用户名: 密码: 验证码:
大规模风电接入对电力系统稳定性影响及控制措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在能源和环境的双重压力下,风力发电技术受到了越来越普遍的重视,正逐步走向规模化和产业化,越来越多的大中型风电场相继建成并与电力系统联网运行,其在电网中的比例日益增大,接入电压等级从最初的配电系统发展到高压输电系统。大量风电并网对电力系统的安全稳定运行带来了挑战,其影响也越来越广泛和复杂,开展风电并网带来的一系列技术问题的相关研究非常重要和迫切。在此背景下,本文对风电并网对电力系统的稳定性影响问题进行系统而深入的研究,使得大规模风电场能合理平稳地接入电力系统,为风力发电的政策制定、规划设计、生产运行提供理论准备和技术支撑。
     本论文的具体内容如下:
     1.为系统地分析风电机组对电力系统小干扰和暂态稳定性的影响,对三种常见类型的风力发电机组接入后的电力系统稳定性进行了系统的比较研究。首先确定了这三类风力发电机组的动态模型,之后以WSCC3机9节点和8机24节点系统为例,采用特征值分析和动态时域仿真方法,系统地比较了在同一母线接入异步风力发电机、双馈感应风电机组和永磁直驱风力发电机与接入同等容量同步发电机组对系统小干扰稳定和暂态稳定性的影响。
     2.为研究风电并网对互联系统低频振荡的影响,基于完整的双馈感应风力发电机组模型,定性分析了两区域互联系统在风电机组并网前后阻尼特性的变化情况,给出了风电场在系统送电侧和受电侧时系统的阻尼增量。从双馈感应风力发电机组并网输送距离、并网容量、互联系统联络线传送功率(大小与方向)、是否加装电力系统稳定器等多方面多角度分析了风电场并网对互联系统小干扰稳定及低频振荡特性的影响。之后,在两个2区域系统算例上进行了比较分析。
     3.为了改善风电并网后互联系统的动态稳定性,将附加阻尼控制静止无功补偿器(Static Var Compensator,SVC)引入含风电的互联系统。以含双馈感应发电机的风电系统功率关系为基础,推导了在转子电流限制条件下风电机组的无功功率极限,借助开环系统的留数指标定位SVC加装点;从暂态能量的角度分析了含SVC的互联系统区域模式振荡的能量描述问题;设计了用于改善系统阻尼特性的SVC附加阻尼控制器,并采用特征根灵敏度法确定控制器参数。最后在IEEE2区域4机系统上进行有效性验证和研究。
     4.电力系统稳定器(Power System Stabilizer,PSS)为励磁系统产生辅助控制信号来改善系统的阻尼进而抑制低频振荡。迄今为止,已提出了多种不同的PSS设计方法,并得到了不同程度的应用。为推动不同类型的PSS在电力系统中的实际应用,对4种有代表性的PSS设计方法的原理和特性进行比较研究,包括传统PSS、单神经元PSS、自适应PSS和多频带PSS。为使比较研究具有共同的基础,这4种PSS的参数都采用最速下降法优化确定。最后,以8机24节点系统为例对这4种PSS设计方法的性能进行了比较分析。
Wind farms have been increasingly integrated into power systems over the last fewdecades because of the global energy crisis and the pressure on environmental protection, andgradually going to the road of large-scale and industrialization. In recent years, the installationof wind power energy has moved from small wind farms with a few wind turbines to largewind farms with more than hundreds of MW of capacity, and the connection point of windfarm have developed from low voltage level’s electricity distribution system to high voltagelevel’s electricity transmission system. With the penetration level increasing, the impact ofwind power on power system dynamics and stability become increasingly complicated, whichmake it necessary to research on a series of technology problems of wind power integratedsystem. Given these backgrounds, many systematic and in-depth investigations on the impactsof wind farms on power system stability have been done in this dissertation for the reasonableand stable penetrations of wind farms into power system. Meanwhile, the researching workcan provide theoretical preparation and technology support for the programming, designing,operation and policy-making of wind farms.
     Specifically, the main contents of this dissertation are as follows:
     1. To systematically examine the impacts of wind power on the small signal stability aswell as transient stability, so as to investigate the countermeasures. A comprehensive study iscarried out to compare the dynamic performances of a power system respectively with threewidely-used types of wind power generators integrated. First, the dynamic models aredescribed for three types of wind generators, i.e. the squirrel cage induction generator (SCIG),doubly fed induction generator (DFIG) and permanent magnet generator (PMG). Then, theimpacts of these three kinds of wind generators on the small signal stability and transientstability are compared with that of a substituted synchronous generator (SG) having the samecapacity at the same connection point in the WSCC three-machine nine-bus system byemploying the eigenvalue analysis and dynamic time-domain simulations.
     2. In order to investigate the impacts of wind power integration on the low frequencyoscillation characteristics of an interconnected power system, the damping performances of atwo-area interconnected power system with and without wind power integration are analyzedbased on the comprehensive model of the doubly fed induction generator, and the dampingincrement is given with the wind farm at the sending end and at the receiving end. Theimpacts of several factors, including the DFIG transmission distance, DFIG capacity, tie-line power of the interconnected system, with/without a power system stabilizer (PSS), on the lowfrequency oscillation characteristics of the interconnected power system are examinedsystematically. Then, a two-area four-machine system and a two-area eight-machine systemare employed to carry out detailed analysis and comparisons.
     3. An auxiliary damping control (ADC) static var compensator (SVC) is applied in adoubly fed induction generator (DFIG) integrated interconnected power system and theimpact of ADC-SVC on the damping characteristics of the interconnected power system isstudied. Firstly, the dynamic models of wind turbines based on DFIG is described; thereactive power limit of DFIG wind power generation system is deduced based on the powerrelationships of overall system; the energy process of area mode oscillations including SVC isanalyzed from the point of view of area transient energy using the conception of energyconservation under zero damping; the ADC at SVC is designed to improve the dampingcharacteristic of powe system, and the control parameters are determined by the eigenvaluesensitivity method. The performance was validated on an IEEE4-machine2-area system.
     4. To ensure the small-signal stability of a power system, power system stabilizers (PSSs)are extensively applied for damping low frequency power oscillations through modulating theexcitation supplied to synchronous machines, Up to now, various kinds of PSS designmethods have been proposed and some of them applied in actual power systems with differentdegrees, and increasing interest has been focused on developing different PSS schemes totackle the threat of damping oscillations to power system stability. Given this background,four different PSS models and investigates their performances on damping power systemdynamics using both small-signal eigenvalue analysis and large-signal dynamic simulations.The four kinds of PSSs examined include the Conventional PSS (CPSS), Single Neuron basedPSS (SNPSS), Adaptive PSS (APSS) and Multi-band PSS (MBPSS). To make thecomparisons equitable, the parameters of the four kinds of PSSs are all determined by thesteepest descent method. Finally, an8-unit24-bus power system is employed to demonstratethe performances of the four kinds of PSSs by the well-established eigenvalue analysis as wellas numerous digital simulations.
引文
[1] BP Statistical Review of World Energy2013[DB/OL]. http://www.bp.com/en/global/corporate/about-bp/statistical-review-of-world-energy-2013.html,2013-06
    [2]江哲生.我国电力发展的未来[J].发电设备,2006,20(1):1-5
    [3]尹忠东,朱永强.可再生能源发电技术[M].北京:中国水利水电出版社,2010:1-90
    [4]刘万琨,张志英,李银凤,等.风能与风力发电技术[M].北京:化学工业出版社,2007:1-70
    [5]钱伯章.可再生能源发展综述[M].北京:科学出版社,2010:1-50
    [6]姚兴佳,刘国喜,朱家玲,等.可再生能源及其发电技术[M].北京:科学出版社,2010:1-40
    [7]王承旭,张源.风力发电[M].北京:中国电力出版社,2003:1-60
    [8] Sorensen P., Cutululis N. A., Vigueras-Rodriguez A., et al. Power fluctuations fromlarge wind farms [J]. IEEE Transactions on Power Systems,2007,22(3):958-965
    [9]雷亚洲.与风电并网相关的研究课题[J].电力系统自动化,2003,27(8):84-89
    [10] Attya A. B., Hartkopf T. Penetration impact of wind farms equipped with frequencyvariations ride through algorithm on power system frequency response [J]. InternationalJournal of Electrical Power&Energy Systems,2012,40(1):94-103
    [11]张宏宇,印永华,申洪,等.基于序贯蒙特卡洛方法的风电并网系统调峰裕度评估[J].电力系统自动化,2012,36(1):32-37
    [12]李军军,吴政球.风电参与一次调频的小扰动稳定性分析[J].中国电机工程学报,2011,31(13):1-9
    [13] Khattara A., Aboubou A., Bahri M., et al. Influence of wind penetration in theoptimization of the economic dispatch [C]. Proceedings of20121st InternationalConference on Renewable Energies and Vehicular Technology (REVET2012), March26-282012, Hammamet, Tunisia:415-419
    [14]王召旭,周明,吴迪,等.风电并网电力系统动态经济调度问题的研究[J].现代电力,2011,28(2):37-42
    [15]郑宝森,郭日彩.中国互联电网的发展[J].电网技术,2003,27(2):1-3
    [16] Global Wind Report Annual Market Update2012[DB/OL]. http://www.gwec.net/wp-content/uploads/2012/06/Annual_report_2012_LowRes.pdf,2013-04
    [17]2011年中国风力发电装机量排名世界第一[DB/OL]. http://newenergy.in-en.com/html/newenergy-10431043421220938.html,2011-12-09
    [18] Xia C. L., Song Z. F.. Wind Energy in China: Current Scenario and Future Perspectives[J]. Renewable and Sustainable Energy Reviews,2009,13(8):1966-1974
    [19]我国风能资源分布(小资料)[DB/OL]. http://www.newenergy.org.cn/html/0039/2003992.html,2003-09-26
    [20]国家发改委能源研宄所.中国风电发展路线图2050[R].北京:北京国际风能展,2011
    [21]国家能源局.可再生能源发展“十二五”规划[DB/OL]. http://www.nea.gov.cn/2012-08/08/c_131767651.htm,2012-08-08
    [22]尹明,王成山,葛旭波,等.中德风电发展的比较与分析[J],电工技术学报,2010,25(9):157-162
    [23]戴慧珠,陈默子,王伟胜,等.中国风电发展现状及有关技术服务[J].中国电力,2005,38(l):80-84
    [24]汪宁渤.风电与火电打捆外送相关问题研究[J].中国能源,2010,32(6):18-20.
    [25]张运洲,白建华,辛颂旭.我国风电开发及消纳相关重大问题研究[J].能源技术经济,2010,22(2): l-6
    [26]朱凌志,陈宁,韩华玲.风电消纳关键问题及应对措施分析[J].电力系统自动化,2011,35(22):29-34
    [27]刘耀宁.送不出的风电:通道瓶颈困扰内蒙古风电场[J].中国新能源,2010,5(9):29-30
    [28]郑彬,班连庚,宋瑞华,等.750kV可控高抗应用中需注意的问题及对策[J].电网技术,2010,5(34):88-92
    [29]孙元章,林今,李国杰,等.采用变速恒频机组的风电场并网问题研究综述[J].电力系统自动化,2010,34(3):75-80
    [30]何东升,刘永强,王亚,等.并网型风力发电系统的研究[J].高电压技术,2008,34(1):142-147
    [31] Cidrás A. J., Carrillo C.. A third model for the doubly-fed induction machine [J].Electric Power Systems Research,2000,56(2):121-127
    [32]徐娇,李兴源.异步风力发电机组的简化RX模型及其潮流计算[J].电力系统自动化,2008,32(1):22-25
    [33] Fernández L. M., Saenz J. R., Jurado F.. Dynamic models of wind farms with fixedspeed wind turbines [J]. Renewable Energy,2006,31(8):1203-1230
    [34]邓卫,唐西胜,齐智平.异步风力发电机对微网稳定性的影响与对策[J].中国电机工程学报,2011,31(1):32-38
    [35] Tabesh A., Iravani R.. Small-signal model and dynamic analysis of variable speedinduction machine wind farms [J]. IET, Renewable Power Generation,2008,2(4):215-227
    [36] Quinonez-varela G., Cruden A.. Modelling and validation of a squirrel cage inductiongenerator wind turbine during connection to the local grid [J]. IET Generation,Transmission and Distribution,2008,2(2):301-309
    [37]曹娜,李岩春,赵海翔,等.不同风电机组对电网暂态稳定性的影响[J].电网技术,2007,31(9):53-57
    [38] Mohsen R., Mostafa P.. Dynamic behavior analysis of doubly-fed induction generatorwind turbines-The influence of rotor and speed controller parameters [J]. InternationalJournal of Electrical Power&Energy Systems,2010,32(5):464-477
    [39] Salman S. K., Teo A. L. J.. Windmill modeling consideration and factors influencing thestability of a grid-connected wind power based embedded generator [J]. IEEETransactions on Power Systems,2003,18(2):793-802
    [40] Mishra Y., Mishra S., Li F., et al. Small-signal stability analysis of a DFIG-based windpower system under different modes of operation [J]. IEEE Transactions on EnergyConversion,2009,24(4):972-982
    [41] Ekanayake J. B., Holdsworth L., Wu X. G., et al. Dynamic modeling of doubly fedinduction generator wind turbines [J]. IEEE Transactions on Power Systems,2003,18(2):803-809
    [42] Holdsworth L., Wu X. G., Ekanayake J. B., et al. Comparison of fixed speed anddoubly-fed induction wind turbines during power system disturbances [J]. IEEProceedings-Generation, Transmission and Distribution,2003,150(3):343-352
    [43] Tapia A., Tapia G., Ostolaza J. X., et al. Modeling and control of a wind turbine designdoubly fed induction generator [J]. IEEE Transactions on Energy Conversion,2003,18(2):194-204
    [44] Cadirci I., Ermis M. Double-output induction generator operating at subsynchronousand supersynchronous speeds: steady-state performance optimisation and wind-energyrecovery [J]. IEE Proceedings: Electric Power Applications,1992,139(5):429-442
    [45] Feijóo F., Cidras J., Carrillo C., et al. A third model for the doubly-fed inductionmachine [J]. Electric Power Systems Research,2000,50(2):121-127
    [46]尹明,李庚银,周明,等.双馈感应风力发电机组动态模型的分析与比较[J].电力系统自动化,2006,30(13):22-27
    [47]邢文琦,晁勤.含不同风电机组的风电电网仿真研究[J].电网技术,2009,33(7):99-102,114
    [48] Estanqueiro A. I.. A dynamic wind generation model for power systems studies [J].IEEE Transactions on power systems,2007,22(3):920-928
    [49]李辉,韩力,赵斌,等.风电机组等效模型对机组暂态稳定分析结果的影响[J].中国电机工程学报,2008,28(17):105-111
    [50]肖园园,李欣然,张元胜,等.直驱永磁同步风力发电机的等效建模[J].电力系统及其自动化学报,2013,25(1):12-17
    [51]尹明,李庚银,张建成,等.直驱式永磁同步风力发电机组建模及其控制策略[J].电网技术,2007,31(15):61-65
    [52]董萍,吴捷,杨金明,等.风力发电机组建模研究现状[J].太阳能学报,2004,25(5):612-618
    [53]雷亚洲, Lightbody G..国外风力发电导则及动态模型简介[J].电网技术,2005,29(12):27-32
    [54]刘岱,庞松岭.风电集中接入对电网影响分析[J].电力系统及其自动化学报,2011,23(3):156-160
    [55] Saifur R., Manisa P..大规模风电接入对美国电力系统运行的影响和平抑策略[J].电力系统自动化,2011,35(22):3-11
    [56]孙元章,吴俊,李国杰.风力发电对电力系统的影响[J].电网技术,2007,31(13):55-62
    [57] Sun Y. Z., Wang L. X., Li G. J., et al. A review on analysis and control of small signalstability of power systems with large scale integration of wind power [C]. Proceedingsof2010International Conference on Power System Technology (POWERCON),24-28October2010, Hangzhou, China:1-6
    [58] Slootweg J. G., Kling W. L.. The impact of large scale wind power generation on powersystem oscillations [J]. Electric Power Systems Research,2003,67(1):9-20
    [59] Slootweg J. G.. Wind power: modeling and impact on power system dynamics [D]. TheNetherlands: Technical University of Delft,2003
    [60]张红光,张粒子,陈树勇,等.大容量风电场对电力系统小干扰稳定和阻尼特性的影响[J].电网技术,2007,31(13):75-80
    [61]张红光.大容量风电并网对电力系统安全稳定的影响研究[D].北京,华北电力大学,2008
    [62] Vowles D. J., Samarasinghe C., Gibbard M. J., et al. Effect of wind generation onsmall-signal stability-a new Zealand Example [C]. Proceedings of2008IEEE Power&Energy Society General Meeting,20-24July2008, Pittsburgh, USA:5217-5224
    [63] Rueda J. L., Erlich I.. Impacts of large scale integration of wind power on power systemsmall-signal stability [C]. Proceedings of20114th International Conference on ElectricUtility Deregulation and Restructuring and Power Technologies (DRPT),6-9July2011,Weihai, China:673-681
    [64] Hagstr m E., Norheim I., Uhlen K. Large scale wind power integration in Norway andeffect on damping in the Nordic grid [J]. Wind Energy,2005,8(3):375-384
    [65] Holdsworth L., Wu X. G., Ekanayake J. B., et al. Comparison of fixed speed anddoubly-fed induction wind turbines during power system disturbances [J]. IEEProceedings: Generation, Transmission and Distribution,2003,150(3):343-352
    [66]范伟,赵书强.考虑风力发电的电力系统小干扰稳定性分析[J].华北电力大学学报,2009,36(2):23-27,32
    [67]汤宏,吴俊玲,周双喜.包含风电场电力系统的小干扰稳定分析建模和仿真[J].电网技术,2004,28(1):38-41
    [68]关宏亮,迟永宁,戴慧珠,等.异步风电机组接入系统的小干扰稳定及控制[J].电力系统自动化,2008,32(4):54-58
    [69]关宏亮.大规模风电场接入电力系统的小干扰稳定性研究[D].北京,华北电力大学,2008
    [70] Gautam D., Vittal V., Harbour T.. Impact of increased penetration of DFIG-based windturbine generators on transient and small signal stability of power systems [J]. IEEETransactions on Power Systems,2009,24(3):1426-1434
    [71] Tabesh A., Iravani R.. Small-signal model and dynamic analysis of variable speedinduction machine wind farms [J]. IET Renewable Power Generation,2008,2(4):215-227
    [72] Tsourakis G., Nomikos B. M., Voumas C. D.. Effect of wind parks with doubly fedasynchronous generators on small-signal stability [J]. Electric Power Systems Research,2009,79(1):190-200
    [73]杨黎晖,马西奎.双馈风电机组对电力系统低频振荡特性的影响[J].中国电机工程学报,2011,31(10):19-24
    [74] Tsourakis G., Nomikos B. M., Vournas C. D.. Contribution of Doubly Fed WindGenerators to Oscillation Damping [J]. IEEE Transactions on Energy Conversion.2009,24(3):783-791
    [75] Mishra Y.. Advances in power system small signal stability analysis considering loadmodeling and emerging generation resources [D]. Australia: The University ofQueensland,2008
    [76]迟永宁.大型风电场接入电网的稳定性问题研究[D].北京,中国电力科学研究院,2006
    [77]郝正航.双馈风电机组的暂态行为及其对电力系统稳定性影响[D].天津,天津大学,2011
    [78] Trudnowski D. J., Gentile A., Khan J. M., et al. Fixed-speed wind-generator andwind-Park modeling for transient stability studies [J]. IEEE Transactions on PowerSystems,2004,19(4):1911-1917
    [79] Nunes M. V. A., Lopes J. A. P., Zurn H. H., et al. Influence of the variable-speed windgenerators in transient stability margin of the conventional generators integrated inelectrical grids [J]. IEEE Transactions on Energy Conversion,2004,19(4):692-701
    [80]迟永宁,王伟胜,刘燕华,等.大型风电场对电力系统暂态稳定性的影响[J].电力系统自动化,2006,30(15):10-14
    [81] Akhmatov V., Knudsen H., Hejde Nielsen A., et al. Modelling and transient stability oflarge wind farms[J]. International Journal of Electrical Power&Energy Systems,2003,25(2):123-144
    [82] Wu F., Zhang X. P.. Small signal stability analysis and control of the wind turbine withthe direct-drive permanent magnet generator integrated to the grid [J]. Electric PowerSystems Research,2009,79(12):1661-1667
    [83] Shi L. B., Kang L., Ni Y. X., et al. Small signal stability analysis with penetration ofgrid-connected wind farm of PMSG type [J].电力系统自动,2012,36(8):171-177
    [84]刘严,袁越,傅质馨.直驱永磁风电场并网运行的小干扰稳定性分析[J].电力系统及其自动化学报,2012,24(5):1-6
    [85]朱方,赵红光,刘增煌,等.大区电网互联对电力系统动态稳定性的影响[J].中国电机工程学报,2007,27(1):1-7
    [86] Gallardo Q., Ledesma L. P.. Damping of inter-area mode oscillations with highpenetration of the Power System in Wind [C]. Proceedings of34th IEEE IndustrialElectronics Annual Conference, IECON2008,10-13November2008, Orlando, Florida,USA:2137-2142
    [87] Fan L. L., Miao Z. X., Osborn D.. Impact of doubly fed wind turbine generation oninter-area oscillation damping [C]. Proceedings of2008IEEE of Power and EnergySociety General Meeting-Conversion and Delivery of Electrical Energy in the21stCentury,20-24July2008, Pittsburgh, PA, USA:1-8
    [88]舒进,郝治国,张保会,等.改善接入系统同步稳定性的变速风电机组控制[J].电力系统自动化,2009,33(7):65-69,80
    [89]郝正航,余贻鑫.双馈风电场对电力系统阻尼影响的转矩分析[J].电工技术学报,2011,26(5):152-158
    [90]郝正航,余贻鑫,曾沅.改善电力系统阻尼特性的双馈风电机组控制策略[J].电力系统自动化,2011,35(15):25-29
    [91]关宏亮,迟永宁,戴慧珠,等.并网风电场改善系统阻尼的仿真[J].电力系统自动化,2008,32(13):81-85
    [92] Hughes F. M., Anayalara O., Jenkins N., et al. A power system stabilizer forDFIG-based wind generation [J]. IEEE Transactions on Power Systems,2006,21(2):763-772
    [93] Sigrist L., Rouco L.. Design of damping controllers for doubly fed induction generatorsusing eigenvalue sensitivities [C]. Proceedings of IEEE Conference on Power SystemsConference and Exposition (PSCE'09),15-18March2009, Seattle, Washington, USA:1-7
    [94] Senthil K. N., Gokulakrishnan J.. Impact of FACTS controllers on the stability ofpower systems connected with doubly fed induction generators [J]. International Journalof Electrical Power&Energy Systems,2011,33(5):1172-1184
    [95]王成福,梁军,张利,等.基于静止同步补偿器的风电场无功电压控制策略[J].中国电机工程学报,2010,30(25):23-28
    [96] Yang L., Yang G. Y., Xu Z., et al. Optimal controller design of a doubly-fed inductiongenerator wind turbine system for small signal stability enhancement [J]. IETGeneration, Transmission and Distribution,2010,4(5):579-597
    [97] Wu F., Zhang X. P., Godfrey K., et al. Small signal stability analysis and optimal controlof a wind turbine with doubly fed induction generator [J]. IET Generation, Transmissionand Distribution,2007,1(5):751-760
    [98] Kassem A. M., Hasaneen K. M., Yousef A. M.. Dynamic modeling and robust powercontrol of DFIG driven by wind turbine at infinite grid [J]. International Journal ofElectrical Power&Energy Systems,2013,44(1):375-382
    [99] Chedid R., Mrad F., Basma M.. Intelligent control of class of wind energy conversionsystems [J]. IEEE Transactions on Energy Conversion.1999,14(4):1597-1604
    [100] Muyeen S. M., Takahashi R., Murata T., et al. A variable speed wind turbine controlstrategy to meet wind farm grid code requirements [J]. IEEE Transactions on powersystems,2010,25(1):331-340
    [101] Anaya-lara O., Hughes F. M., Jenkins N., et al. Rotor flux magnitude and anglecontrol strategy for doubly fed induction generators [J]. Wind Energy,2006,9(5):479-495
    [102] Tan K., Islam S.. Optimum control strategies in energy conversion of PMSG windturbine system without mechanical sensor [J]. IEEE Transactions on Energy Conversion,2004,19(2):392-399
    [103] Jauch C., Cronin T., Sorensen P., et al. A fuzzy logic pitch angle controller for powersystem stabilization [J]. Wind Energy,2007,10(1):19-30
    [104] Mohamed A. Z., Eskander M. N., Ghali F. A.. Fuzzy logic control based maximumpower tracking of wind energy system [J]. Renewable Energy,2001,23(2):235-245
    [105]王海超,周双喜,鲁宗相,等.含风电场的电力系统潮流计算的联合迭代方法及应用[J].电网技术,2005,29(18):59-62
    [106]吴义纯,丁明,张立军.含风电场的电力系统潮流计算[J].中国电机工程学报,2005,25(4):36-39
    [107]陈金富,陈海众,段献忠.含大型风电场的电力系统多时段动态优化潮流[J].中国电机工程学报,2006,26(3):31-35
    [108]雷亚洲,王伟胜,印永华,等.含风电场电力系统的有功优化潮流[J].电网技术,2002,26(6):18-21
    [109]朱星阳,刘文霞,张建华.考虑大规模风电并网的电力系统随机潮流[J].中国电机工程学报,2013,33(7):77-85
    [110]王锐,顾伟,孙蓉,等.基于概率最优潮流的风电接入能力分析[J].电网技术,2011,35(12):214-220
    [111]张义斌,王伟胜,戴慧珠.基于P-V曲线的风电场接入系统稳态分析[J].电网技术,2004,28(23):61-65
    [112]申洪,王伟胜,戴慧珠.变速恒频风力发电机组的无功功率极限[J].电网技术,2003,27(11):60-63
    [113]陈树勇,申洪,张洋,等.基于遗传算法的风电场无功补偿及控制方法的研究[J].中国电机工程学报,2005,25(8):1-6
    [114]范高锋,王纯琦,乔元,等. SVC补偿型定速风电机组模型及其特性分析[J].电网技术,2007,31(22):64-65
    [115]乔颖,鲁宗相,徐飞.双馈风电场自动电压协调控制策略[J].电力系统自动化,2010,34(5):96-101
    [116]杨桦,梁海峰,李庚银.含双馈感应电机的风电场电压协调控制策略[J].电网技术,2011,35(2):121-126
    [117] Wang X., Sideratos G., Hatziargyriou N., et al. Wind Speed Forecasting for PowerSystem Operational Planning [C].8th International Conference on ProbabilisticMethods Applied to Power Systems, Iowa State University,12-16September2004,Ames, Iowa:470-474
    [118] Kang M. S., Chen C. S., Ke Y. L.. Load Profile Synthesis and Wind Power GenerationPrediction for An Isolated Power System, Industrial and Commercial Power SystemsTechnical Conference,2005IEEE,8-12May2005, Saratoga Springs, New York, USA:133-138
    [119] Castro R., Ferreira L. A.. Comparison between chronological and probabilistic methodsto estimate wind power capacity credit [J]. IEEE Transaction on Power Systems,2001,16(4):904-909
    [120]王海超,鲁宗相,周双喜.风电场发电容量可信度研究[J].中国电机工程学报,2005,22(10):103-106
    [121]张宁,周天睿,段长刚,等.大规模风电场接入对电力系统调峰的影响[J].电网技术,2010,34(1):152-158
    [122]冯利民,范国英,郑太一,等.吉林电网风电调度自动化系统设计[J].电力系统自动化,2011,35(11):39-43
    [123]元富军,邢文涛,张建成,等.风电入网调度管理策略分析与研究[J].自动化应用,2013,53(4):94-95
    [124]严干贵,刘嘉,崔杨,等.利用储能提高风电调度入网规模的经济性评价[J].中国电机工程学报,2013,33(22):45-52
    [125]李智,韩学山,杨明,等.计及接纳风电能力的电网调度模型[J].电力系统自动化,2010,34(19):15-19
    [126]韩自奋,陈启卷.考虑约束的风电调度模式[J].电力系统自动化,2010,34(2):89-92
    [127]白建华,辛颂旭,贾德香,等.中国风电开发消纳及输送相关重大问题研究[J].电网与清洁能源,2010,26(1):14-17
    [128]刘显哲.确保电网与电源协调发展[N].中国电力报,2011-04-12(第006版).
    [129]中电联:将加强电力急需标准制订突出新能源标准建设[N].中国能源报,2012-12-07
    [130]叶杭冶.风力发电机组的控制技术[M].北京:机械工业出版社,2002:1-210
    [131] Milano F.. Power System Modelling and Scripting [M]. Springer-Verlag Berlin andHeidelberg GmbH&Co. K, London,2010:1-570
    [132] Milano F.. An open source power system analysis toolbox [J]. IEEE Transactions onPower System,2005,20(3):1199-1206
    [133] Kundur P. Power system stability and control [M]. New York: McGraw-Hill Inc.,1994:450-650
    [134] Bose B. K.. Modern power electronics and AC drives [M]. Upper Saddle River, NJ:Prentice-Hall,2002:200-400
    [135] Demello F., Concordia C.. Concepts of synchronous machine stability as affected byexcitation control [J]. IEEE Transaction on Power Apparatus and Systems,1969,88(4):316-329
    [136]王铁强,贺仁睦,王卫国,等.电力系统低频振荡机理的研究[J].中国电机工程学报,2002,22(2):21-25
    [137]陈中,杜文娟,王海风,等.基于阻尼转矩分析法的储能系统抑制系统低频振荡[J].电力系统自动化,2009,33(12):8-11
    [138]薛禹胜,周海强,顾晓荣.电力系统分岔与混沌研究述评[J].电力系统自动化,2002,26(16):9-15
    [139] Tse C. T., Tso S. K.. Design optimization of power system stabilizers based on modaland eigensensitivity analyses [J]. IEE Proceedings: Generation, Transmission andDistribution,1988,135(5):406-415
    [140] Osauskas C. M., Hume D. J., Wood A. R.. Small signal frequency domain model of anHVDC converter [J]. IEE Proceedings: Generation, Transmission and Distribution,2001,148(6):573-578
    [141]余贻鑫,王成山.电力系统稳定性理论与方法[M].北京:科学出版社,1999:1-200
    [142] Wang K. W., Chung C. Y., Tse C. T., et al. Multmachine eigenvalue sensitivities ofpower system parameters [J]. IEEE Transactions on Power Systems,2000,15(2):741-747
    [143] He P., Wang K. W., Tse C. T., et al. Studies of the improvement of probabilistic PSSs byusing the single neuron model [J]. International Journal of Electrical Power&EnergySystems,2007,29(3):217-221
    [144]方思立,朱方.电力系统稳定器的原理及其应用[M].北京:中国电力出版社,1996:1-86
    [145]李辉,陈宏文,杨超,等.含传输线功率信号的双馈风电场附加阻尼控制策略[J].电力系统自动化,2012,36(24):28-33
    [146] Miao Z. X., Fan L. L., Osborn D.. Control of DFIG-based wind generation to improveinterarea oscillation damping [J]. IEEE Transactions on Energy Conversion,2009,24(2):415-422
    [147] Anaya-lara O., Jenkins N., Ekanayake J..风力发电的模拟与控制[M].徐政,译.北京:机械工业出版社,2011:1-194
    [148] Kshatriya N., Annakkage U. D., Hughes F. M., et al. Optimized Partial EigenstructureAssignment-Based Design of a Combined PSS and Active Damping Controller for aDFIG [J]. IEEE Transactions on Power Systems,2010,25(2):866-876
    [149]石佳莹,沈沉,刘锋.双馈风电机组动力学特性对电力系统小干扰稳定的影响分析[J].电力系统自动化,2013,37(18):7-13
    [150]赵书强,常鲜戎,贺仁睦,等. PSS控制过程中的借阻尼现象与负阻尼效应[J].中国电机工程学报,2004,24(5):7-11
    [151]关治,陈景良.数值计算方法[M].北京:清华大学出版社,1990:1-150
    [152]董明齐,刘文颖,袁娟,等.基于增加联络线的互联电网低频振荡抑制方法[J].电力系统自动化,2007,31(17):94-98
    [153]和萍,文福拴,薛禹胜,等.不同类型风电机组对小干扰和暂态稳定性的影响[J].电力系统自动化,2013,37(17):23-29,135
    [154] Tapia A., Tapia G.. Reactive power control of wind farms for voltage controlapplications [J]. Renewable Energy,2004,29(3):377-392
    [155] Sergei P., Andrea T., Alerto T.. Power control of a doubly fed induction machine viaoutput feedback [J]. Control Engineering Practice,2004,(12):41-57
    [156]张子泳,胡志坚,胡梦月,等.含风电的互联电力系统时滞相关稳定性分析与鲁棒阻尼控制[J].中国电机工程学报,2012,32(34):8-17
    [157]王成福,梁军,张利,等.基于静止同步补偿器的风电场无功电压控制策略[J].中国电机工程学报,2010,30(25):23-28
    [158] Miao Z. X., Fan L., Osborn D., et al. Control of DFIG-based wind generation toimprove inter-area oscillation damping [J]. IEEE Transactions on Energy Conversion,2009,24(2):415-422
    [159] He P., Wen F. S., Ledwich G., et al. Effects of Various Power System Stabilizers onImproving Power System Dynamic Performance [J]. International Journal of ElectricalPower&Energy Systems,2013,46(1):175-183
    [160]姚伟,文劲宁,程时杰,等.考虑时滞影响的SVC广域附加附尼控制器设计[J].电工技术学报,2012,27(3):239-246
    [161]杨晓东,房大中,刘长胜,等.阻尼联络线低频振荡的SVC自适应模糊控制器研究[J].中国电机工程学报,2003,23(1):55-63
    [162] Parniani M., Iravani M. R.. Voltage control stability and dynamic interactionphenomena of static var compensators [J]. IEEE Transactions on Power Systems,1995,10(3):1592-1597
    [163]刘其辉,贺益康,张建华.交流励磁变速恒频双馈型异步发电机的稳态功率关系[J].电工技术学报,2006,21(2):39-44
    [164]郎永强,张学广,徐殿国,等.双馈电机风电场无功功率分析及控制策略[J].中国电机工程学报,2007,27(9):77-82
    [165] Mathur R.M..基于晶闸管的柔性交流输电控制装置[M].徐政,译.北京:机械工业出版社,2005:1-434
    [166]刘隽,李兴源,汤广福. SVC电压控制与阻尼调节间的相互作用机理[J].中国电机工程学报,2008,28(1):12-17
    [167]钟志勇,王克文,谢志棠.用特征根灵敏度分析进行静态无功补偿器的设计[J],电力系统自动化,1999,23(14):9-14
    [168] Chung C. Y., Tse C. T., Cheung C. K., et al. Damping controller design for FACTSdevice. II. Controller structure and parameter optimisation [C]. International Conferenceon Advances in Power System Control, Operation and Management,2000. APSCOM2000,30October-1November2000, Hong Kong, China:425-430
    [169] Kundur P., Klein M., Rogers G. J., et al. Application of power system stabilizers forenhancement of overall system stability [J]. IEEE Transaction on Power Systems,1989,4(2):614-626
    [170] He P., Wei Y. B., Yang C. X., et al. Adaptive power system stabilizer design formulti-machine power systems [C]. Proceedings of the8th International Conference onAdvances in Power System Control, Operation and Management (APSCOM),November8-11,2009, Hong Kong, China:1-6
    [171] Grondin R., Kamwa I., Trudel G., et al. Modeling and closed-loop validation of a newPSS concept, the multi-band PSS [C]. Proceedings of IEEE Power Engineering SocietyGeneral Meeting,13-17July2003, Toronto, Canada:1804-1809
    [172] Kamwa I., Grondin R., Trudel G.. IEEE PSS2B versus PSS4B: the limits ofperformance of modern power system stabilizers [J]. IEEE Transactions on PowerSystems,2005,20(2):903-915
    [173]邱磊,王克文,李奎奎,等.多频段PSS结构设计和参数协调[J].电力系统保护与控制,2011,39(5):102-107
    [174]袁野,程林,孙元章.采用广域测量信号的2级PSS控制策略[J].电力系统自动化,2006,30(24):11-17
    [175]王克文,谢志棠,史述红,等.基于概率特征值分析的电力系统稳定器参数设计[J].电力系统自动化,2001,25(11):20-24
    [176] Chung C. Y., Wang K. W., Tse C. T., et al. Power system stabilizer (PSS) design byprobabilistic sensitivity indexes (PSIs)[J]. IEEE Transactions on Power Systems,2002,17(3):688-693
    [177] Wang K. W., Chung C. Y., Tse C. T., et al. Multimachine eigenvalue sensitivities ofpower system parameters [J]. IEEE Transactions on Power Systems,2000,15(2):741-747
    [178] Wang K. W., Chung C. Y., Tse C.T., et al. Probabilistic eigenvalue sensitivity indices forrobust PSS site selection [J]. IEE Proceedings-Generation, Transmission andDistribution,2001,148(6):603-609
    [179] IEEE recommended practice for excitation systems model for power system stabilitystudies [S]. New York, IEEE Standard421.5,The institute of electrical and electronicsengineers, Inc.,1992
    [180] Xu B. C., Wu J. Z., Chen Y. K.. An improved single neuron adaptive PID controlalgorithm[C]. Proceedings of the Fifth International Conference on NaturalComputation,14-16August2009, Tianjian, China:558-562

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700