Luminol一510:纳米颗粒标记的SSDNA探针。结合DNA
    杂交技术及高灵敏度的Luminol ECL检测方法对不同序列的目标DNA进行识别及
    定量。实验结果证明,这种探针对DNA的序列特征具有更强的识别能力,对互补
    序列的响应具有更高的灵敏度。检出限可以达到2x10一’“mol/L。
Electrogenerated chemiluminescence (ECL), know as electrochemilumicescence, which combines chemiluminescence (CL) and electrochemistry. The CL reaction was initiated by an electrochemical reaction at electrode surface. Such an electro-initiation reaction introduces a large number of additional advantages, such as high sensitivity and selectivity, rapid and convenient operation and relatively simple instrumentation system. So ECL is becoming more and more important in many fields.
    Deoxyribonucleic Acid (DNA) is known as inherited substance in life body. The analysis of DNA sequence and DNA mutant detection play fundamental roles in the rapid development of molecular diagnostics and in the anticancer drug screening.
    Therefor many detection techniques of DNA sequence have been developed in recent years. These techniques mainly depend on the nucleic acid hybridization and their sensitivities are related to the specific activity of the label linked to the DNA probe. The degree of hybridization of probe to its complementary DNA sequence in sample is translated into a useful electric signal, which is a measurement of the amount of that specific sequence in the sample.
    In this dissertation we focused on the preparation of a new type of DNA probes which were labeled with ECL activated substances. Based on coupling with the DNA hybridization and immobilization techniques, we have developed new ECL methods for the determination of special DNA sequence. Compared with other methods the new methods are simple, rapid as well as sensitive and selective. The dissertation is composed of three chapters as followings:
    Chapter 1: Introduced the ECL and its application in analytical chemistry field, paid more attention to the types of ECL reaction and ECL sensors. Reviewed the DNA sensors, including their principles, advantage and disadvantage. At last pointed out the purpose of the dissertation.
    Chapter 2: Study on the ECL behaviors of two substances and establish their ECL analytical system.
    1 The catalytic reaction of ferrocenecarboxylic acid (FCA) to Luminol and hydrogen peroxide was investigated. It was found the Chemiluminescent intensity of Luminol with hydrogen peroxide can be greatly enhanced by electrochemically oxidizing of FCA at low potential in Tris buffer solution. Under optimal conditions the ECL intensity exhibits a good linear response with the concentration of FCA in the range of 5.0 10-9~2.0 10-4mol/L. The detection limit is 1.5 10-9mol/L.
    
    
    
    2 The electrogenerated chemiluminescence (ECL) behavior of oleanlic acid(OA) in neutral solution was studied. It has been found that oleanlic acid gives ECL emission at Pt electrode when the applied potentials were over 0.8 V (vs. Ag/AgCl). The ECL intensity was greatly influenced by the electrochemical parameters. The strongest ECL signal was observed in 1.0 mol/L KCL solution, whose pH is 7.0. And adding H2O2 could catalyze its signal. Under optimum conditions the ECL intensity has a linear relationship with the concentration of oleanlic acid in the range of 4.38xlO-7 ~ 4.38x10-5mol/L . The detection limit was 2.0xlO-7 mol L-1. The proposed ECL mechanism was discussed.
    Chapter 3: Preparation of new DNA-ECL probes and their applications to DNA assay
    1 FCA-DNA probe. This probe was made by convalent bound between carboxyl group of FCA and 5'-amino of oligonucleotide in the presence of a water-soluble carbodiimide. The hybridization reaction was conducted by immersing the ssDNA-immobilized electrode in FCA-DNA probe solution. The hybridization events were estimated by the ECL signals from FCA. The results showed that the FCA-DNA probe was able to recognize three-base mismatch sequence and formed dsDNA only with complementary sequence. The linear response to the complementary sequence is of 2 10-10~5 10-8 mol/L and the detection limit is 5.0 10-11 mol/L .
    2 Luminol-SiO2-DNA probe. Luminol-SiO2 nanoparticles were first synthesized by hydrolysis of tetraethoxysilane (TEOS) within a reverse microemulsion system. Particles in the size range 55 ~70
引文
1 PANG Dai-Wen, QI Yi-Peng, WANG Zong-Li et al, Chemistry[J], 1994, 2:1
    2 LANDEGREN U., Kaiser R., Caskey C.T., Hood L., Science, 1998,242:229
    3 ZHAO Yuan-Di, PANG Dai-Wen, WANG Zong-Li et al, Chinese J. Anal. Chem.[J], 1996, 24(3): 364
    4 Fraymann, Recherches Invention, 1930, 11:36
    5 Bernanase A., Bremer T., Goldfinger P., BullSoc. Chim. Bely., 1947, 56:269
    6 Vojiir V., Collection Czech. Chem. Commun., 1954, 19:846
    7 YangM. L.,LiuC. Z.,QianK. J.,Fang Y. Z.,He P. G., Analyst, 2002,127:1267
    8 LiB. X.,ZhangZ. J.,WuM. L..Tanata, 2000,51:55
    9 陈曦,佐藤昌宪 《分析科学报》,1998,14:278
    10 Skotty D. R., Lee W. T., Nieman T. A., Anal. Chem., 1996, 68:1530
    11 Gilma S. D., Silwerman C. E., Ewing A. G., J. Microcolumn Sejperation, 1994, 6:97
    12 Kankare J., Anal. Chim. Acta., 1992, 38:837
    13 Deaver D. R., Nature, 1995, 377:758
    14 Hoyle N. R., et al., Clin. Chem., 1996, 42(9):1576
    15 Blackburn G .E, et al., Clin. Chem., 1991, 37(9):1534
    16 Kenten J. H., et al., Clin. Chem., 1992, 38(6):837
    17 Marquette C. A., Blum L. J., Sens. Actuators B, 1998, 51:100
    18 王鹏,张文艳,周泓,朱果逸 《分析化学》,1998,26(7):898
    19 安镜如,林建国 《化学学报》,1992,50,594
    20 庄惠生,王琼娥,张帆 《分析化学》,1997,25(3),330
    21 Yasuo Y., Hirotak H., Takehior M., J Chem. Engineer., Jap., 1996, 29(5): 851
    22 Aizawa M., Pro. BCEIA. Electroanal. Chem., 1997, F25
    23 Blackburn G. E, Shah H. R, Kenten J. H., Clin. Chem., 1991, 37(9): 1534
    24 Daniel R. D., Nature, 1995, 377:758
    25 Nicbolas R., Hoyle N. R., Eckert B., Clin. Chem., 1996, 42(9): 1576
    26 Wellerl L., Kenten., E., Freeman, Clin. Chem., 1995, 41(6): S221
    27 Bialk P., Vogel. R., Mayr S., Clin. Chem., 1995, 41(6): S60
    28 Bard A. J., Whiteside G. M., US Patent, 1994, 5310687
    29 Kankare J., Haapakka K., Kulmala S. et al., Anal. Chim. Acta, 1992, 266:205
    30 Michel P. E., de Rooij N. F., Koudelka-Hep M., Fahnrich K. A., O'Sullivan C. K., Guilbault G. G., J. Electroanal. Chem., 1999, 474:192
    31 Kim J. H., Shin H. B., Park K. I., Lee H. M., Kwon O. H., Kim D. S., Clin. Chem., 1998, 44:
    
    A124
    32 王鹏,张文艳,周泓,朱果逸《科学通报》1998,43(21):2241
    33 周永列,吕亚萍《国外医学临床生物化学与检验学分册》1998,19(4):149
    34 Kenten J. H., Casade J., Link.J., et al., Clin. Chem., 1991, 37:1626
    35 Dicesare J., Grossman B., Karz E., et al., Biotechniques, 1993, 15:152
    36 Hsueh Y. T., Collins S. D., Smith R. L., Sens. and Actuators, 1998, B49:1
    37 Hsueh Y. T., Northrup M. A., Smith R. L., Sens. and Actuators, 1996, B33:110
    38 Motmans K., Raus J., Vandevyver C., J. Immunol. Methods, 1996, 190:107
    39 O'Connell C. D., Juhasz A., Kuo C., Reeder D. J., Hoon D. S. B., Clin. Chem., 1998, 44:1161
    40 安镜如,林金明,陈曦《分析化学》1991,19(11):1340
    41 陈曦,王小如,黄本立《分析化学》1998,26(6):770
    42 王鹏,袁艺,朱国逸,张密林《分析化学》1999,27(10):1219
    43 Greenway G. M., Trends Anal. Chem., 1990, 9:200
    44 Knight A. W., Greenway G. M., Analyst, 1994, 119:879
    45 Knight.A: W., Trends Anal Chem., 1999,18:47
    46 Fahnrich K. A., Pravda M., Guilbault G. G., Tanlanta, 2001, 54:531
    47 Marcus R. A., J. Chem. Phys., 1965, 43:2654
    48 Feldburg S. W., J. Am. Chem. Soc., 1966, 88:390
    49 Happakka K., Kankare J., and Lipiainen K., Anal. Chim. Acta, 1988, 215:341
    50 Richter MM, Fan F R F, Klavetter F, Heeger A J. J. Chem. Phys. Lett., 1994,226:115
    51 Richter T C., Bard A J., Anal Chem., 1995, 67:3140
    52 Harvey E N., J. Phys. Chem., 1929, 33:1456
    53 Haapakka K E., Kankare J J., Anal Chim. Acta., 1982, 138:26
    54 Haapakka K E., Kankare J J., Anal Chim. Acta., 1982, 138:253
    55 安镜如,陈曦《分析化学》1998,16:27
    56 Sakura S., Terao J., Anal. Chim. Acta., 1992, 262:217
    57 Sakura S., Anal Chim. Acta., 1992, 262:59
    58 Haapakka K. E., and Kankare J. J., Anal. Chim. Aeta, 1980, 118:333
    59 Haapakka K. E., Anal. Chim. Aeta, 1982, 139:229
    60 Haapakka K. E.,Anal. Chim. Acta, 1982, 141:263
    61 安镜如,姚晴《分析化学》1990,18(9):867
    62 Zhang C., Zhang S., Zhang Z., Analyst, 1998, 123:1383
    63 Jirka G. P., Martin A. F., Nieman T. A., Anal. Chim. Acta, 1993, 284:345
    64 Kearney N. J., Hall C. E., Jewsbury R. A., Timmis S. G., Anal Commun., 1996, 7:815
    65 Laespada M. E. F., Pavon J. L. P., Cordero B. M., Anal Chim. Acta, 1996, 327:253
    66 Hostis E. L., Michel P. E., Fiaccabrino G. C., Strike D. J., de Rooij N. F., Koudelka-Hep M.,
    
    Sens. Actuators, 2000, 64B: 156
    67 Kremeskoter J., Wilson R., Schiffrin D. J., Luff B. J., and Wilkinson, Meas. Sci. Technol., 1995, 6:1325
    68 Marquette C.A., Blum L. J.,Anal. Chim. Acta, 1999, 381:1
    69 Atwater J. E., Akse J. R., DeHart J., Wheeler R. R., Anal. Lett., 1997, 30(8): 1445
    70 李瑛秀,朱连德,朱果逸《分析试验室》2001,20(5):89
    71 Zhu L. D., Li Y. X., Zhu G. Y., Sens. and Actuators , 2002, B86:209
    72 Tsafack V. C., Marquette C. A., Leca B., Blum L. J., Analyst, 2000, 125:151
    73 Marquette C. A., Ravaud. S., Blum L. J., Anal. Lett., 2000, 33(9): 1779
    74 Hostis E. L., Michel P. E., Fiaccabrino G. C., Strike D. J., de Rooij N. F., Koudelka-Hep M., Sens. Actuators, 2000, 64B: 156
    75 Kremeskoter J., Wilson R., Schiffrin D. J., Luff B. J., and Wilkinson, Meas. Sci. Technol., 1995, 6:1325
    76 Lasovsky J., and Grambal E, Coll. Czech. Chem. Commun., 1983, 48:477
    77 陈扬,陆祖宏《化学通报》2001,9:537
    78 Kricka L J., Clin. Chem., 1991, 37(9): 1471
    79 Kawasaki T., Maeda M., and Tsuji A., J. Chromatorgra., 1985, 328:121
    80 安镜如,陈曦《高等学校化学学报》1989,10(11):1110
    81 Steijger O. M., Kmminga D. A., Brummelhuis, Lingeman H., J. Chromatogr. A, 1998, 799:57
    82 Lee W. Y., Mikrochim. Acta, 1997, 127:19
    83 Gerardi R. G., Barnett N. W., Lewis S. W., Anal. Chim. Acta, 1999, 378:1
    84 Abruna H. D., J. Electrochem. Soc., 1985, 132:842
    85 Lee C., Ouyang J., Bard A. J., Electroanal. Chem. Interfacial Electrochem., 1988,244:319
    86 Xu G., Dong S., Anal Chim. Acta, 2000, 12; 235
    87 Kane-Maguire N. A. P., Gucker J. A., O'Neil P. J., Inorg. Chem., 1987, 26:2340
    88 Taverna P. J., Mayfield H., Andrews A. R. J., Anal. Chem. Acta, 1998, 373:111
    89 Tokel-Takvoryan N. E., Bard A. J., Chem. Phys. Lett., 1974, 25(2): 235
    90 Bonafede S., Ciano M., Bolletta F., Balzani V., Chassot L., Zelewsky A, J. Phys. Chem., 1986, 90:3836
    91 Richter M. M., Debad J. D., StriplinD. R., Crosby G. A., Bard. A. J., Anal. Chem., 1996, 68: 4370
    92 Vogler A, Kunkely H., Angew. Chem. Int. Ed. Engl., 1981, 20:469
    93 Vogler A, Kunkely H.,Am. Chem. Soc. Symp. Set., 1987, 333:155
    94 Mussel R. D., Nocera D. G., J. Am. Chem. Soc., 1988, 110:2764
    95 Mussel R. D., Nocera D. G., J. Phys. Chem., 1991, 95:6919
    96 Hemingway R. E., Park S. M., Bard A. J., J. Am. Chem. Soe., 1975, 97:200
    97 Bolletta F, Ciano M, Balzani V and Serpone N. Inorgan. Clim. Acta, 1982, 62:207
    
    
    98 Luong JC, Nadjo L and Wrighton M S. J. Am. Chem. Soc.,1978,100:5790
    99 Richter M M, Bard A J. Anal. Chem.,1996, 68:15
    100 Tokel-Takvoryan N E and Bard A J. Chem. Phys. Letters, 1974, 25(2):235
    101 Tachikawa H., Bard A. J., J Chem. Phys. Lett., 1973, 19:287
    102 Tokel N. E., Bard A. J., J. Am. Chem. Soc., 1972, 94; 2862
    103 White H. S., Bard A. J., J. Am. Chem. Soc., 1982, 104; 6891
    104 Rubinstein I., Bard A. J., J. Am. Chem. Soc., 1981, 103:512
    105 Ege D., Becker W. G., Bard A. J., J. Am. Chem. Soc., 1984, 56:2413
    106 Rubinstein I., Martin C. R., Bard A. J., Anal. Chem., 1983, 55:1580
    107 Zu Y., Bard A. J., Anal. Chem., 2000, 72:3223
    108 Leland J. K., and Powell M. J., J. electrochem. Soc., 1990, 137(10): 3127
    109 Nonidez W K., Leyden D E., Anal. Chim. Acta., 1978, 96:401
    110 Rubinstein I., BardA J., J. Am. Chem. Soc., 1981, 103:512
    111 Noffsinger J B., Danielson N D., Anal. Chem., 1987, 59:865
    112 Uchikura K., Kirisawa M., Anal. Sci., 1991, 7:971
    113 Brune S N., Robbit D R., Talanta, 1991, 38:419
    114 He L., Cox K A., Danieison N D., Anal. Lett., 1990, 23:195
    115 Chen X., Sato M., J. Flow Injection Anal., 1995, 12:216
    116 Lee W Y., Nieman T A., J. Chromatogr. A., 1994, 659:111
    117 Egashira N., Kumasako H., Kurauchi Y., Ohga K., Anal. Sci., 1994,10:405
    118 Yamada S., Kohrogi H., Matsuo T., Chem. Lett., 1995, 8:639
    119 Egashira N., Kumasako H., Ohga K., Anal. Sci, 1990, 6:903
    120 Kulmala S., Alk-Kulmala T., V(?)re L., Helin M., Lehtinen T., Anal. Chim. Acta, 1999, 398: 41
    121 Brizio E. E, Prieto I., Bard A. J., J Am. Chem. Soc., 2000, 122:4996
    122 Kulmala S., Kulmala A., Alk-Kleme T., Pihlaja J., Anal. Chim. Acta, 1998, 367: 17
    123 Gaillard F., Sung Y. E., Bard A. J., J. Phys. Chem. B, 1999, 103:667
    124 Kulmala S., Alk-Kulmala T., Kulmala A., Papkovsky D., Loikis K., Anal. Chem, 1998, 70:1112
    125 Ala-Kleme T., Latva M., Haapkaak K., Anal Chim Acta, 2000, 403:161
    126 Ala-Kleme T., Haapkaak K., Latva M., J. Alloy. Compd., 1998, 275-277:911
    127 Ala-Kleme T., Klumala S., Latva M., Acta. Chem. Scand., 1997, 51; 541
    128 Sung Y. E., Gaillard E, Bard A. J., J. Phys. Chem., 1998, B102:9797
    129 Sung Y. E., Bard A. J., J. Phys. Chem. B, 1998, 102:9806
    130 Chiang M. T., Whang C. W., J. Chromatogra. A, 2001, 934:59
    131 Jackson W. A., Bobbit D. R., Microchem. J., 1994, 49:99
    132 Happakka K. E., Kankare J., Anal. Chim. Acta, 1981, 130:415
    
    
    133 Littig J. S., Nieman T. A., Anal. Chim. Acta, 1992, 64:1140
    134 Heinza K. F., Nieman T A., Anal. Chim. Acta, 1993, 284:227
    135 Irons G. P., Greenway G. M., The Analyst, 1995, 120:477
    136 Chen G. N., Lin R. E., Zhao Z. F., Duan J. P., Zhong L., Anal Chim. Acta, 1997, 341:251
    137 Freeman T. M., Anal Chem., 1978, 23:1242
    138 Coulet P. R., Anal Proc, 1991, 28(11): 358
    139 Coulet P. R., Trends Anal Chem, 1992, 11(2): 57
    140 章竹君《分析科学学报》1997,13(1):7
    141 Atwater J. E., DeHart J., Wheeler R. R., J. Biolum. Chemilum., 1998, 13:125
    142 Ouyang C. S., Wang C. M., J. Electrochem. Soc., 1998, 145(8): 2654
    143 Ouyang C. S., Wang C. M., J. Electroanal. Chem., 1999, 474:82
    144 Zhang G. E, Chen H. Y., Anal. Chim. Acta, 2000, 419:25
    145 Yu H., Raymonda J. W., McMahon T. M., Campagnari A. A., Biosens. Bioelectron., 2000, 14:829
    146 邢婉丽,晁福寰,蒋中华,马立人《高等学校化学学报》,2000,21(6):873
    147 Gatto-Menking D. L., Biosens Bioelectron, 1995, 10(627): 501
    148 Conner B. J., Reyes C. M., Morin C., Itakuura K., Teplitz R. L., Wallace R. B., Proc. Natl. Acad. Sci. USA., 1983, 80:278
    149 Riordan J. R., Rommens J. M., Kerm B., Alon N., Science, 1989, 245:1066
    150 Jaacobs K., Woif S. F., Fisch L., Kremsky J. N., Daugherty J. E, Nucleic Acid. Res., 1987, 15:2911
    151 Lebacq P., Squalli D., Duchenne M., Pouletty P., Joannees M., J. Biochem. Biophys. Methods, 1988, 15:255
    152 Hurskainen E, Dahlen P., Ylidoski L., Kwiatkowski M., Siitarei H., Lovgren T., Nucleic Acid. Res., 1991, 19:1057
    153 McNeil J. A., Johson C. V., Carter K.C., Gent. Anal. Tech. Appl., 1991, 8:41
    154 Arnold J. L. J., Hammond P. W., Weie W. A., Neison N. C., Clin. Chem., 1989, 35:2588
    155 Knight D. P., Simmonds A. C., Schaap P. A., Akhavan J., Brady M. A. W., Anal. Biochem., 1990, 185:84
    156 Kricka L. J., Ji X. Y.,Anal. Sci., 1991, 7:1501
    157 Arakawa H., Maeda M., Tsuji A., Anal. Biochem., 1991, 199:238
    158 Okahata Y., Kawase M., Nickura K., Anal. Chem., 1998, 70:1288
    159 Peterlinze K. A., Georgiadis R. M., J. Am. Chem. Soc., 1997, 119:3401
    160 Trabesinger W., Schutz G. J., Gruber H., Anal. Chem., 1999, 71:279
    161 Tyagi S., Kramer F. R., Nature Biotech., 1996, 14:303
    162 Piunno P. A. E., Krull V. J., Hudson R. H. E., et al., Anal. Chim. Acta, 1994, 288:205
    163 Kleinjung E, Bier F. E, Warsilnke A., et al., Anal. Chim. Acta, 1997, 350:51
    
    
    164 Ferguson J. A., Boles T. C., Adams C. R, et al., Nat. Biotechnol., 1996, 14(13): 1681
    165 Caruso E, Rodda E., Fucrlong D. N., Anal. Chem., 1997, 69:2043
    166 Sun X. Y., He P. G., Liu S. H., Ye J. N., Fang Y. Z., Talanta., 1998, 47:487
    167 Xu C., He R E, Fang Y.Z., Anal. Chim. Acta., 2000, 411, 31
    168 孙星炎,徐春,刘盛辉,何品刚,方禹之《高等学校化学学报》,1998,9:1393
    169 Feng M., Yang Y., He P. G., Fang Y. Z., Spectrochim. Acta. Part A, 2000, 59:59
    170 徐春,蔡宏,何品刚,方禹之《高等学校化学学报》,2001,22:1492
    171 Cai H., Xu C., He R G., Fang Y. Z., J. Electroanal. Chem., 2001, 510:78
    172 Cai H., Xu Y., ZhuN. N., He P. G., Fang Y. Z., The Analyst., 2002, 127:803
    173 Wu J. T., Zhou J. Z., Huang Y., Chinese J. Anal. Chem., 1998, 26(7): 819
    174 Hashimoto K., Ito K., Ishimiri Y., Anal. Chim. Acta., 1994, 286:219
    175 Wang J., Emil R, J.Am. Chem. Soc., 1996, 118:7667
    176 Wang J., Cai X., Analytical Chemistry, 1996, 68:2629
    177 Millan K. M., Aleksandrs J. S., Electroanalysis, 1992, 4:929
    178 Liu S. H., Sun C. L., He R G., Fang Y. Z., Chinese J. Anal. Chem., 1999, 27(2): 130
    179 Yamaguchi S., Shimomura T., Analytical Chemistry, 1993, 65:1925
    180 Chen Y. H., Song J. D., Li D. W., Prog. Biochem. Biophys., 1996, 23(6): 527
    181 Maeda M., Mitsuhashi Y., Anal. Sci., 1992, 8:83
    182 Ito K., Hashimoto K., Ishimori Y., Anal. Chim. Acta., 1996, 327:29
    183 Nakano K., Maeda M., Anal. Sci., 1997, 13:455
    184 Xu X., Bard A. J., J. Am. Chem. Soc., 1995, 117:2627
    185 Lofas S., Johnsonn B., Hansson A., Lindquist G., Hillgren R.M., Stingh L., Biosens. Bioelectron., 1995, 10:813
    186 Caruso F., Rodda E., Furlong D.N., Niikura K., Okahata Y., Anal. Chem., 1997, 69:2043
    187 Korri-Youssoufi H., Garnier F., Srivastava D., Goditlot P., Yassar A., J. Am. Chem. Soc., 1997, 119:7388
    188 Wang J., Rivas G., Cai X., et al., Anal. Chim. Acta, 1997, 337:41
    189 Hashimoto K., Ito K., Ishimori Y., Sens and Actuators B, 1998, 46:220
    190 Brabec V., Electrochim. Acta, 2000, 45:2929
    191 Maeda M., Anal. Sci., 1992, 8(1): 83

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700