用户名: 密码: 验证码:
piPSC克隆猪研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小鼠胚胎干细胞(embryonic stem, ES)在生产基因修饰小鼠方面发挥着重要作用,这些基因修饰小鼠极大促进了我们对哺乳动物的生理和病理的认识以及新药的开发。但是由于啮齿类在生理性状以及基因表达方面与人类差异较大,许多小鼠模型并不能够真正的模拟人类疾病,因此,需要与人类更为接近的大动物模型。猪在解剖学、生理学、基因表达、特别是神经系统和心血管系统方面与人类更为相似,近年来被广泛用做人类疾病动物模型,并且猪器官大小与人类相似可以作为异种器官移植的供体。但是由于在猪上缺乏真正的ES,制约了对猪基因组的修饰。目前生产基因修饰猪的主流方法是对培养的体细胞进行基因修饰后再进行体细胞核移植,来获得基因修饰克隆猪。通过该方法已经成功获得了多种转基因猪。但是由于体细胞在体外传代次数有限,同源重组效率远远低于ES(小于10-6),很难实现对基因组的定点修饰,目前只有几种基因打靶猪的报道。虽然猪ES的缺乏限制了对猪基因组的定点修饰,近年来发展起来的诱导性多能干细胞(induced pluripotent stem cell, iPSC)技术,有望为没有获得真正ES系的物种提供一种可用于基因修饰的供体细胞。目前iPSCs已经在许多物种诱导成功,小鼠iPSCs的多能性已经通过最严格的生殖系嵌合验证和四倍体嵌合验证。这些都说明小鼠iPSCs即使不能等同于ES,也已经跟ES非常相似,并且小鼠iPSCs可以通过核移植(nuclear transfer, NT)途径得到克隆小鼠。所有这些都表明iPSCs可以代替ES来实现对动物基因组的修饰。目前已有多个实验室报道成功诱导出猪iPSCs(piPSCs),这些piPSCs具有正常的核型,可以在体外和体内条件下分化成三个胚层的细胞。只有一个实验室报道他们获得的piPSCs可以得到生殖系嵌合猪,但是对于piPSCs生殖系嵌合的鉴定仅仅使用了PCR技术进行鉴定,不足以令人信服。虽然这些piPSCs生殖系嵌合能力还需要进一步研究,但他们能够在长时间传代条件下维持其多能性而不衰老,因此我们可以对其在体外进行长时间的基因修饰操作,并且这些piPSCs在很多方面都与ES相似,提示其可能具有与ES相似的同源重组效率。如果piPSCs能够通过核移植技术获得克隆猪,我们就可以通过piPSCs核移植途径获得基因修饰猪,这将极大促进转基因猪的生产,特别是对于猪基因组的定点修饰。本课题对piPSCs核移植后克隆胚胎发育能力进行了研究。
     用于piPSC克隆猪研究的6株piPSCs系由不同的实验室采用不同的诱导系统诱导而来。piPSCs系(iPF4-2,iPM6-11)分别由耳朵成纤维细胞(porcine ear fibroblats, PEFs)和骨髓间充质干细胞(porcine bone marrow cells, pBMCs)采用doxycycline (DOX)诱导型慢病毒载体诱导而来,诱导载体带有EGFP,这2株piPSCs均表达绿色荧光蛋白;piPSCs系(hsC-13,JN2,KSR-4,5%02-1)都是采用逆转录病毒载体系统进行诱导,其中hsC-13由猪胎儿成纤维细胞(porcine fetal fibroblasts, PFFs)诱导而来,JN2由pBMCs诱导而来,KSR-4和5%02-1由PFFs诱导而来。
     为了验证piPSCs经过核移植后能否获得piPSC克隆猪,首先,我们以未经任何处理的上述六株piPSCs为供体细胞进行核移植,共构建克隆胚胎11923枚,移植代孕受体71头。其中有25头代孕受体检测到早期妊娠,但是均未获得发育到期的piPSC克隆猪。
     与小鼠和人iPSCs不同的是,目前获得的这些piPSCs外源基因均未沉默,我们推测外源基因的高表达可能是导致piPSC克隆胚胎发育停滞的原因之一。我们以iPF4-2,iPM6-11,KSR-4和5%02-1作为研究对象,来进行第二轮的核移植实验。piPSCs(iPF4-2,iPM6-11)在加DOX诱导外源基因表达的情况下才能维持其iPSCs状态,撤掉DOX,以分化培养基培养四天后外源基因表达显著降低,piPSCs呈现分化状态。对于piPSCs(KSR-4,5%02-1)也进行同样的分化处理,虽然其形态已经呈分化状态,但检测其外源基因表达发现,KSR-4外源基因表达量下降不明显,5%02-1部分外源基因表达量甚至上升。KSR-4、5%02-1分化细胞中外源基因(除Sox2外)表达量均高于iPF4-2、iPM6-11分化细胞。我们以这种呈分化状态的细胞作为供体细胞进行核移植,其体外发育囊胚率较以未分化piPSCs为供体细胞时有显著提高。
     为了进一步验证piPSCs分化细胞克隆胚胎体内发育能力,我们将KSR-4分化细胞克隆胚胎545枚移植于3头代孕受体,其中早期怀孕2头,但均未发育到期。将iPF4-2分化后核移植胚胎1135枚移植代孕受体7头,3头怀孕。对其中一头妊娠受体在36d进行剖腹手术,得到2个形态发育正常的克隆胎儿,这两个胎儿器官和细胞均表达EGFP,说明其为piPSCs,iPF4-2克隆而来。iPF4-2分化细胞克隆胚胎可以正常发育到36d。其余两头怀孕受体,其中一头在妊娠113天自然分娩,产下发育到期克隆猪一头,但是出生后立即死亡。为了防止再度发生自然分娩出生过程死亡现象,我们对另外一头受体,在妊娠114天时进行剖腹产手术,获得了一头健康存活的克隆猪,这头克隆猪存活了32天。我们获得的这两头克隆猪的皮肤均为白色,与piPSCs来源细胞猪(Danish Landrace)肤色相同,不同于受体太湖猪(黑色),并且从这两头克隆猪分离的PEFs都有EGFP表达,初步说明这两头发育到期的克隆猪为piPSCs,iPF4-2克隆而来。为了进一步确定其piPSC克隆猪的身份,我们对36天克隆胎儿和发育到期的两头克隆猪进行了外源基因整合鉴定和微卫星序列分析,结果均表明他们都是由iPF4-2克隆而来。
     为了探明piPSC克隆猪死亡原因,我们对第一头piPSC克隆猪主要器官进行病理切片分析,未发现明显病变,各器官结构发育正常,肺泡内发现着色现象,可能是由于分娩过程中羊水呛入肺中,导致死亡。第二头piPSC克隆猪死亡原因病理分析结果为脑脊髓膜炎。这两头piPSC克隆猪器官发育均正常,死亡原因并不是由于piPSC克隆猪本身存在器官发育缺陷,这说明piPSCs是可以通过核移植途径获得发育正常克隆猪的。
     我们以DOX诱导型慢病毒载体系统诱导的piPSCs为供体细胞成功获得了首例piPSC克隆猪,该系统通过撤掉DOX可以快速有效的实现外源基因的沉默,这可能是我们能够获得发育到期存活piPSC克隆猪的原因。piPSC克隆猪的成功,为实现以piPSCs为基础的基因修饰猪的生产初步打通了技术路线。由于外源基未沉默可能是piPSC克隆猪失败的原因,所以未来需要研究获得外源基因沉默或者无外源基因整合的piPSCs。
Mouse embryonic stem (ES) cells have proven powerful in the generation of precisely genetically modified animals that can advance our knowledge of mammalian physiology and disease. In recent years, genetically modified pigs have also been produced by means of somatic cell nuclear transfer (NT). Pigs provide outstanding models for modeling human genetic diseases due to the striking similarities with human anatomy, physiology, and genetics. Yet, progress with porcine genetic engineering has been hampered by the lack of germline-competent pig ES cells. Somatic cells exhibit limited proliferation and have an extremely low frequency of homologous recombination (less than10) compared to ES cells. Hence, only a few knockout pig models have been reported thus far.
     Remarkably, induced pluripotent stem cells (iPSCs) have been generated by the reprogramming of somatic cells from multiple mammalian species using defined cocktails of transcription factors. Mouse iPSCs have passed the crucial test of germ line contribution and generation of all-iPSCs mice through tetraploid embryo complementation. This indicates that bona fide iPSCs are, if not identical, very similar to ES cells. Likewise, cloned mice have been obtained from mouse iPSCs by the NT method. These studies indicate that iPSCs can substitute ES cells for the purpose of genomic manipulation.
     Pig iPSCs (piPSCs) have been reported by several groups. These piPSC lines could be differentiated into the three germ layers in vitro and in vivo. Only one group reported the piPSCs they generated could pass the crucial test of germ line chimera production, but the germ line chimera was detected only by PCR analysis that was not convinced. More research should be done to obtain germline-competence piPSCs. Nevertheless, piPSCs are capable of long-term proliferation, which potentially allows lengthier and therefore potentially more sophisticated in vitro manipulation. More importantly, they are similar to ES cells in many aspects, suggesting that they may have as well high efficiency of homologous recombination. Hence, if iPSCs were suitable for cloning pigs by NT, gene-targeted pigs could potentially be produced much more efficiently than using fibroblasts as nuclear donors. In the present study, we explored the feasibility of generating cloned pigs from piPSCs.
     We used piPSC lines generated by different groups using various strategies. The first2piPSC lines, iPF4-2and iPM6-11, were induced from porcine ear fibroblasts (PEFs) and porcine bone marrow cells (pBMCs), respectively, of a10-week-old Danish Landrace pig using lentiviral vector over-expressing human transcription factors induced with doxycycline (DOX). The third piPSC line, hsC13, was induced from porcine fetal fibroblasts (PFFs) by retroviral over-expression of human transcription factors. The last3piPSC lines (JN2, KSR-4, and5%O2-1) were produced by retroviral over-expression of mouse or porcine transcription factors into pBMCs or PFFs.
     In the first round of NT experiments, we used undifferentiated piPSCs as donor cells and transferred the nuclei into enucleated metaphase Ⅱ (MⅡ) oocytes by the electrical fusion method. A total of11923cloned embryos reconstructed with the6piPSC lines were introduced into71surrogate mothers. Among these mothers,25were pregnant as detected by ultrasonography on day24-26following embryo transfer, but none of them developed to term. These results were disappointing considering that mouse iPSCs have been successfully used as donor cells for creating living cloned mice. We then hypothesized that inappropriate silencing of the exogenous transcription genes in the piPSCs may underlie the discrepancy. To test this hypothesis, we performed a second round of experiments, this time using piPSCs that were allowed to spontaneously differentiate for4-6days as donor cells. For this we focused on iPF4-2, iPM6-11, KSR-4and5%O2-1. After spontaneous differentiation, piPSCs became enlarged and flattened, and developed an epithelium-like morphology. For iPF4-2and iPM6-11, all the exogenous were reduced significantly after differentiation. On the other hand, the expression level of all4exogenous genes in KSR-4differentiated cells did not decrease significantly as in iPF4-2and iPM6-11. Some of the exogenous genes in5%O2-1differentiated cells even expressed at a higher level compared to the undifferentiated one. Except for Sox2, the expression level of extrogenous genes was higher in KSR-4and5%O2-1differentiated cells than in iPF4-2and iPM6-11differentiated ones.
     The differentiated piPSCs were transferred into enucleated MⅡ oocytes, and it was encouraging to observe that the resulting NT embryos had a significantly increased rate of blastocyst development compared to undifferentiated cells. Reconstructed embryos derived from differentiated iPF4-2and KSR-4cells were transferred into surrogate mothers. A total of545cloned embryos from KSR-4differentiated cells were transferred into3surrogates,2of whom became pregnant but lost their pregnancy between days35to50. A total of1135iPF4-2differentiated cell-NT embryos were transferred into7recipient surrogate mothers,3of whom became pregnant. To detect the early development of the cloned fetuses, one pregnant surrogate was sacrificed after36days of gestation, and2fetuses were retrieved by caesarean section. The2cloned fetuses were morphologically normal and the corresponding fetal fibroblasts grew normally and were positive for EGFP, a maker in iPF4-2. After113days of gestation,1of the pregnant surrogates using iPF4-2cells naturally delivered a piglet and a mummy. But the piglet died within the first hour after birth. The other pregnant surrogate using iPF4-2cells gave cesarean birth to a live and healthy cloned pig after114days of gestation. This piglet survived for32days. Both piglets had a white coat resembling the coat color of the pig (Danish Landrace) from which piPSCs, iPF4-2were derived. The fibroblasts isolated from the2piglets were both positive for EGFP. To further confirm that the fetuses and piglets were generated from iPF4-2piPSCs, we analyzed Oct4, Sox2, and EGFP transgene integration, as well as microsatellite DNA. Tissues from the2fetuses and born piglets contained the exogenous transgenes, as demonstrated by PCR. Analysis of microsatellite DNA revealed as well that the genomes of the fetuses and piglets were the same as iPF4-2cells, but different from the surrogate. These findings proved that the piglets were cloned from the piPSCs.
     In order to investigate the cause of death and the organ development status, pathological section was performed. All the investigated organs of the piglets died at birth showed normal morphology, and the cause of death was unclear. Some mniotic fluid got into pulmonary alveoli that maybe cause the death. Pathological section analysis indicated the cause of piglets died at32day was Myeloencephalitis. Organs of the two piPSC cloned piglets showed normal morphology. The death was not caused by inherent organ developmental defects of piPSC cloned piglets that meant normal development piglets could be cloned from piPSCs.
     In summary, here we have described the generation of live piPSC-NT piglets from a piPSC line established with a DOX-induced system. This system allows controllable silencing of the exogenous genes and may explain why the NT failed using dedifferentiated piPSCs. The generation of live piglets from piPSCs by NT potentially represents an important step toward a more efficient production of genetically engineered pigs using piPSCs. The latter may facilitate the more generalized use of pigs for human disease modeling and potentially also for agriculture.
引文
Aasen, T., Raya, A., Barrero, M.J., Garreta, E., Consiglio, A., Gonzalez, F., Vassena, R., Bilic, J., Pekarik, V., Tiscornia, G., et al. (2008). Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nature biotechnology 26,1276-1284.
    Abeydeera, L.R. (2002). In vitro production of embryos in swine. Theriogenology 57,256-273. Abeydeera, L.R., Wang, W. H., Cantley, T. C., Rieke, A., Murphy, C. N.,, and Prather, R.S., and Day, B. N. (2000). Development and viability of pig oocytes matured in a protein-free medium containing epidermal growth factor. Theriogenology 54,787-797.
    Abeydeera, L.R.W., W. H.Cantley, T. C.Rieke, A. Prather, R. S Day, B. N. (1998). Presence of epidermal growth factor during in vitro maturation of pig oocytes and embryo culture can modulate blastocyst development after in vitro fertilization. Mol Reprod Dev 57,395-401.
    Araki, R., Jincho, Y., Hoki, Y., Nakamura, M., Tamura, C., Ando, S., Kasama, Y., and Abe, M. (2010). Conversion of ancestral fibroblasts to induced pluripotent stem cells. Stem Cells 28, 213-220.
    Bendixen, E., Danielsen, M., Larsen, K., and Bendixen, C. (2010). Advances in porcine genomics and proteomics--a toolbox for developing the pig as a model organism for molecular biomedical research. Briefings in functional genomics 9,208-219.
    Betthauser, J., Forsberg, E., Augenstein, M., Childs, L., Eilertsen, K., Enos, J., Forsythe, T., Golueke, P., Jurgella, G., Koppang, R., et al. (2000). Production of cloned pigs from in vitro systems. Nature biotechnology 18,1055-1059.
    Beumer, K.J., Trautman, J.K., Bozas, A., Liu, J.L., Rutter, J., Gall, J.G., and Carroll, D. (2008). Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proceedings of the National Academy of Sciences of the United States of America 105, 19821-19826.
    Bhutani, N., Brady, J.J., Damian, M., Sacco, A., Corbel, S.Y., and Blau, H.M. (2010). Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 463, 1042-1047.
    Bibikova, M., Beumer, K., Trautman, J.K., and Carroll, D. (2003). Enhancing gene targeting with designed zinc finger nucleases. Science (New York, NY 300,764.
    Brackett, B.G., Killen, D.E., and Peace, M.D. (1971). Cleavage of rabbit ova inseminated in vitro after removal of follicular cells and zonae pellucidae. Fertil Steril 22,816-828.
    Brons, I.G., Smithers, L.E., Trotter, M.W., Rugg-Gunn, P., Sun, B., Chuva de Sousa Lopes, S.M., Howlett, S.K., Clarkson, A., Ahrlund-Richter, L., Pedersen, R.A., et al. (2007). Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448,191-195.
    Buehr, M., Meek, S., Blair, K., Yang, J., Ure, J., Silva, J., McLay, R., Hall, J., Ying, Q.L., and Smith, A. (2008). Capture of authentic embryonic stem cells from rat blastocysts. Cell 135, 1287-1298.
    Burdon, T.G., and Wall, R.J. (1992). Fate of microinjected genes in preimplantation mouse embryos. Molecular reproduction and development 33,436-442.
    Carey, B.W., Markoulaki, S., Hanna, J.H., Faddah, D.A., Buganim, Y., Kim, J., Ganz, K., Steine, E.J., Cassady, J.P., Creyghton, M.P., et al. (2011). Reprogramming Factor Stoichiometry Influences the Epigenetic State and Biological Properties of Induced Pluripotent Stem Cells. Cell stem cell 9,588-598.
    Cheong, H.T., Takahashi, Y, and Kanagawa, H. (1993). Birth of mice after transplantation of early cell-cycle-stage embryonic nuclei into enucleated oocytes. Biology of reproduction 48, 958-963.
    Cibelli, J.B., Stice, S.L., Golueke, P.J., Kane, J.J., Jerry, J., Blackwell, C., Ponce de Leon, F.A., and Robl, J.M. (1998). Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280,1256-1258.
    Cowan, C.A., Atienza, J., Melton, D.A., and Eggan, K. (2005). Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309,1369-1373.
    Dai, Y, Vaught, T.D., Boone, J., Chen, S.H., Phelps, C.J., Ball, S., Monahan, J.A., Jobst, P.M., McCreath, K.J., Lamborn, A.E., et al. (2002). Targeted disruption of the alpha 1,3-galactosyltransferase gene in cloned pigs. Nature biotechnology 20,251-255.
    David, L. (2010). [Mesenchymal-to-epithelial transition:a necessary initial step towards reprogrammation of fibroblasts]. Medecine sciences:M/S 26,1030-1032.
    Day, B., Abeydeera, L., and Prather,R. (2000). Recent progress in pig embryo production through in vitro maturation and feritilization techniques. In'Proceedings IV International Conference on Boar Semen Preservation'. (Eds G. La and H. D. Johnson.) pp.81-92. (Allen Press:Lawrence, KS.).
    De Sousa, P.A., Dobrinsky, J.R., Zhu, J., Archibald, A.L., Ainslie, A., Bosma, W., Bowering, J., Bracken, J., Ferrier, P.M., Fletcher, J., et al. (2002). Somatic cell nuclear transfer in the pig: control of pronuclear formation and integration with improved methods for activation and maintenance of pregnancy. Biology of reproduction 66,642-650.
    Deng, J., Shoemaker, R., Xie, B., Gore, A., LeProust, E.M., Antosiewicz-Bourget, J., Egli, D., Maherali, N., Park, I.H., Yu, J., et al. (2009). Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nature biotechnology 27,353-360.
    Deng, W., Yang, D., Zhao, B., Ouyang, Z., Song, J., Fan, N., Liu, Z., Zhao, Y., Wu, Q., Nashun, B., et al. (2011). Use of the 2A peptide for generation of multi-transgenic pigs through a single round of nuclear transfer. PloS one 6, el9986.
    Doi, A., Park, I.H., Wen, B., Murakami, P., Aryee, M.J., Irizarry, R., Herb, B., Ladd-Acosta, C., Rho, J., Loewer, S., et al. (2009). Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nature genetics 41,1350-1353.
    Dull, T., Zufferey, R., Kelly, M., Mandel, R.J., Nguyen, M., Trono, D., and Naldini, L. (1998). A third-generation lentivirus vector with a conditional packaging system. J Virol 72,8463-8471.
    Esteban, M.A., Xu, J., Yang, J., Peng, M., Qin, D., Li, W., Jiang, Z., Chen, J., Deng, K., Zhong, M., et al. (2009). Generation of induced pluripotent stem cell lines from Tibetan miniature pig. The Journal of biological chemistry 284,17634-17640.
    Evans, M.J., and Kaufman, M.H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292,154-156.
    Ezashi, T., Das, P., and Roberts, R.M. (2005). Low O2 tensions and the prevention of differentiation of hES cells. Proceedings of the National Academy of Sciences of the United States of America 102,4783-4788.
    Ezashi, T., Telugu, B.P., Alexenko, A.P., Sachdev, S., Sinha, S., and Roberts, R.M. (2009). Derivation of induced pluripotent stem cells from pig somatic cells. Proceedings of the National Academy of Sciences of the United States of America 106,10993-10998.
    Flisikowska, T., Thorey, I.S., Offner, S., Ros, F., Lifke, V, Zeitler, B., Rottmann, O., Vincent, A., Zhang, L., Jenkins, S., et al. (2011). Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. PloS one 6, e21045.
    Fujimura, T., Takahagi, Y., Shigehisa, T., Nagashima, H., Miyagawa, S., Shirakura, R., and Murakami, H. (2008). Production of alpha 1,3-galactosyltransferase gene-deficient pigs by somatic cell nuclear transfer:a novel selection method for gal alpha 1,3-Gal antigen-deficient cells. Molecular reproduction and development 75,1372-1378.
    Fusaki, N., Ban, H., Nishiyama, A., Saeki, K., and Hasegawa, M. (2009). Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proceedings of the Japan Academy Series B, Physical and biological sciences 55,348-362.
    Geurts, A.M., Cost, G.J., Freyvert, Y., Zeitler, B., Miller, J.C., Choi, V.M., Jenkins, S.S., Wood, A., Cui, X., Meng, X., et al. (2009). Knockout rats via embryo microinjection of zinc-finger nucleases. Science (New York, NY 325,433.
    Giorgetti, A., Montserrat, N., Aasen, T., Gonzalez, F., Rodriguez-Piza, I., Vassena, R., Raya, A., Boue, S., Barrero, M.J., Corbella, B.A., et al. (2009). Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2. Cell stem cell 5,353-357.
    Giorgetti, A., Montserrat, N., Rodriguez-Piza, I., Azqueta, C., Veiga, A., and Izpisua Belmonte, J.C. (2010). Generation of induced pluripotent stem cells from human cord blood cells with only two factors:Oct4 and Sox2. Nature protocols 5,811-820.
    Gurdon, J.B. (1962). The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. Journal of embryology and experimental morphology 10,622-640.
    Hacein-Bey-Abina, S., Von Kalle, C., Schmidt, M., McCormack, M.P., Wulffraat, N., Leboulch, P., Lim, A., Osborne, C.S., Pawliuk, R, Morillon, E., et al. (2003). LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302,415-419.
    Hall, V. (2008). Porcine embryonic stem cells:a possible source for cell replacement therapy. Stem cell reviews 4,275-282.
    Hanna, J., Cheng, A.W., Saha, K., Kim, J., Lengner, C.J., Soldner, F., Cassady, J.P., Muffat, J., Carey, B.W., and Jaenisch, R. (2010). Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proceedings of the National Academy of Sciences of the United States of America 107,9222-9227.
    Hayashi, K., Hashimoto, M., Koda, M., Naito, A.T., Murata, A., Okawa, A., Takahashi, K., and Yamazaki, M. (2011). Increase of sensitivity to mechanical stimulus after transplantation of murine induced pluripotent stem cell-derived astrocytes in a rat spinal cord injury model. Journal of neurosurgery Spine 15,582-593.
    Heng, M.Y., Detloff, P.J., and Albin, R.L. (2008). Rodent genetic models of Huntington disease. Neurobiology of disease 32,1-9.
    Hockemeyer, D., Soldner, F., Beard, C., Gao, Q., Mitalipova, M., DeKelver, R.C., Katibah, G.E., Amora, R., Boydston, E.A., Zeitler, B., et al. (2009). Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nature biotechnology 27,851-857.
    Hofmann, A., Kessler, B., Ewerling, S., Weppert, M., Vogg, B., Ludwig, H., Stojkovic, M., Boelhauve, M., Brem, G., Wolf, E., et al. (2003). Efficient transgenesis in farm animals by lentiviral vectors. EMBO Rep 4,1054-1060.
    Honda, A., Hirose, M., Hatori, M., Matoba, S., Miyoshi, H., Inoue, K., and Ogura, A. (2010). Generation of induced pluripotent stem cells in rabbits:potential experimental models for human regenerative medicine. The Journal of biological chemistry 285,31362-31369.
    Huang, L., Fan, N., Cai, J., Yang, D., Zhao, B., Ouyang, Z., Gu, W., and Lai, L. (2011). Establishment of a porcine Oct-4 promoter-driven EGFP reporter system for monitoring pluripotency of porcine stem cells. Cellular reprogramming 13,93-98.
    Huangfu, D., Maehr, R., Guo, W., Eijkelenboom, A., Snitow, M., Chen, A.E., and Melton, D.A. (2008a). Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nature biotechnology 26,795-797.
    Huangfu, D., Osafune, K., Maehr, R., Guo, W., Eijkelenboom, A., Chen, S., Muhlestein, W., and Melton, D.A. (2008b). Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature biotechnology 26,1269-1275.
    Jia, F., Wilson, K.D., Sun, N., Gupta, D.M., Huang, M., Li, Z., Panetta, N.J., Chen, Z.Y., Robbins, R.C., Kay, M.A., et al. (2010). A nonviral minicircle vector for deriving human iPS cells. Nature methods 7,197-199.
    Kang, L., Wu, T., Tao, Y., Yuan, Y., He, J., Zhang, Y., Luo, T., Kou, Z., and Gao, S. Viable mice produced from three-factor induced pluripotent stem (iPS) cells through tetraploid complementation. Cell research 21,546-549.
    Kang, L., Wu, T., Tao, Y., Yuan, Y, He, J., Zhang, Y., Luo, T., Kou, Z., and Gao, S. (2011). Viable mice produced from three-factor induced pluripotent stem (iPS) cells through tetraploid complementation. Cell research 21,546-549.
    Kato, Y., Tani, T., and Tsunoda, Y. (2000). Cloning of calves from various somatic cell types of male and female adult, newborn and fetal cows. Journal of reproduction and fertility 120, 231-237.
    Kim, D., Kim, C.H., Moon, J.I., Chung, Y.G., Chang, M.Y., Han, B.S., Ko, S., Yang, E., Cha, K.Y, Lanza, R., et al. (2009a). Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell stem cell 4, A12-A16.
    Kim, J.B., Greber, B., Arauzo-Bravo, M.J., Meyer, J., Park, K.I., Zaehres, H., and Scholer, H.R. (2009b). Direct reprogramming of human neural stem cells by OCT4. Nature 461,649-643.
    Kim, J.S., Koo, D. B., Song, B. S., Wee, G. B., Lee, K. K.,, and Han, Y.M. (2006). Improved mitochondrial membrane potential and preimplantation development of porcine embryos by dibutyryl cAMP treatment. Reprod. Fertil. Dev.18,192. doi:10.1071/RD05114.
    Kim, K., Doi, A., Wen, B., Ng, K., Zhao, R., Cahan, P., Kim, J., Aryee, M.J., Ji, H., Ehrlich, L.I., et al. (2010). Epigenetic memory in induced pluripotent stem cells. Nature 467,285-290.
    Kolber-Simonds, D., Lai, L., Watt, S.R., Denaro, M., Arn, S., Augenstein, M.L., Betthauser, J., Carter, D.B., Greenstein, J.L., Hao, Y, et al. (2004). Production of alpha-1,3-galactosyltransferase null pigs by means of nuclear transfer with fibroblasts bearing loss of heterozygosity mutations. Proceedings of the National Academy of Sciences of the United States of America 101,7335-7340.
    Kou, Z., Kang, L., Yuan, Y., Tao, Y., Zhang, Y., Wu, T., He, J., Wang, J., Liu, Z., and Gao, S. (2010). Mice cloned from induced pluripotent stem cells (iPSCs). Biology of reproduction 83, 238-243.
    Kuhholzer, B., Hawley, R.J., Lai, L., Kolber-Simonds, D., and Prather, R.S. (2001). Clonal lines of transgenic fibroblast cells derived from the same fetus result in different development when used for nuclear transfer in pigs. Biology of reproduction 64,1695-1698.
    Kuwaki, K., Tseng, Y.L., Dor, F.J., Shimizu, A., Houser, S.L., Sanderson, T.M., Lancos, C.J., Prabharasuth, D.D., Cheng, J., Moran, K., et al. (2005). Heart transplantation in baboons using alphal,3-galactosyltransferase gene-knockout pigs as donors:initial experience. Nature medicine //,29-31.
    Lai, L., Kang, J.X., Li, R., Wang, J., Witt, W.T., Yong, H.Y, Hao, Y, Wax, D.M., Murphy, C.N., Rieke, A., et al. (2006). Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nature biotechnology 24,435-436.
    Lai, L., Kolber-Simonds, D., Park, K.W., Cheong, H.T., Greenstein, J.L., Im, G.S., Samuel, M., Bonk, A., Rieke, A., Day, B.N., et al. (2002a). Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science (New York, NY 295,1089-1092.
    Lai, L., Park, K.W., Cheong, H.T., Kuhholzer, B., Samuel, M., Bonk, A., Im, G.S., Rieke, A., Day, B.N., Murphy, C.N., et al. (2002b). Transgenic pig expressing the enhanced green fluorescent protein produced by nuclear transfer using colchicine-treated fibroblasts as donor cells. Molecular reproduction and development 62,300-306.
    Lai, L., and Prather, R.S. (2003). Production of cloned pigs by using somatic cells as donors. Cloning and stem cells 5,233-241.
    Lai, L., Tao, T., Machaty, Z., Kuhholzer, B., Sun, Q.Y., Park, K.W., Day, B.N., and Prather, R.S. (2001). Feasibility of producing porcine nuclear transfer embryos by using G2/M-stage fetal fibroblasts as donors. Biology of reproduction 65,1558-1564.
    Lavitrano, M., Busnelli, M., Cerrito, M.G., Giovannoni, R., Manzini, S., and Vargiolu, A. (2006). Sperm-mediated gene transfer. Reproduction, fertility, and development 18,19-23.
    Lavitrano, M., Camaioni, A., Fazio, V.M., Dolci, S., Farace, M.G., and Spadafora, C. (1989). Sperm cells as vectors for introducing foreign DNA into eggs:genetic transformation of mice. Cell 57,717-723.
    Lee, G.S., Hyun, S.H., Kim, H.S., Kim, D.Y., Lee, S.H., Lim, J.M., Lee, E.S., Kang, S.K., Lee, B.C., and Hwang, W.S. (2003). Improvement of a porcine somatic cell nuclear transfer technique by optimizing donor cell and recipient oocyte preparations. Theriogenology 59,1949-1957.
    Li, G.P., Tan, J.H., Sun, Q.Y., Meng, Q.G., Yue, K.Z., Sun, X.S., Li, Z.Y., Wang, H.B., and Xu, L.B. (2000). Cloned piglets born after nuclear transplantation of embryonic blastomeres into porcine oocytes matured in vivo. Cloning 2,45-52.
    Li, P., Tong, C., Mehrian-Shai, R., Jia, L., Wu, N., Yan, Y., Maxson, R.E., Schulze, E.N., Song, H., Hsieh, C.L., et al. (2008). Germline competent embryonic stem cells derived from rat blastocysts. Cell 135,1299-1310.
    Li, R., Liang, J., Ni, S., Zhou, T., Qing, X., Li, H., He, W., Chen, J., Li, F., Zhuang, Q., et al. (2010). A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell stem cell 7,51-63.
    Li, W., Wei, W., Zhu, S., Zhu, J., Shi, Y, Lin, T., Hao, E., Hayek, A., Deng, H., and Ding, S. (2009). Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell stem cell 4,16-19.
    Liang, F., Han, M., Romanienko, P.J., and Jasin, M. (1998). Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America 95,5172-5177.
    Liao, J., Cui, C., Chen, S., Ren, J., Chen, J., Gao, Y, Li, H., Jia, N., Cheng, L., Xiao, H., et al. (2009). Generation of induced pluripotent stem cell lines from adult rat cells. Cell stem cell 4, 11-15.
    Liu, H., Zhu, F., Yong, J., Zhang, P., Hou, P., Li, H., Jiang, W., Cai, J., Liu, M., Cui, K., et al. (2008). Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell stem cell 3,587-590.
    Liu, L., Dai, Y., and Moor, R.M. (1997). Nuclear transfer in sheep embryos:the effect of cell-cycle coordination between nucleus and cytoplasm and the use of in vitro matured oocytes. Molecular reproduction and development 47,255-264.
    Loh, Y.H., Agarwal, S., Park, I.H., Urbach, A., Huo, H., Heffner, G.C., Kim, K., Miller, J.D., Ng, K., and Daley, G.Q. (2009). Generation of induced pluripotent stem cells from human blood. Blood 113,5476-5479.
    Lorson, M.A., Spate, L.D., Samuel, M.S., Murphy, C.N., Lorson, C.L., Prather, R.S., and Wells, K.D. (2011). Disruption of the Survival Motor Neuron (SMN) gene in pigs using ssDNA. Transgenic research 20,1293-1304.
    Luo, Y., Li, J., Liu, Y, Lin, L., Du, Y., Li, S., Yang, H., Vajta, G., Callesen, H., Bolund, L., et al. (2011). High efficiency of BRCA1 knockout using rAAV-mediated gene targeting:developing a pig model for breast cancer. Transgenic research 20,975-988.
    Lyssiotis, C.A., Foreman, R.K., Staerk, J., Garcia, M., Mathur, D., Markoulaki, S., Hanna, J., Lairson, L.L., Charette, B.D., Bouchez, L.C., et al. (2009). Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4. Proceedings of the National Academy of Sciences of the United States of America 106,8912-8917.
    Marson, A., Foreman, R., Chevalier, B., Bilodeau, S., Kahn, M., Young, R.A., and Jaenisch, R. (2008). Wnt signaling promotes reprogramming of somatic cells to pluripotency. Cell stem cell 3, 132-135.
    McCreath, K.J., Howcroft, J., Campbell, K.H., Colman, A., Schnieke, A.E., and Kind, A.J. (2000). Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 405,1066-1069.
    Meng, X., Noyes, M.B., Zhu, L.J., Lawson, N.D., and Wolfe, S.A. (2008). Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nature biotechnology 26, 695-701.
    Miura, K., Okada, Y., Aoi, T., Okada, A., Takahashi, K., Okita, K., Nakagawa, M., Koyanagi, M., Tanabe, K., Ohnuki, M., et al. (2009). Variation in the safety of induced pluripotent stem cell lines. Nature biotechnology 27,743-745.
    Miyoshi, K., Rzucidlo, S.J., Pratt, S.L., and Stice, S.L. (2003). Improvements in cloning efficiencies may be possible by increasing uniformity in recipient oocytes and donor cells. Biology of reproduction 68,1079-1086.
    Miyoshi, K., Taguchi, Y., Sendai, Y., Hoshi, H., and Sato, E. (2000). Establishment of a porcine cell line from in vitro-produced blastocysts and transfer of the cells into enucleated oocytes. Biology of reproduction 62,1640-1646.
    Miyoshi, K., Tsuji, D., Kudoh, K., Satomura, K., Muto, T., Itoh, K., and Noma, T. (2010). Generation of human induced pluripotent stem cells from oral mucosa. Journal of bioscience and bioengineering 110,345-350.
    Montserrat, N., Bahima, E.G., Batlle, L., Hafner, S., Rodrigues, A.M., Gonzalez, F., and Belmonte, J.C. (2010). Generation of pig iPS cells:a model for cell therapy. Journal of cardiovascular translational research 4,121-130.
    Montserrat, N., de Onate, L., Garreta, E., Gonzalez, F., Adamo, A., Eguizabal, C., Hafner, S., Vassena, R., and Belmonte, J.C. (2011). Generation of feeder free pig induced pluripotent stem cells without Pou5f1. Cell transplantation.
    Morton, J., Davis, M.W., Jorgensen, E.M., and Carroll, D. (2006). Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells. Proceedings of the National Academy of Sciences of the United States of America 103, 16370-16375.
    Mueller, S., Prelle, K., Rieger, N., Petznek, H., Lassnig, C., Luksch, U., Aigner, B., Baetscher, M., Wolf, E., Mueller, M., et al. (1999). Chimeric pigs following blastocyst injection of
    transgenic porcine primordial germ cells. Molecular reproduction and development 54,244-254. Muenthaisong, S., Dinnyes, A., and Nedambale, T.L. (2011). Review of somatic cell nuclear transfer in pig. Afr J Biotechnol 10,17384-17390.
    Munoz, M., Rodriguez, A., De Frutos, C., Caamano, J.N., Diez, C., Facal, N., and Gomez, E. (2008). Conventional pluripotency markers are unspecific for bovine embryonic-derived cell-lines. Theriogenology 69,1159-1164.
    Nagashima, H., Fujimura, T., Takahagi, Y., Kurome, M., Wako, N., Ochiai, T., Esaki, R., Kano, K., Saito, S., Okabe, M., et al. (2003). Development of efficient strategies for the production of genetically modified pigs. Theriogenology 59,95-106.
    Nissen, S.E., and Wolski, K. (2007). Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. The New England journal of medicine 356,2457-2471.
    Okita, K., Ichisaka, T., and Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature 448,313-317.
    Okita, K., Nakagawa, M., Hong, H.J., Ichisaka, T., and Yamanaka, S. (2008). Generation of Mouse Induced Pluripotent Stem Cells Without Viral Vectors. Science 322,949-953.
    Onishi, A., Iwamoto, M., Akita, T., Mikawa, S., Takeda, K., Awata, T., Hanada, H., and Perry, A.C. (2000). Pig cloning by microinjection of fetal fibroblast nuclei. Science 289,1188-1190.
    Park, K.W., Cheong, H.T., Lai, L., Im, G.S., Kuhholzer, B., Bonk, A., Samuel, M., Rieke, A., Day, B.N., Murphy, C.N., et al. (2001). Production of nuclear transfer-derived swine that express the enhanced green fluorescent protein. Animal biotechnology 12,173-181.
    Piedrahita, J.A., Moore, K., Oetama, B., Lee, C.K., Scales, N., Ramsoondar, J., Bazer, F.W., and Ott, T. (1998). Generation of transgenic porcine chimeras using primordial germ cell-derived colonies. Biology of reproduction 55,1321-1329.
    Polejaeva, I.A., Chen, S.H., Vaught, T.D., Page, R.L., Mullins, J., Ball, S., Dai, Y, Boone, J., Walker, S., Ayares, D.L., et al. (2000a). Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407,86-90.
    Polejaeva, I.A., Chen, S.H., Vaught, T.D., Page, R.L., Mullins, J., Ball, S., Dai, Y.F., Boone, J., Walker, S., Ayares, D.L., et al. (2000b). Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407,86-90.
    Polge, C., Rowson, L.E., and Chang, M.C. (1966). The effect of reducing the number of embryos during early stages of gestation on the maintenance of pregnancy in the pig. Journal of reproduction and fertility 12,395-397.
    Polo, J.M., Liu, S., Figueroa, M.E., Kulalert, W., Eminli, S., Tan, K.Y., Apostolou, E., Stadtfeld, M., Li, Y., Shioda, T., et al. (2010). Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nature biotechnology 28,848-855.
    Popp, C., Dean, W., Feng, S., Cokus, S.J., Andrews, S., Pellegrini, M., Jacobsen, S.E., and Reik, W. (2010). Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature 463,1101-1105.
    Prather, R.S., Hawley, R.J., Carter, D.B., Lai, L., and Greenstein, J.L. (2003). Transgenic swine for biomedicine and agriculture. Theriogenology 59,115-123.
    Prather, R.S., Sims, M.M., and First, N.L. (1989). Nuclear transplantation in early pig embryos. Biology of reproduction 41,414-418.
    Qin, D., Gan, Y., Shao, K., Wang, H., Li, W., Wang, T., He, W., Xu, J., Zhang, Y., Kou, Z., et al. (2008). Mouse meningiocytes express Sox2 and yield high efficiency of chimeras after nuclear reprogramming with exogenous factors. The Journal of biological chemistry 283,33730-33735. Rodriguez-Gonzalez E, L.-B.M., Mertens M J (Dev.2003).
    Effect on in vitro embryo development and intracellular glutathione content of the presence of thiol compounds during maturation of prepubertal goat oocytes. Mol Reprod 65,446-453.
    Rogers, C.S., Hao, Y., Rokhlina, T., Samuel, M., Stoltz, D.A., Li, Y, Petroff, E., Vermeer, D.W., Kabel, A.C., Yan, Z., et al. (2008a). Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. The Journal of clinical investigation 118,1571-1577.
    Rogers, C.S., Stoltz, D.A., Meyerholz, D.K., Ostedgaard, L.S., Rokhlina, T., Taft, P.J., Rogan, M.P., Pezzulo, A.A., Karp, P.H., Itani, O.A., et al. (2008b). Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science (New York, NY 321,1837-1841.
    Samavarchi-Tehrani, P., Golipour, A., David, L., Sung, H.K., Beyer, T.A., Datti, A., Woltjen, K., Nagy, A., and Wrana, J.L. (2010). Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell stem cell 7,64-77.
    Santiago, Y, Chan, E., Liu, P.Q., Orlando, S., Zhang, L., Urnov, F.D., Holmes, M.C., Guschin, D., Waite, A., Miller, J.C., et al. (2008). Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proceedings of the National Academy of Sciences of the United States of America 105,5809-5814.
    Schoevers, E.J., Bevers, M.M., Roelen, B.A., and Colenbrander, B. (2005). Nuclear and cytoplasmic maturation of sow oocytes are not synchronized by specific meiotic inhibition with roscovitine during in vitro maturation. Theriogenology 63,1111-1130.
    Schoevers, E.J., Kidson, A., Verheijden, J.H.M., and Bevers, M.M. (2003). Effect of follicle-stimulating hormone on nuclear and cytoplasmic maturation of sow oocytes in vitro. Theriogenology 59,2017-2028.
    Shimada, H., Nakada, A., Hashimoto, Y., Shigeno, K., Shionoya, Y., and Nakamura, T. (2010). Generation of canine induced pluripotent stem cells by retroviral transduction and chemical inhibitors. Molecular reproduction and development 77,2.
    Sims, M., and First, N.L. (1994). Production of calves by transfer of nuclei from cultured inner cell mass cells. Proceedings of the National Academy of Sciences of the United States of America 91,6143-6147.
    Skarnes, W.C., Rosen, B., West, A.P., Koutsourakis, M., Bushell, W., Iyer, V, Mujica, A.O., Thomas, M., Harrow, J., Cox, T., et al. (2011). A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474,337-342.
    Stadtfeld, M., Apostolou, E., Akutsu, H., Fukuda, A., Follett, P., Natesan, S., Kono, T., Shioda, T., and Hochedlinger, K. (2010). Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 465,175-181.
    Sun, N., Panetta, N.J., Gupta, D.M., Wilson, K.D., Lee, A., Jia, F., Hu, S., Cherry, A.M., Robbins, R.C., Longaker, M.T., et al. (2009). Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proceedings of the National Academy of Sciences of the United States of America 106,15720-15725.
    Tada, M., Tada, T., Lefebvre, L., Barton, S.C., and Surani, M.A. (1997). Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. The EMBO journal 16, 6510-6520.
    Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131,861-872.
    Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126,663-676.
    Takeuchi, A., Irizarry, M.C., Duff, K., Saido, T.C., Hsiao Ashe, K., Hasegawa, M., Mann, D.M., Hyman, B.T., and Iwatsubo, T. (2000). Age-related amyloid beta deposition in transgenic mice overexpressing both Alzheimer mutant presenilin 1 and amyloid beta precursor protein Swedish mutant is not associated with global neuronal loss. The American journal of pathology 157, 331-339.
    Tamaoki, N., Takahashi, K., Tanaka, T., Ichisaka, T., Aoki, H., Takeda-Kawaguchi, T., Iida, K., Kunisada, T., Shibata, T., Yamanaka, S., et al. (2010). Dental pulp cells for induced pluripotent stem cell banking. Journal of dental research 89,773-778.
    Tao, T., Machaty, Z., Boquest, A.C., Day, B.N., and Prather, R.S. (1999). Development of pig embryos reconstructed by microinjection of cultured fetal fibroblast cells into in vitro matured oocytes. Animal reproduction science 56,133-141.
    Tatemoto, H., Muto, N., Sunagawa, I., Shinjo, A., and Nakada, T. (2004). Protection of porcine oocytes against cell damage caused by oxidative stress during in vitro maturation:role of superoxide dismutase activity in porcine follicular fluid. Biology of reproduction 71,1150-1157.
    Tesar, P.J., Chenoweth, J.G., Brook, F.A., Davies, T.J., Evans, E.P., Mack, D.L., Gardner, R.L., and McKay, R.D. (2007). New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448,196-199.
    Tsuji, O., Miura, K., Okada, Y., Fujiyoshi, K., Mukaino, M., Nagoshi, N., Kitamura, K., Kumagai, G., Nishino, M., Tomisato, S., et al. (2010). Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proceedings of the National Academy of Sciences of the United States of America 107,12704-12709.
    Urnov, F.D., Miller, J.C., Lee, Y.L., Beausejour, C.M., Rock, J.M., Augustus, S., Jamieson, A.C., Porteus, M.H., Gregory, P.D., and Holmes, M.C. (2005). Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435,646-651.
    Verma, N., Rettenmeier, A.W., and Schmitz-Spanke, S. (2011). Recent advances in the use of Sus scrofa (pig) as a model system for proteomic studies. Proteomics 11,776-793.
    Wakai, T., Sugimura, S., Yamanaka, K., Kawahara, M., Sasada, H., Tanaka, H., Ando, A., Kobayashi, E., and Sato, E. (2008). Production of viable cloned miniature pig embryos using oocytes derived from domestic pig ovaries. Cloning and stem cells 10,249-262.
    Wakayama, T., and Yanagimachi, R. (2001). Mouse cloning with nucleus donor cells of different age and type. Molecular reproduction and development 58,376-383.
    Warren, L., Manos, P.D., Ahfeldt, T., Loh, Y.H., Li, H., Lau, F., Ebina, W., Mandal, P.K., Smith, Z.D., Meissner, A., et al. (2010). Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell stem cell 7,618-630.
    Watanabe, M., Umeyama, K., Matsunari, H., Takayanagi, S., Haruyama, E., Nakano, K., Fujiwara, T., Ikezawa, Y., Nakauchi, H., and Nagashima, H. (2010). Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases. Biochemical and biophysical research communications 402,14-18.
    Wei, H.X., Zhang, K., Ma, Y.F., Li, Y., Li, Q.Y, Dai, Y.P., and Li, N. (2008). Stage-dependent Effect of Leptin on Development of Porcine Embryos Derived from Parthenogenetic Activation and Transgenic Somatic Cell Nuclear Transfer. The Journal of reproduction and development.
    West, F.D., Terlouw, S.L., Kwon, D.J., Mumaw, J.L., Dhara, S.K., Hasneen, K., Dobrinsky, J.R., and Stice, S.L. (2010). Porcine induced pluripotent stem cells produce chimeric offspring. Stem cells and development 19,1211-1220.
    West, F.D., Uhl, E.W., Liu, Y., Stowe, H., Lu, Y., Yu, P., Gallegos-Cardenas, A., Pratt, S.L., and Stice, S.L. (2011). Brief report:chimeric pigs produced from induced pluripotent stem cells demonstrate germline transmission and no evidence of tumor formation in young pigs. Stem cells (Dayton, Ohio) 29,1640-1643.
    Whitelaw, C.B., Radcliffe, P.A., Ritchie, W.A., Carlisle, A., Ellard, F.M., Pena, R.N., Rowe, J., Clark, A.J., King, T.J., and Mitrophanous, K.A. (2004). Efficient generation of transgenic pigs using equine infectious anaemia virus (EIAV) derived vector. FEBS letters 571,233-236.
    Whyte, J.J., and Prather, R.S. (2011). Genetic modifications of pigs for medicine and agriculture. Molecular reproduction and development 78,879-891.
    Whyte, J.J., Zhao, J., Wells, K.D., Samuel, M.S., Whitworth, K.M., Walters, E.M., Laughlin, M.H., and Prather, R.S. (2011). Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Molecular reproduction and development 78,2.
    Wilmut, I., Schnieke, A.E., Mc Whir, J., Kind, A.J., and Campbell, K.H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385,810-813.
    Woltjen, K., Michael, I.P., Mohseni, P., Desai, R., Mileikovsky, M., Hamalainen, R., Cowling, R., Wang, W., Liu, P., Gertsenstein, M., et al. (2009). piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458,766-770.
    Wongsrikeao, P., Otoi, T., Yamasaki, H., Agung, B., Taniguchi, M., Naoi, H., Shimizu, R., and Nagai, T. (2006). Effects of single and double exposure to brilliant cresyl blue on the selection of porcine oocytes for in vitro production of embryos. Theriogenology 66,366-372.
    Wu, Z., Chen, J., Ren, J., Bao, L., Liao, J., Cui, C., Rao, L., Li, H., Gu, Y., Dai, H., et al. (2009). Generation of pig induced pluripotent stem cells with a drug-inducible system. Journal of molecular cell biology 1,46-54.
    Yamanaka, S., and Takahashi, K. (2006). [Induction of pluripotent stem cells from mouse fibroblast cultures]. Tanpakushitsu kakusan koso 57,2346-2351.
    Yang, D., Wang, C.E., Zhao, B., Li, W., Ouyang, Z., Liu, Z., Yang, H., Fan, P., O'Neill, A., Gu, W., et al. (2010). Expression of Huntington's disease protein results in apoptotic neurons in the brains of cloned transgenic pigs. Human molecular genetics 19,3983-3994.
    Yang, D., Yang, H., Li, W., Zhao, B., Ouyang, Z., Liu, Z., Zhao, Y., Fan, N., Song, J., Tian, J., et al. (2011). Generation of PPARgamma mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning. Cell research 21,979-982.
    Yoshida, Y., Takahashi, K., Okita, K., Ichisaka, T., and Yamanaka, S. (2009). Hypoxia enhances the generation of induced pluripotent stem cells. Cell stem cell 5,237-241.
    Yu, J., Hu, K., Smuga-Otto, K., Tian, S., Stewart, R., Slukvin, Ⅱ, and Thomson, J.A. (2009). Human induced pluripotent stem cells free of vector and transgene sequences. Science 324, 797-801.
    Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science (New York, NY 318,1917-1920.
    Zhang, Y., Li, J., Villemoes, K., Pedersen, A.M., Purup, S., and Vajta, G. (2007). An epigenetic modifier results in improved in vitro blastocyst production after somatic cell nuclear transfer. Cloning and stem cells 9,357-363.
    Zhao, J., Ross, J.W., Hao, Y, Spate, L.D., Walters, E.M., Samuel, M.S., Rieke, A., Murphy, C.N., and Prather, R.S. (2009a). Significant improvement in cloning efficiency of an inbred miniature pig by histone deacetylase inhibitor treatment after somatic cell nuclear transfer. Biology of reproduction 81,525-530.
    Zhao, X.Y., Li, W., Lv, Z., Liu, L., Tong, M., Hai, T., Hao, J., Guo, C.L., Ma, Q.W., Wang, L., et al. (2009b). iPS cells produce viable mice through tetraploid complementation. Nature 461, 86-90.
    Zhou, S., Ding, C., Zhao, X., Wang, E., Dai, X., Liu, L., Li, W., Liu, Z., Wan, H., Feng, C, et al. (2010). Successful generation of cloned mice using nuclear transfer from induced pluripotent stem cells. Cell research 20,850-853.
    Zhou, W., and Freed, C.R. (2009). Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells 27,2667-2674.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700