用户名: 密码: 验证码:
去乙酰化抑制剂对五指山小型猪体细胞核移植胚胎发育能力的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前通过体细胞核移植(SCNT)技术已经成功获得多种哺乳动物的克隆后代,但动物克隆的成功率仍较低,大量的研究表明其可能是SCNT后表观遗传重编程的失败所致。组蛋白的高乙酰化可以增强转录因子与核小体之间的相互作用,从而有利于基因转录的启动。组蛋白去乙酰化酶抑制剂制(HDACi),丙戊酸(VPA)、 Scriptaid等能增加基因组中组蛋白的乙酰化水平。本研究利用VPA、Scriptaid能够抑制重构胚早期组蛋白去乙酸化的作用这一机制,对体细胞核移植后的重构胚进行不同浓度及不同时间的处理,观察并探讨其对克隆胚胎体内及体外发育能力的影响。
     第一章:本研究以五指山小型猪成纤维细胞为供体细胞进行SCNT重构胚胎的构建,重构胚胎激活后培养在添加不同浓度(0~8nM) VPA的胚胎培养液中进行不同时间(0-48h)的体外培养,探讨了HDACi-VPA对五指山小型猪SCNT克隆胚胎的体外及体内发育能力方面的影响。实验1研究不同浓度的VPA在处理核移植胚胎24h条件下对其克隆胚胎体外发育力的影响。实验结果表明2mM VPA处理组(21.5%)克隆胚胎的囊胚发育率显著高于对照组、4mM处理组及8mM处理组(21.5vs10.5,12.6,17.2, p<0.05)。实验2选择实验1中筛选出的最佳浓度2mM为本实验的处理浓度,研究此浓度在不同添加处理时间的条件下对化学激活后核移植克隆胚胎的体外发育能力的影响。实验结果表明VPA处理24h组(20.7%)的囊胚发育率显著高于其它各组(对照组9.2%,12h处理组12.1%,48h处理组9.1%,p<0.05)。实验3将1~8细胞期的2mM VPA处理24h克隆胚胎(192~216枚)和未经处理(对照组)的克隆胚胎(179~225枚)分别移植到7头自然发情的受体母猪中。经B超检测其中VPA处理的3头受体母猪全部妊娠,2头足月分娩共产11头克隆仔猪,对照组的4头受体母猪3头妊娠,2头足月分娩共产12头克隆仔猪。实验发现VPA处理组克隆仔猪初生重及出生后3个月生存率,均低于未处理组克隆仔猪(675.2±185.3)。综合以上结果表明,VPA处理体细胞核移植胚胎可以提高克隆胚胎的体外囊胚率,对于体内发育能力有必要进一步研究。
     第二章:本研究探讨了HDACi-SCR对五指山小型猪SCNT克隆胚胎的体外及体内发育能力方面的影响。实验1研究不同浓度的SCR在处理核移植胚胎24h条件下对其克隆胚胎体外发育力的影响。实验结果表明处理250nM处理组(20.0%)较对照组(12.2%)、50nM处理组(8.9%)及500nM处理组(11.9%)显著提高,p<0.05。实验2研究250nM SCR在不同的处理时间的条件下对化学激活后克隆胚胎的外发育能力的影响。实验结果发现SCR处理24h组(22.2%)克隆胚胎的囊胚发育率较12h处理组(10.0%)显著提高,p<0.05,与48h处理组(18.5%)没有差异,p>0.05。实验3分别以SCR、VPA及SCR+VPA处理化学激活后的体细胞核移植克隆胚胎,研究并探讨了SCR和VPA联合处理对克隆胚胎的体外发育力的影响。结果表明250nM SCR和2mM VPA联合处理24h组与对照组相比克隆胚胎的囊胚率显著提高(18.3vs9.2%,p<0.05),但与250nM SCR处理24h组(19.9%)及2mM VPA处理24h组(18.9%)比较囊胚率无显著性差异(p>0.05)。实验4研究了SCR对体细胞核移植克隆胚胎的体内发育情况的影响,将250nM SCR处理24h与对照组经过体细胞核移植后获得克隆胚胎分别移植于代孕母后,对照组移植的受体可成功产下健康的克隆仔猪,而SCR处理组并未获得克隆仔猪。综合以上结果表明,SCR处理体细胞核移植胚胎可以提高克隆胚胎的体外囊胚率,对于体内发育能力有必要进一步研究。此外,SCR与VPA联合处理对体细胞核移植克隆胚胎的体外发育无协同作用。
     第三章:增强型绿色荧光蛋白(EGFP)在转基因动物的研究中可用来标记目的基因、筛选阳性胚胎、建立荧光动物模型:如将EGFP或红色荧光蛋白基因插入到猪的基因组内,可以很方便的对细胞和组织内某些因子的表达和代谢进行跟踪,从而为基础性研究提供便利。本试验以获得的转EGFP基因阳性细胞作为供体细胞,经核移植和电融合后在2mM VPA处理24h的转基因重构胚移入去核的卵母细胞中,成功地获得了转基因囊胚,并比较克隆胚胎体外及体内发育情况。结果表明GFP转基因重构胚重构胚体外囊胚率为15.1%,与未转基因组11.4%相比无显差异著(P>0.05)。将1~8细胞阶段重构胚胎移植到3头自然发情的五指山小型猪输卵管内,2头未发育到期而返情,1头怀孕106天后,成功产下4头克隆猪。其中2头为死胎,体重分别为247g和313g,其余2头在分娩后由于饲养管理不善死亡,体重分别为366g和573g。经过对猪皮肤组织外来基因检测及受体母猪、克隆猪与供体细胞的13个多态性位点的微卫星检测结果表明,其中2头具有绿色荧光遗传特征,4头克隆猪个体与供核细胞具有完全相同的多态性,而克隆猪个体与代孕母猪的多态性不同,证明克隆仔猪与代孕母猪无亲缘关系。研究结果为转基因五指山小型猪体细胞克隆的技术体系建立提供参考,从而为人类疾病发病机理研究以及生产人类遗传疾病的基因模型动物奠定基础。
Epigenetic modification influences reprogramming and subsequent development of somatic cell nuclear transfer(SCNT)embryos. Such modification includes an increase in histone acetylation. Histone deacetylase inhibitors(HDACi), such as valproic acid (VPA) and scriptaid (SCR), have been known to maintain a high cellular level of histone acetylation. Hence, treatment of nuclear transfer embryos with HDACi may increase the efficiency of cloning. The present study attempted to examine the effects of VPA and SCR with regard to the potency of enhancement of in vitro and in vivo development of Wuzhishan miniature pig SCNT embryos.
     In CHAPTER1. The aim of the present study was to examine the effects of VPA, a HDACi on in vitro and in vivo development of Wuzhishan miniature pig SCNT embryos. Experiment1compared the in vitro developmental competence of nuclear transfer embryos treated with various concentrations of VPA for24h. Embryos treated with2mM VPA for24h reported a significantly increased rate of blastocyst formation compared with controls or4mM VPA and8mM VPA treated groups (21.5vs10.5,12.6and17.2%). Experiment2examined the in vitro developmental competence of nuclear transfer embryos treated with2mM VPA for different time periods following chemical activation. Embryos treated for24h reported higher rates of blastocyst formation than the controls or treated for4h and48h groups (20.7vs9.2,12.1and9.1%). In experiment3, an average of207(192to216) nuclear transfer embryos from the VPA-treated group were transferred to surrogate mothers, resulting in three pregnancies. Two of the surrogates delivered a total of11live piglets, the nine of11piglets in the VPA-treated group died in an unknown reason within1day to5days after birch. Untreated control embryos (average,205(179to225)) transferred to four surrogate mothers resulted in three pregnancies, two of which delivered a total of12live offspring, four of the12piglets in the VPA-untreated group died in an unknown reason within1day to3days, eight of12of the12piglets in the VPA-untreated group have survived over3or4months. The average birth weight of the two litters from the VPA-treated group was tended to be lower than that from the control groups (551.6g vs675.2g). These results suggest that VPA treatment increases the rate of blastocyst formation for SCNT embryos, both the VPA-treated and the untreated clones can develop to term in pigs, but the offspring from VPA-treated embryos survived to adulthood lower than the offspring from VPA-treated embryos(18.2vs66.9%; P<0.05).
     In CHAPTER2. The aim of the present study was to examine the effects of SCR, a HDACi, on the in vitro and in vivo development of Wuzhishan miniature pig SCNT embryos. Experiment1compared the in vitro developmental competence of nuclear transfer embryos treated with various concentrations of SCR for24h. Embryos treated with250nM SCR showed a significantly increased rate of blastocyst formation compared with controls or embryos treated with50nM or500nM SCR (20.0vs12.2,8.9, and11.9%). Experiment2examined the in vitro developmental competence of nuclear transfer embryos treated with250nM SCR for different time periods following chemical activation. Embryos treated for24h showed higher rates of blastocyst formation than controls or embryos treated for12h or48h (22.2vs11.5,10.0, and18.5%). Experiment3directly compared the effects of SCR and VPA treatment and examined the additive effect of SCR and VPA on nuclear transfer embryos following chemical activation. Embryos treated with250nM SCR or2mM VPA for24h showed a significantly increased rate of blastocyst formation compared with controls (19.9and18.3vs9.2%), but not increased with a combination of250nM SCR and2mM VPA for24h (18.9vs19.9,18.3%). In experiment4, nuclear transfer embryos treated with250nM SCR for24h and non-treated controls were transferred to surrogate mothers, resulting in the birth of healthy cloned pups from the controls but no births in the SCR-treated group. These results suggest that SCR treatment increases the rate of blastocyst formation in somatic cell nuclear transfer embryos and affects their subsequent growth. Also, co-treatment with VPA and SCR did not improve the blastocyst formation rate.
     In CHAPTER3. Genetically engineered pigs with cell markers such as fluorescent proteins are highly useful in lines of research that include the tracking of transplanted cells or tissues. It has been demonstrated that increased histone acetylation in SCNT embryos, by applying a histone deacetylase(HDAC) inhibitor such as VPA significantly enhances the developmental competence in our previous research. Herein, we report that the re constructed embryos treatment with2mM VPA for24h, and compared the development of SCNT embryos to the blastocyst stage when Wuzhishan miniature pig ear fibroblasts as donor cells, there have no significant differences were observed in the cleavage rates and blastocyste formation rates in non-trasfected or transfected ear fibroblasts (72.6,15.1and74.5,11.4%). we used the ear fibroblasts of miniature pigs transfected with EGFP as the donor cells, and transplanted reconstructed embryos (at the1to8cell stage) into the oviducts of three sexually mature Wuzhishan miniature pigs that were naturally estrus. One recipient successfully birthed two stillborn and two live piglets after116days of pregnancy. We investigated the presence of the foreign gene in the skin tissues of the piglets and tested13microsatellite polymorphisms in the recipient pigs, cloned offspring and donor cells. The results indicated that two cloned offspring expressed EGFP and all four cloned offspring had the same polymorphisms at all13microsatellites as the donor cell. However, the microsatellites varied between the cloned offspring and the recipient pigs, indicating the absence of a blood relationship between the two. The study therefore establishes a system to obtain transgenic Wuzhishan inbred miniature pigs by SCNT, thereby providing a basis to study the pathologic mechanisms of human disease and producing animal models for human genetic disorders.
引文
[1]Prather RS, Hawley RJ, Carter DB, Lai L, Greenstein JL. Transgenic swine for biomedicine and agriculture. Theriogenology 2003;59:115-123.
    [2]Yanbin Z, Chuan L, Chong F, Dengke P, Yuzhu L. Improving the Developmental Potency of Cloned Embryos and Cloning Efficiency in Wuzhishan Inbred Pig by Scriptaid Treatment. Genomics and Applied Biology 2011;30:268-273.
    [3]Dai Y, Vaught TD, Boone J, Chen SH, Phelps CJ, Ball S, Monahan JA, Jobst PM, McCreath KJ, Lamborn AE. Targeted disruption of the alphal, 3-galactosyltransferase gene in cloned pigs. Nature biotechnology 2002;20:251-255.
    [4]Lai L, Kolber-Simonds D, Park KW, Cheong HT, Greenstein JL, Im GS, Samuel M, Bonk A, Rieke A, Day BN, Murphy CN, Carter DB, Hawley RJ, Prather RS. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 2002;295:1089-1092.
    [5]Rogers CS, Stoltz DA, Meyerholz DK, Ostedgaard LS, Rokhlina T, Taft PJ, Rogan MP, Pezzulo AA, Karp PH, Itani OA, Kabel AC, Wohlford-Lenane CL, Davis GJ, Hanfland RA, Smith TL, Samuel M, Wax D, Murphy CN, Rieke A, Whitworth K, Uc A, Starner TD, Brogden KA, Shilyansky J, McCray PB, Jr., Zabner J, Prather RS, Welsh MJ. Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 2008;321:1837-1841.
    [6]Wilmut I, Beaujean N, de Sousa PA, Dinnyes A, King TJ, Paterson LA, Wells DN, Young LE. Somatic cell nuclear transfer. Nature 2002;419:583-586.
    [7]Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen AE, Melton DA. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nature biotechnology 2008;26:795-797.
    [8]Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S, Muhlestein W, Melton DA. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 2008;26:1269-1275.
    [9]Miyoshi K, Mori H, Mizobe Y, Akasaka E, Ozawa A, Yoshida M, Sato M. Valproic acid enhances in vitro development and Oct-3/4 expression of miniature pig somatic cell nuclear transfer embryos. Cell Reprogram 2010;12:67-74.
    [10]Kim YJ, Ahn KS, Kim M, Shim H. Comparison of potency between histone deacetylase inhibitors trichostatin A and valproic acid on enhancing in vitro development of porcine somatic cell nuclear transfer embryos. In Vitro Cellular & Developmental Biology-Animal 2011:1-7.
    [11]Huang YY, Tang XC, Xie WH, Zhou Y, Li D, Yao CG, Zhou Y, Zhu JG, Lai LX, Ouyang HS, Pang DX. Histone Deacetylase Inhibitor Significantly Improved the Cloning Efficiency of Porcine Somatic Cell Nuclear Transfer Embryos. Cellular Reprogramming 2011;13:513-520.
    [12]Yin XJ, Tani T, Yonemura I, Kawakami M, Miyamoto K, Hasegawa R, Kato Y, Tsunoda Y. Production of cloned pigs from adult somatic cells by chemically assisted removal of maternal chromosomes. Biol Reprod 2002;67:442-446.
    [13]Rideout WM,3rd, Eggan K, Jaenisch R. Nuclear cloning and epigenetic reprogramming of the genome. Science 2001;293:1093-1098.
    [14]Shi W, Zakhartchenko V, Wolf E. Epigenetic reprogramming in mammalian nuclear transfer. Differentiation 2003;71:91-113.
    [15]Latham KE. Early and delayed aspects of nuclear reprogramming during cloning. Biol Cell 2005;97:119-132.
    [16]Zhang Y, Li J, Villemoes K, Pedersen AM, Purup S, Vajta G. An epigenetic modifier results in improved in vitro blastocyst production after somatic cell nuclear transfer. Cloning Stem Cells 2007;9:357-363.
    [17]Li J, Svarcova O, Villemoes K, Kragh PM, Schmidt M, Bogh IB, Zhang Y, Du Y, Lin L, Purup S, Xue Q, Bolund L, Yang H, Maddox-Hyttel P, Vajta G High in vitro development after somatic cell nuclear transfer and trichostatin A treatment of reconstructed porcine embryos. Theriogenology 2008;70:800-808.
    [18]Beebe LF, McIlfatrick SJ, Nottle MB. Cytochalasin B and trichostatin a treatment postactivation improves in vitro development of porcine somatic cell nuclear transfer embryos. Cloning Stem Cells 2009; 11:477-482.
    [19]Cervera RP, Marti-Gutierrez N, Escorihuela E, Moreno R, Stojkovic M. Trichostatin A affects histone acetylation and gene expression in porcine somatic cell nucleus transfer embryos. Theriogenology 2009;72:1097-1110.
    [20]Yamanaka K, Sugimura S, Wakai T, Kawahara M, Sato E. Acetylation level of histone H3 in early embryonic stages affects subsequent development of miniature pig somatic cell nuclear transfer embryos. J Reprod Dev 2009;55:638-644.
    [21]Zhao J, Hao Y, Ross JW, Spate LD, Walters EM, Samuel MS, Rieke A, Murphy CN, Prather RS. Histone deacetylase inhibitors improve in vitro and in vivo developmental competence of somatic cell nuclear transfer porcine embryos. Cell Reprogram 2010;12:75-83.
    [22]Zhao JG, Ross JW, Hao YH, Spate LD, Walters ME,Samuel MS, Rieke A, Murphy CN, Prather RS. Significant improvement in cloning efficiency of an inbred miniature pig by histone deacetylase inhibitor treatment after somatic cell nuclear transfer. Biol Reprod 2009;81:525-530.
    [23]Akagi S, Matsukawa K, Mizutani E, Fukunari K, Kaneda M, Watanabe S, Takahashi S. Treatment with a Histone Deacetylase Inhibitor after Nuclear Transfer Improves the Preimplantation Development of Cloned Bovine Embryos. J Reprod Dev 2011;57:120-126.
    [24]Meng Q, Polgar Z, Liu J, Dinnyes A. Live birth of somatic cell-cloned rabbits following trichostatin A treatment and cotransfer of partheno genetic embryos. Cloning Stem Cells 2009; 11:203-208.
    [1]Prather RS, Hawley RJ, Carter DB, Lai L, Greenstein JL. Transgenic swine for biomedicine and agriculture. Theriogenology 2003;59:115-123.
    [2]Yanbin Z, Chuan L, Chong F, Dengke P, Yuzhu L. Improving the Developmental Potency of Cloned Embryos and Cloning Efficiency in Wuzhishan Inbred Pig by Scriptaid Treatment. Genomics and Applied Biology 2011;30:268-273.
    [3]Dai Y, Vaught TD, Boone J, Chen SH, Phelps CJ, Ball S, Monahan JA, Jobst PM, McCreath KJ, Lamborn AE. Targeted disruption of the alphal, 3-galactosyltransferase gene in cloned pigs. Nature biotechnology 2002;20: 251-255.
    [4]Lai L, Kolber-Simonds D, Park KW, Cheong HT, Greenstein JL, Im GS, Samuel M, Bonk A, Rieke A, Day BN, Murphy CN, Carter DB, Hawley RJ, Prather RS. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 2002;295:1089-1092.
    [5]Rogers CS, Stoltz DA, Meyerholz DK, Ostedgaard LS, Rokhlina T, Taft PJ, Rogan MP, Pezzulo AA, Karp PH, Itani OA, Kabel AC, Wohlford-Lenane CL, Davis GJ, Hanfland RA, Smith TL, Samuel M, Wax D, Murphy CN, Rieke A, Whitworth K, Uc A, Starner TD, Brogden KA, Shilyansky J, McCray PB, Jr., Zabner J, Prather RS, Welsh MJ. Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 2008;321:1837-1841.
    [6]Wilmut I, Beaujean N, de Sousa PA, Dinnyes A, King TJ, Paterson LA, Wells DN, Young LE. Somatic cell nuclear transfer. Nature 2002;419:583-586.
    [7]Su GH, Sohn TA, Ryu B, Kern SE. A novel histone deacetylase inhibitor identified by high-throughput transcriptional screening of a compound library. Cancer Res 2000;60:3137-3142.
    [8]Van Thuan N, Bui HT, Kim JH, Hikichi T, Wakayama S, Kishigami S, Mizutani E, Wakayama T. The histone deacetylase inhibitor scriptaid enhances nascent mRNA production and rescues full-term development in cloned inbred mice. Reproduction 2009; 138:309-317.
    [9]Zhao J, Ross JW, Hao Y, Spate LD, Walters EM, Samuel MS, Rieke A, Murphy CN, Prather RS. Significant improvement in cloning efficiency of an inbred miniature pig by histone deacetylase inhibitor treatment after somatic cell nuclear transfer. Biol Reprod 2009;81:525-530.
    [10]Yanbin Z, Chuan L, Chong F, Dengke P, Yuzhu L. Improving the Developmental Potency of Cloned Embryos and Cloning Efficiency in Wuzhishan Inbred Pig by Scriptaid Treatment. Genomics and Applied Biology 2011;30:268-273.
    [11]Gottlicher M, Minucci S, Zhu P, Kramer OH, Schimpf A, Giavara S, Sleeman JP, Lo Coco F, Nervi C, Pelicci PG, Heinzel T. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 2001;20: 6969-6978.
    [12]Miyoshi K, Mori H, Mizobe Y, Akasaka E, Ozawa A, Yoshida M, Sato M. Valproic acid enhances in vitro development and Oct-3/4 expression of miniature pig somatic cell nuclear transfer embryos. Cell Reprogram 2010;12:61-74.
    [13]Yin XJ, Tani T, Yonemura I, Kawakami M, Miyamoto K, Hasegawa R, Kato Y, Tsunoda Y. Production of cloned pigs from adult somatic cells by chemically assisted removal of maternal chromosomes. Biol Reprod 2002;67:442-446.
    [14]Kishigami S, Mizutani E, Ohta H, Hikichi T, Thuan NV, Wakayama S, Bui HT, Wakayama T. Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer. Biochem Biophys Res Commun 2006;340:183-189.
    [15]Simonsson S, Gurdon J. DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nature cell biology 2004;6:984-990.
    [16]Armstrong L, Lako M, Dean W, Stojkovic M. Epigenetic modification is central to genome reprogramming in somatic cell nuclear transfer. Stem Cells 2006;24: 805-814.
    [17]Hebbes TR, Thome AW, Crane-Robinson C. A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J 1988;7:1395.
    [18]Hong L, Schroth G, Matthews H, Yau P, Bradbury E. Studies of the DNA binding properties of histone H4 amino terminus. Thermal denaturation studies reveal that acetylation markedly reduces the binding constant of the H4" tail" to DNA. Journal of Biological Chemistry 1993;268:305.
    [19]Lee DY, Hayes JJ, Pruss D, Wolffe AP. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 1993;72:73-84.
    [20]Zlatanova J, Caiafa P, Van Holde K. Linker histone binding and displacement: versatile mechanism for transcriptional regulation. FASEB J 2000;14:1697-1704.
    [21]Eberharter A, Becker PB. Histone acetylation:a switch between repressive and permissive chromatin. EMBO reports 2002;3:224-229.
    [22]Cervoni N, Szyf M. Demethylase activity is directed by histone acetylation. Journal of Biological Chemistry 2001;276:40778.
    [23]Ding XB, Wang YS, Zhang D, Wang YM, Guo ZL, Zhang Y.Increased pre-implantation development of cloned bovine embryos treated with 5-aza-2'-deoxycytidine and trichostatin A.Theriogenology 2008;70:622-30.
    [24]Wang YS, Xiong XR, An ZX, Wang LJ, Liu J, Quan FS, Hua S, Zhang Y. Production of cloned calves by combination treatment of both donor cells and early cloned embryos with 5-aza-2/-deoxycytidine and trichostatin A Theriogenology 2010;775:819-825.
    [25]Zhang Y, Li J, Villemoes K, Pedersen AM, Purup S, Vajta G. An epigenetic modifier results in improved in vitro blastocyst production after somatic cell nuclear transfer. Cloning Stem Cells 2007;9:357-363.
    [26]Li J, Svarcova O, Villemoes K, Kragh PM, Schmidt M, Bogh IB, Zhang Y, Du Y, Lin L, Purup S, Xue Q, Bolund L, Yang H, Maddox-Hyttel P, Vajta G. High in vitro development after somatic cell nuclear transfer and trichostatin A treatment of reconstructed porcine embryos. Theriogenology 2008;70:800-808.
    [27]Beebe LF, McIlfatrick SJ, Nottle MB. Cytochalasin B and trichostatin a treatment postactivation improves in vitro development of porcine somatic cell nuclear transfer embryos. Cloning Stem Cells 2009; 11:477-482.
    [28]Cervera RP, Marti-Gutierrez N, Escorihuela E, Moreno R, Stojkovic M. Trichostatin A affects histone acetylation and gene expression in porcine somatic cell nucleus transfer embryos. Theriogenology 2009;72:1097-1110.
    [29]Yamanaka K, Sugimura S, Wakai T, Kawahara M, Sato E. Acetylation level of histone H3 in early embryonic stages affects subsequent development of miniature pig somatic cell nuclear transfer embryos. J Reprod Dev 2009;55: 638-644.
    [30]Zhao J, Hao Y, Ross JW, Spate LD, Walters EM, Samuel MS, Rieke A, Murphy CN, Prather RS. Histone deacetylase inhibitors improve in vitro and in vivo developmental competence of somatic cell nuclear transfer porcine embryos. Cell Reprogram 2010;12:75-83.
    [31]Meng Q, Polgar Z, Liu J, Dinnyes A. Live birth of somatic cell-cloned rabbits following trichostatin A treatment and cotransfer of parthenogenetic embryos. Cloning Stem Cells 2009; 11:203-208.
    [1]Bollen P, Ellegaard L, Pharmacol Toxicol. The Gottingen minipig in pharmacology and toxicology. Pharmacol Toxicol 1997; 80:3-4.
    [2]Hyun S, Lee G. Kim D, Kim H, Lee S, Nam D, Jeong Y, Kim S, Yeom S, Kang S, Han J, Lee B, Hwang W. Production of nuclear transfer-derived piglets using porcine fetal fibroblasts transfected with the enhanced green fluorescent protein. BiolReprod.2003;69:1060-1068.
    [3]Park KW, Cheong HT, Lai L, Im GS, Kuhholzer B, Bonk A, Samuel M, Rieke A, Day BN, Murphy CN, Carter DB, Prather RS. Production of nuclear transfer-derived swine that express the enhanced green fluorescent protein Anim. Bioteehnol.2001 Nov;12:173-181.
    [4]Lai LX, Park KW, Cheong HT, Kuhholzer B, Samuel M, Bonk A, Im GS, Rieke A, Day BN, Murphy CN, Carter DB. Prather RS.Transgenic pig expressing the enhanced green fluorescent protein produced by nuclear transfer using colchicine-treated fibroblasts as donor cells.Mol Reprod Dev 2002;62:300-306.
    [5]Lee GS, Kim HS, Hyun SH, Lee S.H, Jeon HY, Nam DH, Jeong YW, Kim S, Kim JH, Han JY, Ahn C, Kang SK, Lee BC, Hwang WS.Production of transgenic cloned piglets from genetically transformed fetal fibroblasts selected by green fluorescent protein. Theriogenology 2005;63:973.
    [6]Liu ZH, Song J, Wang ZK, Tian JT, Kong QR, Zheng Z, Yin Z, Gao L, Ma HK, Sun S, Li YT, Wang HB, Prather RS.Green Fluorescent Protein (GFP) transgenic pig produced by somatic cell nuclear transfer Chinese Science Bulletin 2008;53:556-560.
    [7]Yin XJ, Tani T, Yonemura I, Kawakami M, Miyamoto K, Hasegawa R, Kato Y, Tsunoda Y. Production of cloned pigs from adult somatic cells by chemically assisted removal of maternal chromosomes. Biol Reprod 2002;67:442-446.
    [8]Prather, R.S., Hawley, R.J., Carter, D.B., et al. (2003). Transgenicswine for biomedicine and agriculture. Theriogenology 59,115-123.
    [9]Dai, Y., Vaught, T.D., Boone, J., et al. (2002). Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs. Nat. Biotechnol.20,251-255.
    [10]Lai L., Kolber-Simonds D., Park K.W., Cheong H.T., Greenstein J.L., Im G.S., Samuel M., Bonk A., Rieke A., Day B.N., Murphy C.N., Carter D.B., Hawley R.J., Prather R.S., Science, [J],2002,295(5557):1089
    [11]Liang R,Fisher M,Yang GG, Hall C,Woo LY. Alphal,3-galactosyltransferase knockout does not alter the properties of porcine extracellular matrix bioscaffolds. Acta Biomater 2011;7:1719-1727.
    [12]Shimizu A, Hisashi Y, Kuwaki K, Tseng YL, Dor FJ, Houser SL, Robson SC, Schuurman HJ, Cooper DK, Sachs DH, Yamada K, Colvin RB.Thrombotic microangiopathy associated with humoral rejection of cardiac xenografts from alpha 1,3-galactosyltransferase gene-knockout pigs in baboons. Am J Pathol 2008;172:1471-1481.
    [13]Park KW, Lai L, Cheong HT, Im G.S, Sun QY, Wu G, Day BN., Prather R.S.Developmental Potential of Porcine Nuclear Transfer Embryos Derived from Transgenic Fetal Fibroblasts Infected with the Gene for the Green Fluorescent Protein:Comparison of Different Fusion/Activation Conditions. BiolReprod 2001;65:1681-1685.
    [14]Tanaka H, Yoshino H, Kobayashi E, Takahashi M, Okamoto H.Molecular investigation of hepatitis E virus infection in domestic and miniature pigs used for medical experiments.Xenotransplantation 2004; 11:503-510.
    [15]Lee E, Lee SH, Kim S, Jeong YW, Kim JH, Koo OJ. Park SM, Hashem MA, Hossein MS, Son HY, Lee CK, Hwang WS, Kang SK, Lee BC.Analysis of nuclear reprogramming in cloned miniature pig embryos by expression of Oct-4 and Oct-4 related genes Biochem. Biophys Res Commun 2006;348:1419-1428.
    [16]Hoshino Y, Uchida M, Shimatsu Y, Miyake M, Nagao Y, Minami N, Yamada M, Imai H.Developmental competence of somatic cell nuclear transfer embryos reconstructed from oocytes matured in vitro with follicle shells in miniature pig Cloning. Stem Cells 2005;7:17-26.
    [1]Kirk AD. Crossing the bridge:large animal models in translational transplantation research.Immun Rev 2003; 196:176-196.
    [2]Prather RS, Hawley RJ, Carter DB, Lai L, Greenstein JL. Transgenic swine for 'bio-medicine and agriculture.Theriogenology 2003; 59:115-123.
    [3]Kues WA, Niemann H. The contribution of farm animals to human health.Trends Bio-technol 2004;22:286-294.
    [4]Vodicka P, Smetana Jr K, DvorankovaB, Emerick T, Xu YZ, Ourednik J, Ourednik V, Motlik J. The miniature pig as an animal model in biomedical research.Ann NY Acad Sci 2005;1049:161-171.
    [5]Lunney JK. Advances in swine biomedical model genomics.Int J Biol Sci 2007;3: 179-184.
    [6]Vajta QZhang Y, Machaty Z. Somatic cell nuclear transfer in pigs:recent achieve-ments and future possibilities. Reprod Fertil Dev 2007; 19:403^-23.
    [7]Cabot RA, Kiihholzer B, Chan AW, Lai L, Park KW, Chong KY, Schatten G,Murphy CN, Abeydeera LR, Day BN, Prather RS. Transgenic pigs produced using in vitro matured oocytes infected with a retroviral vector.Anim Biotechnol 2001;12:205-214.
    [8]Park KW, Cheong HT, Lai L, Im GS, Kuhholzer B, Bonk A,Samuel M,Rieke A,Day BN,Murphy CN,Carter DB,Prather RS.Production of nuclear transfer-derived swine that express the enhanced green fluorescent protein.Anim Biotechnol 2001; 12:173-181.
    [9]Dai Y,Vaught TD,Boone J,Chen SH,Phelps CJ,Ball S,Monahan JA,Jobst PM, McCreath KJ,Lamborn AE,Cowell-Lucero JL,Wells KD,Colman A,Polejaeva IA, Ayares DL.Targeted disruption of the alphal,3-galactosyltransferase gene in cloned pigs.Nat Biotechnol 2002;20:251-255.
    [10]Lai L,Kolber-Simonds D,Park KW,Cheong HT,Greenstein JL,Im GS,Samuel M, Bonk A,Rieke A,Day BN,Murphy CN,Carter DB,Hawley RJ,Prather RS.Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 2002;295:1089-1092.
    [11]Phelps CJ,Koike C,Vaught TD,Boone J,Wells KD.Chen SH,Ball S,Specht SM, Polejaeva IA,Monahan JA,Jobst PM,Sharma SB,Lamborn AE,Garst AS,Moore M Demetris AJ,Rudert WA,Bottino R,Bertera S,Trucco M,Starzl TE,Dai Y,Ayares DL.Production of alpha 1,3-galactosyltransferase-deficient pigs.Science 2003;299: 411-414.
    [12]Kolber-Simonds D,Lai L,Watt SR,Denaro M,Arn S,Augenstein ML,Betthauser J, Carter DB,Greenstein JL,Hao Y,Im GS,Liu Z,Mell GD,Murphy CN,Park KW, Rieke A,Ryan DJ,Sachs DH,Forsberg EJ,Prather RS,Hawley RJ.Production of alpha-1,3-galactosyltransferase null pigs by means of nuclear transfer with fibroblasts bearing loss of heterozygosity mutations.Proc Natl Acad Sci USA 2004;101:7335-7340.
    [13]Lai L,Kang JX,Li R,Wang J,Witt WT,Yong HY,Hao Y,Wax DM,Murphy CN, Rieke A,Samuel M,Linville ML,Korte SW,Evans RW,Starzl TE,Prather RS,Dai Y.Generation of cloned transgenic pigs rich in omega-3 fatty acids.Nat Biotechnol 2006;24:435-436.
    [14]Matsunari H, Onodera M, Tada N,Mochizuki H, Karasawa S, Haruyama E, Nakayama N, Saito H, Ueno S, Kurome M, Miyawaki A, Nagashima H. Transgenic-cloned pigs systemically expressing red fluorescent protein, Kusabira-Orange.Cloning Stem Cells 2008; 10:313-323.
    [15]Spurlock M.From bench to bedside:where do obese pigs fit in?In:Program of Swine in Biomedical Research Conference;2008;San Diego, US A. Abstract 46.
    [16]Wilmut I, Schnieke AE, Mc Whir J, Kind AJ and Campbell KHS:Viable offspring derived from fetal and adult mammalian cells. Nature 1997, 385:810-813.
    [17]Anderson GB and Seidel GE:Cloning for profit. Science 1998, 280:1400-1401.
    [18]Polejaeva IA and Campbell KHS:New advances in somatic cell nuclear transfer: Application in transgenesis. Theriogenology 2000,53:117-126.
    [19]Robl J:Development and application of technology for large scale cloning of cattle. Theriogenology 1999,51:499-508.
    [20]Stice SL, Robl JM, Ponce de Leon FA, Jerry J, Golueke PG, Cibelli JB and Kane JJ:Cloning:new breakthroughs leading to commer- cial opportunities. Theriogenology 1998,49:129-138.
    [21]Lanza RP, Cibelli JB and West MD:Human therapeutic cloning. Nat Med 1999, 5:975-977.
    [22]Capecchi MR:How close are we to implementing gene target-ing in animals other than the mouse? Proc Natl Acad Sci USA 2000,97:956-957.
    [23]Solter D:Imprinting. Int J Dev Biol 1998,42:951-954.
    [24]De Sousa PA, Winger Q, Hill JR, Jones K, Watson AJ and Westhusin ME: Reprogramming of fibroblast nuclei after transfer into bovine oocytes. Cloning 1999,1:63-69.
    [25]Munsie MJ, Michalska AE, O'Brien CM, Trounson AO, Pera MF and Mountford PS:Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic nuclei. Curr Biol 2000,10:989-992.
    [26]Surani MA:Reprogramming of genome function through epi-genetic inheritance. Nature 2001,414:122-128.
    [27]Winger QA, Hill JR, Shin T, Watson AJ, Kraemer DC and Westhusin ME: Genetic reprogramming of lactate dehydrogenase, cit-rate synthase, and phosphofructokinase mRNA in bovine nuclear transfer embryos produced using bovine fibroblast cell nuclei. Mol Reprod Dev 2000,56:458-464.
    [28]Garry FB, Adams R, McCann JP and Odde KG:Postnatal charac- teristics of calves produced by nuclear transfer cloning. Theriogenology 1996,45:141-152.
    [29]Hill JR, Roussel AJ, Cibelli JB, Edwards JF, Hooper NL, Miller MW, Thompson JA, Looney CR, Westhusin ME, Robl JM and Stice SL:Clin-ical and pathologic features of cloned transgenic calves and fetuses (13 case studies). Theriogenology 1999,51:1451-1465.
    [30]Kato Y, Tani T, Sotomaru Y, Kurokawa K, Kato J, Doguchi H, Yasue H and Tsunoda Y:Eight calves cloned from somatic cells of a single adult. Science 1998, 282:2095-2098.
    [31]Kubota C, Yamakuchi H, Todoroki J, Mizoshita K, Tabara N, Barber M and Yang X:Six cloned calves produced from adult fibroblast cells after long-term culture. Proc Natl Acad Sci USA 2000,97:990-995.
    [32]Renard J-P, Chastnat S, Chesne P, Richard C, Marchal J, Cordonnier N, Chavatte P and Vignon X: Lymphoid hypoplasia and somatic cloning. Lancet 1999,353:1489-1491.
    [33]Walker SK, Hartwich KM and Seamark RF: The production of unu- sually large offspring following embryo manipulation:con-cepts and changes. Theriogenology 1996,45:111-120.
    [34]Young LE, Sinclear KD and Wilmut I: Large offspring syndrome in cattle and sheep. Rev Reprod 1998, 3:155-163.
    [35]Dai Y; Vaught T. D.; Boone J.; Chen S. H.; Phelps C. J.; Ball S.; Monahan J. A.; Jobst P. M.; McCreath K. J.; Lamborn A. E.; Cowell-Lucero J. L.; Wells K. D.; Colman A.;Polejaeva I. A.; Ayares D.L.Targeted disruption of the alphal,3-galactosyltransferase gene in cloned pigs. Nat Biotechnol 20:251-255; 2002.
    [36]Lai L.; Kolber-Simonds D.; Park K. W.; Cheong H. T.; Greenstein J. L.; Im G. S.; Samuel M.; Bonk A.; Rieke A.; Day B. N.; Murphy C. N.; Carter D. B.; Hawley R. J.; Prather R. S. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295:1089-1092; 2002.
    [37]Rogers C S.; Hao Y.; Rokhlina T.; Samuel M.; Stoltz D. A.; Li Y; Petroff E.; Vermeer D. W.; Kabel A. C; Yan Z.; Spate L.; Wax D.; Murphy C. N.; Rieke A.; Whitworth K.; Linville M. L.; Korte S. W.; Engelhardt J. F.; Welsh M. J.; Prather R.S. Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. J Clin Invest 118:1571-1577; 2008a.
    [38]Rogers C. S.; Stoltz D. A.; Meyerholz D. K.; Ostedgaard L. S.; Rokhlina T.; Taft P.J.; Rogan M. P.; Pezzulo A. A.; Karp P.H.; Itani O. A.; Kabel A. C; Wohlford-Lenane C. L.; Davis G. J.; Hanfland R. A.; Smith T. L.; Samuel M.; Wax D.; Murphy C. N.; Rieke A.; Whitworth K.; Uc A.; Starner T. D.; Brogden K. A. Shilyansky J.; McCray P. B. Jr.; Zabner J.; Prather R. S.; Welsh M. J. Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 321: 1837-1841; 2008b.
    [39]Betthauser J.; Forsberg E.; Augenstein M.; Childs L.; Eilertsen K.; Enos J.; Forsythe T.; Golueke P.; Jurgella G; Koppang R.; Lesmeister T.; Mallon K.; Mell G; Misica P.; Pace M.; Pfister-Genskow M.; Strelchenko N.; Voelker G.; Watt S.; Thompson S.; Bishop M. Production of cloned piglets from in vitro systems. Nat Biotechnol 18:1055-1059; 2000.
    [40]Onishi A.; Iwamoto M.; Akita T.; Mikawa S.; Takeda K.; Awata T.; Hanada H.; Perry A. C. Pig cloning by micro injection of fetal fibroblast nuclei. Science 289:1188-1190; 2000.
    [41]Polejaeva I. A.; Chen S. H.; Vaught T. D.; Page R. L.; Mullins J.; Ball S.; Dai Y.; Boone J.; Walker S.; Ayares D. L.; Colman A.; Campbell K. H. S. Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407:86-90; 2000.
    [42]Vajta G.; Zhang Y.; Machaty Z. Somatic cell nuclear transfer in pigs:recent achievements and future possibilities. Reprod Fertil Dev 19:403-423; 2007.
    [43]Pratt S. L.; Sherrer E. S.; Reeves D. E.; Stice S. L. Factors influencing the commercialisation of cloning in the pork industry. Soc Reprod Fertil Suppl 62:303-315; 2006.
    [44]Dean W.; Santos F.; Stojkovic M.; Zakhartchenko V.; Walter J.; Wolf E.; Reik W. Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc Natl Acad Sci USA 98:13734-13738; 2001.
    [45]Kang Y. K.; Koo D. B.; Park J. S.; Choi Y. H.; Kim H. N.; Chang W. K.; Lee K. K.; Han Y. M. Aberrant methylation of donor genome in cloned bovine embryos. Nat Genet 50:173-177; 2001.
    [46]Kang Y. K.; Yeo S; Kim S. H.; Koo D. B.; Park J. S.; Wee G.; Han J. S.; Oh K. B.; Lee K. K.; Han Y. M. Precise recapitulation of methylation change in early cloned embryos. Mol Reprod Dev 66:32-37; 2003.
    [47]Santos F.; Zakhartchenko V.; Stojkovic M.; Peters A.; Jenuwein T.;Wolf E.; Reik W; Dean W. Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. CurrBiol 13:1116-1121; 2003.
    [48]Bourc'his D, Le Bourhis D, Patin D, Niveleau A, Comizzoli P, Renard J-P and Viegas-Pe'quignot E:Delayed and incomplete repro-gramming of chromosome methylation patterns in bovine cloned embryos. Curr Biol 2001,11:1542-1546.
    [49]Dean W, Santos F, Stojkovic M, Zakhartchenko V, Walter J, Wolf E and Reik W: Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc Natl Acad Sci USA 2001, 98:13734-13738.
    [50]Kang Y-K, Koo D-B, Park J-S, Choi Y-H, Lee K-K and Han Y-M:Aberrant methylation of donor genome in cloned bovine embryos. Nat Genet 2001, 28:173-177.
    [51]Rideout WM Ⅲ, Eggan K and Jaenisch R:Nuclear cloning and epigenetic reprogramming of the genome. Science 2001,293:1093-1098.
    [52]Latham KE. Mechanisms and control of embryonic genome activation in mammalian embryos. Int Rev Cytol 1999.193:71-124.
    [53]Braude P, Bolton V, Moore S. Human gene expression first occurs between the four-and eight-cell stages of preimplantation development. Nature 1988. 332:459-461.
    [54]Zernicka-Goetz M. Activation of embryonic genes during preimplantation rat development. Mol Reprod Dev 1994.38:30-35.
    [55]Jarrell VL, Day BN, Prather RS. The transition from maternal to zygotic control of development occurs during the 4-cell stage in the domestic pig, sus scrofa; quantitative and qualitative aspects of protein synthesis. Biol Reprod 1991.44:62-68.
    [56]TelfordNA,WatsonAJ,SchultzGA. Transition frommaternal to embryonic control in early mammalian development:A com-parison of several species. Mol Reprod Dev 1990.26:90-100.
    [57]Newport J, KirschnerM.. Amajor transition in early Xenopus embryos. I.Characterization and timing of cellular changes at the midblastula stage. Cell 1982a.30:675-686.
    [58]Newport J, KirschnerM. Amajor transition in early Xenopus embryos. Ⅱ. Control of the onset of transcription. Cell 1982b.30:687-696.
    [59]PratherRS, SchattenG. Construction of the nuclearmatrix at the transition from maternal to zygotic control of development in the mouse:An immunocytochemical study. Mol Reprod Dev 1992.32:203-208.
    [60]Zhao J, Whyte JJ, Prather RS. Effect of epigenetic regulation during swine embryogenesis and on cloning by nuclear transfer. Cell Tissue Res 2010b. 341:13-21.
    [61]PratherRS,SimsMM, FirstNL. Nuclear transplantation in the pig embryo: Nuclear swelling. J Exp Zool 1990.255:355-358
    [62]Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 2007.447:425-432.
    [63]OuhibiN, Fulka J,Kanka J,MoorRM. Nuclear transplantation of ectodermal cells in pig oocytes—Ultrastructure and radiography. Mol Reprod Dev 1996. 44:533-539.
    [64]Prather RS. Cloning mammals by nuclear transfer. Encycl Reprod I 1999.638-644.
    [65]Martin C, Brochard V,Migne C, ZinkD, Debey P, LathamKE. Architectural reorganization of the nuclei upon transfer into oocytes accompanies genome reprogramming. Mol Reprod Dev 2006.73:1102-1111.
    [66]Prather RS. Cloning—Pigs is pigs. Science2000.289:1886-1887.
    [67]Gao SR, Chung YG, Parseghian MH, King GJ, Adashi EY, Latham KE. Rapid H1 linker histone transitions following fertilization or somatic cell nuclear transfer: Evidence for a uniform developmental program in mice. Dev Biol 2004. 266:62-75.
    [68]Chang CC, Gao S, Sung LY, Corry GN, Ma Y, Nagy ZP, Tian XC, Rasmussen TP. Rapid elimination of the histone variant MacroH2A fromsomatic cell heterochromatin after nuclear transfer. Cell Reprogram 2010.12:43-53.
    [69]Fuks F. DNA methylation and histone modifications:Teaming up to silence genes. Curr Opin Genet Dev 2005.15:490-495.
    [70]Yang X, Smith SL, Tian XC, Lewin HA, Renard JP, Wakayama T. Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat Genet 2007.39:295-302.
    [71]Zhao J, Whyte JJ, Prather RS. Effect of epigenetic regulation during swine embryogenesis and on cloning by nuclear transfer. Cell Tissue Res 2010b. 341:13-21.
    [72]Mayer W, Niveleau A, Walter J, Fundele R, Haaf T. Embryogenesis—Demethylation of the zygotic paternal genome. Nature 2000. 403:501-502.
    [73]Santos F, Hendrich B, Reik W, Dean W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 2002.241:172-182.
    [74]Bonk AJ, Li R, Lai L, Hao Y, Liu Z, Samuel M, Fergason EA, Whitworth KM, Murphy CN, Antoniou E, Prather RS. Aberrant DNA methylation in porcine in vitro-, parthenogenetic-, and somatic cell nuclear transfer-produced embryos.MolReprod Dev 2008.75:250-264.
    [75]Young LE, Beaujean N. DNA methyla tation embryo:The differing stories of th Anim Reprod Sci 82-83:61-78.24. Kang YK, Koo DB, Park JS, Choi YH, Chung AS, Lee KK, Han YM.2001. Aberrant methylation of donor genome in cloned bovine embryos. Nat Genet 2004.28:173-177.
    [76]Mann MRW, Chung YG, Nolen LD, Verona RI, Latham KE, Barto-lomei MS. Disruption of imprinted gene methylation and expression in cloned preimplantation stagemouse embryos. Biol Reprod 2003.69:902-914.
    [77]Yamazaki Y, Fujita TC, Low EW, Alarcon VB, Yanagimachi R, Marikawa Y. Gradual DNA demethylation of the Oct4 promoter in cloned mouse embryos. Mol Reprod Dev 2006.73:180-188.
    [78]Bourc'his D, Le Bourhis D, Patin D, Niveleau A, Comizzoli P, Renard JP, Viegas-Pequignot E. Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos. Curr Biol 2001.11:1542-1546.
    [79]DeanW, Santos F, StojkovicM, Zakhartchenko V,Walter J.Wolf E, Reik W. Conservation of methylation reprogramming in mammalian development: Aberrant reprogramming in cloned embryos. Proc Natl Acad Sci USA 2001.98:13734-13738.
    [80]Bonk AJ, Cheong HT, Li R, Lai L, Hao Y, Liu Z, Samuel M, Fergason EA, Whitworth KM, Murphy CN, Antoniou E, Prather RS. Correlation of developmental differences to the methylation profiles of nuclear transfer donor cells. Epigenetics 2007.2:179-186.
    [81]Sawai K, Takahashi M, Moriyasu S, Hirayama H, Minamihashi A, Hashizume T, Onoe S. Changes in the DNA methylation status of bovine embryos from the blastocyst to elongated stage derived from somatic cell nuclear transfer. Cell Reprogram 2010.12:15-22.
    [82]Suzuki J Jr, Therrien J, Filion F, Lefebvre R, Goff AK, Smith LC. In vitro culture and somatic cell nuclear transfer affect imprinting ofSNRPNgene in pre-and post-implantation stages of development in cattle. BMC Dev Biol 2009.9:9.
    [83]Wei Y, Zhu J, Huan Y, Liu Z, Yang C, Zhang X, Mu Y, Xia P, Liu Z. Aberrant expression and methylation status of putatively imprinted genes in placenta of cloned piglets. Cell Reprogram 2010.12:213-222.
    [84]Lee J, Inoue K, Ono R, Ogonuki N, Kohda T, Kaneko-Ishino T, Ogura A, Ishino F. Erasing genomic imprinting memory in mouse clone embryo produced from day 11.5 primoridal germ cells. Development 2002.129:1807-1817
    [85]Niemann H, Carnwath JW, Herrmann D, Wieczorek G, Lemme E, Lucas-Hahn A, Olek S. DNA methylation patterns reflect epigenetic reprogramming in bovine embryos. Cell Reprogram 2010.12:33-42.
    [86]Wakefield L, Gurdon JB. Cytoplasmic resulation of 5S RNA genes in nuclear-transplant embryos. EMBO J 2:1613-1619.
    [87]Gurdon JB, Brennan B, Fairman S, Mohun TJ.1984. Transcription of muscle-specific actin genes in early Xenopus development:Nuclear transplantation and cell dissociation. Cell 1983.38:691-700.
    [88]Daniels R, Hall V, Trounson AO. Analysis of gene transcription in bovine nuclear transfer embryos reconstructed with granulosa cell nuclei. Biol Reprod 2000.63:1034-1040.
    [89]Winger QA, Hill JR, Shin TY, Watson AJ, Kraemer DC, Westhusin ME. Genetic reprogramming of lactate dehydrogenase, citrate synthase, and phosphofructokinase mRNA in bovine nuclear transfer embryos produced using bovine fibroblast cell nuclei. Mol Reprod Dev 2000.56:458-464
    [90]Wrenzycki C, Wells D, Herrmann D, Miller A, Oliver J, Tervit R, Niemann H. Nuclear transfer protocol affects messenger RNA expression patterns in cloned bovine blastocysts. Biol Reprod 2001.65:309-317.
    [91]Boiani M, Eckardt S, Scholer HR, McLaughlin KJ. Oct4 distribution and level in mouse clones:Consequences for plur-ipotency. Genes Dev 2002.16:1209-1219
    [92]Bortvin A, Eggan K, Skaletsky H, Akutsu H, Berry DL, Yanagimachi R, Page DC, Jaenisch R. Incomplete reactivation of Oct4-related genes in mouse embryos cloned from somatic nuclei. Development 2003.130:1673-1680
    [93]Li X, Kato Y, Tsunoda Y. Comparative analysis of develop-ment-related gene expression in mouse preimplantation embryos with different developmental potential. Mol Reprod Dev 2005.72:152-160.
    [94]Pfister-Genskow M, Myers C, Childs LA, Lacson JC, Patterson T, Betthauser JM, Goueleke PJ, Koppang RW, Lange G, Fisher P, Watt SR, Forsberg EJ, Zheng Y, Leno GH, Schultz RM, Liu B, Chetia C, Yang X, Hoeschele I, Eilertsen KJ. Identification of differentially expressed genes in individual bovine preimplantation embryos produced by nuclear transfer:Improper reprogramming of genes required for development. Biol Reprod 2005.72:546-555.
    [95]Smith SL, Everts RE, Tian XC, Du FL, Sung LY, Rodriguez-Zas SL, Jeong BS, Renard JP, Lewin HA, Yang XZ. Global gene expression profiles reveal significant nuclear reprogramming by the blastocyst stage after cloning. Proc Natl Acad Sci USA 2005.102:17582-17587.
    [96]Inoue K, Ogonuki N, Miki H, Hirose M, Noda S, Kim JM, Aoki F, Miyoshi H, Ogura A. Inefficient reprogramming of the hematopoietic stem cell genome following nuclear transfer. J Cell Sci 2006.119:1985-1991.
    [97]Somers J, Smith C, Donnison M,Wells DN, Henderson H, McLeay L,PfefferPL. Gene expression profiling of individual bovine nuclear transfer blastocysts. Reproduction 2006.131:1073-1084.
    [98]Jouneau A, Zhou Q, Camus A, Brochard V, Maulny L, Collignon J, Renard JP. Developmental abnormalities of NT mouse embryos appear early after implantation. Development 2006.133:1597-1607.
    [99]Jiang L, Jobst P, Ayares D, Lai L, Samuel M, Prather RS, Tian XC. Expression of growth-regulating imprinted genes in de-creased and surviving cloned pigs.CloningStemCells 2007a.9:97-106.
    [100]Aston KI, Li GP, Hicks BA, Sessions BR, Davis AP, Rickords LF, Stevens JR, White KL. Abnormal levels of transcript abundance of developmentally important genes in various stages of preimplantation bovine somatic cell nuclear transfer embryos. Cell Reprogram 12:23-32.
    [101]de Montera B, El Zeihery D, Muller S, Jammes H, Brem G, Reich-enbach H-D, Scheipl F, Chavatte-Palmer P, Zakhartchenko V, Schmitz OJ, Wolf E, Renard J-P, Hiendleder S.2010. Quantifi-cation of leukocyte genomic 5-methylcytosine levels reveals epigenetic plasticity in healthy adult cloned cattle. Cell Reprogram 2010.12:175-181.
    [102]Lee RSF, Peterson AJ, Donnison MJ, Ravelich S, Ledgard AM, Li N, Oliver JE, Miller AL, Tucker FC, Breier B, Wells DN. Cloned cattle fetuses with the same nuclear genetics are more variable than contemporary half-siblings resulting from artificial insemination and exhibit fetal and placental growth deregulation even in the first trimester. Biol Reprod 2004.70:1-11.
    [103]Turner BM. Histone acetylation and epigenetic code. Bioassays 2000; 22: 836-845.
    [104]Hebbes TR, Thorne AW, Crane-Robinson C. A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J 1988; 13:1823-30.
    [105]Hong L, Schroth GP, Matthews HR, Yau P, Bradbury EM. Studies of the DNA binding properties of histone H4 amino terminus:therma denaturation studies reveal that acetylation markedly reduces the binding constant of H4 "tail" to DNA. J Biol Chem 1993; 268:305-314.
    [106]Lee DY, Hayes JJ, Pruss D, Wolffe AP. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 1993; 72:73-84.
    [107]Zlatanova J, Caiafa P, Van Holde K. Linker histone binding and displacement: versatile mechanism for transcriptional regulation. FASEB J 2000; 14:1697-1704.
    [108]Vogelauer M, Rubbi L, Lucas I, Brewer BJ, Grunstein M. Histone acetylation regulates the time of replication origin firing. Mol Cell 2002; 10:1223-1233.
    [109]Cervoni N, Szyf M. Demethylase activity is directed by histone acetylation. J Biol Chem 2001; 276:40778-40787.
    [110]Geiman TM, Robertson KD. Chromatin remodelling, histone modifications, and DNA methylation—how does it all fit together? J. Cell Biochem 2002; 87:117-125.
    [111]Jeppesen F. Histone acetylation:A possible mechanism for the inheritance of cell memory at mitosis. Bioassays 1997; 19:67-74.
    [112]Jenuwein T, Allis CD. Translating the histone code. Science 2001; 293: 1074-1080.
    [113]Adenot PG, Mercier Y, Renard JP, Thompson EM. Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos. Development 1997; 124:4615-4625.
    [114]Kim JM, Liu H, Tazaki M, Nagata M, Aoki F. Changes in histone acetylation during mouse oocyte meiosis. J Cell Biol 2003; 162:37-46.
    [115]Sarmento OF, Digilio LC, Wang Y, Perlin J, Herr JC, Allis CD, Coonrod SA. Dynamic alterations of specific histone modifications during early murine development. J Cell Sci 2004; 117:4449-4459.
    [116]Spinaci M, Seren E, Mattioli M. Maternal chromatin remodelling during maturation and after fertilization in mouse oocytes. Mol Reprod Devel 2004; 69:215-221.
    [117]Akiyama T, Kim JM, Nagata M, Aoki F. Regulation of histone acetylation during meiotic maturation in mouse oocytes. Mol Reprod Devel 2004; 69: 222-227.
    [118]Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 2002; 3:662-673.
    [119]Enright BP, Kubota C, Yang X, Tian XC. Epigenetic characteristics and development of embryos cloned from donor cells treated by trichostatin A or 5-aza-2-deoxycytidine. Biol Reprod 2003; 69:896-901.
    [120]Shi W, Hoeflich A, Flaswinkel H, Stojkovic M, Wolf E, Zakhartchenko V. Induction of a senescent-like phenotype does not confer the ability of bovine immortal cells to support the development of nuclear transfer embryos. Biol Reprod 2003; 69:301-309.
    [121]Lawitts JA, Biggers JD. Culture of preimplantation embryos. In:Wassarman PM, Depamphilis ML (eds.), Methods in Enzymology. Guide to Techniques in Mouse Development, vol.225. New York:Academic Press; 1993:153-190.
    [122]Wakayama T, Perry ACF, Zuccotti M, Johnson KR, Yanagimachi R. Full- term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 1998; 394:369-374.
    [123]Yoshida M, Kijima M, Akita M, Beppu T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 1990; 265:17174-17179.
    [124]Zhang DE, Nelson DA. Histone acetylation in chicken erythrocytes:rates of deacetylation in immature and mature red blood cells. Biochem J 1988; 250:241-245.
    [125]Wiekowski M, Miranda M, Nothias JY, DePamphilis ML. Changes in histone synthesis and modification at the beginning of mouse development correlate with the establishment of chromatin mediated repression of transcription. J Cell Sci 1997; 110:1147-1158.
    [126]Wakayama T, Yanagimachi R. Effect of cytokinesis inhibitors, DMSO and timing of oocyte activation on mouse cloning using cumulus cell nuclei. Reproduction 2001; 122:49-60.
    [127]Rybouchkin A, Heindryckx B, VanderElst J, Dhont M. Developmental potential of cloned mouse embryos reconstructed by a conventional technique of nuclear injection. Reproduction 2002; 194:197-207.
    [128]Boiani M, Eckardt S, Leu NA, Scholer HR, McLaughlin KJ. Pluripotency deficit in clones overcome by clone-clone aggregation:epigenetic complementation? EMBO J 2003; 22:5304-5312.
    [129]Mann MR, Chung YG,Nolen LD, Verona RI, Latham KE, Bartolomei MS. Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos. Biol Reprod.2003; 69:902-914.
    [130]Bortvin A, Eggan K, Skaletsky H, Akutsu H, Berry DL, Yanagimachi R, Page DC, Jaenisch R. Incomplete reactivation of Oct4-related genes in mouse embryos cloned from somatic nuclei. Development 2003; 130:1673-1680.
    [131]Wakimoto BT. Beyond the nucleosome:epigenetic aspects of position- effect variegation in Drosophila. Cell 1998; 93:321-324.
    [132]Svensson K, Mattsson R, James TC, Wentzel P, Pilartz M, MacLaughlin J, Miller SJ, Olsson T, Eriksson UJ, Ohlsson R. The paternal allele of the H19 gene is progressively silenced during early mouse development:the acetylation status of histones may be involved in the generation of variegated expression patterns. Development 1998; 125:61-69.
    [133]Ekwall K, Olsson T, Turner BM, Cranston G, Allshire RC. Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell 1997; 91:1021-1032.
    [134]Oswald J, Engemann S, Lane N, Mayer W, Olek A, Fundele R, Dean W, Reik W, Walter J. Active demethylation of the paternal genome in the mouse zygote. Curr Biol 2000; 10:475-478.
    [135]Santos F, Zakhartchenko V, Stojkovic M, Peters A, Jenuwein T, Wolf E, Reik W, Dean W. Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr Biol 2003; 13:1116-1121.
    [136]Heindryckx B, Rybouchkin A, Van der Elst J, Dhont M. Effect of culture media on in vitro development of cloned mouse embryos. Cloning 2001; 3:41-50.
    [137]Littau VC, Burdick CJ, Allfrey VG, Mirsky SA. The role of histones in the maintenance of chromatin structure. Proc Natl Acad Sci USA 1965; 54: 1204-1212.
    [138]Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 1996; 87:953-959.
    [139]Roth SY, Denu JM, Allis CD. Histone acetyltransferases. Annu Rev Biochem 2001; 70:81-120.
    [140]Gao L, Cueto MA, Asselbergs F, Atadja P. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem 2002; 277:25748-25755.
    [141]Ito K, Barnes PJ, Adcock IM. Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits IL-1b-induced histone H4 acetylation on lysines 8 and 12. Mol Cell Biol 2000; 20:6891-6903.
    [142]Dhillon N, Oki M, Szyjka SJ, et al. H2A.Z functions to regulate progression through the cell cycle. Mol Cell Biol 2006;26:489-501.
    [143]Guillemette B, Bataille AR, Gevry N, et al. Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning. PLoS Biol 2005;3:2100-10.
    [144]Zhang H, Roberts DN, Cairns BR. Genome-wide dynamics of HTZ1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss. Cell 2005; 123:219-231.
    [145]Raisner RM, Hartley PD, Meneghini MD, et al. Histone variant H2A.Z marks the 5'ends of both active and inactive genes in euchromatin. Cell 2005;123:233-48.
    [146]Li B, Pattenden SG, Lee D, et al. Preferential occupancy of histone variant H2A.Z at inactive promoters influences local histone modifications and chromatin remodeling. Proc Natl Acad SciUSA 2005; 102:18385-90.
    [147]Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000;403:41-5.
    [148]Berger SL. Histone modifications in transcriptional regulation. CurrOpinGenetDev 2002; 12:142-8.
    [149]Turner BM. Cellular memory and the histone code. Cell 2002;111:285-91.
    [150]Fischle W, Wang Y, Allis CD. Binary switches and modification cassettes in histone biology and beyond. Nature 2003;425:475-9.
    [151]Brownell JE, Zhou J, Ranalli T, et al. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 1996;84:843-51.
    [152]Allfrey Vg, Faulkner R, Mirsky Ae. Acetylation and methylation of histones and their possible role in the regulation of ma synthesis. Proc Natl Acad Sci USA 1964;51:786-94.
    [153]Marmorstein R. Protein modules that manipulate histone tails for chromatin regulation. Nat Rev Mol Cell Biol 2001;2:422-32.
    [154]Kurdistani SK, Grunstein M. Histone acetylation and deacetylation in yeast. NatRevMolCellBiol 2003;4:276-84.
    [155]Kornberg RD, Lorch Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 1999;98:285-94.
    [156]Turner BM. Histone acetylation and epigenetic code. Bioassays 2000; 22: 836-845.
    [157]Hebbes TR, Thorne AW, Crane-Robinson C. A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J 1988; 13:1823-30.
    [158]Hong L, Schroth GP, Matthews HR, Yau P, Bradbury EM. Studies of the DNA binding properties of histone H4 amino terminus:thermal denaturation studies reveal that acetylation markedly reduces the binding constant of H4 "tail" to DNA. J Biol Chem 1993; 268:305-314.
    [159]Lee DY, Hayes JJ, Pruss D, Wolffe AP. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 1993; 72:73-84.
    [160]Zlatanova J, Caiafa P, Van Holde K. Linker histone binding and displacement: versatile mechanism for transcriptional regulation. FASEB J 2000; 14:1697-1704.
    [161]Vogelauer M,Rubbi L, Lucas I, Brewer BJ, Grunstein M. Histone acetylation regulates the time of replication origin firing. Mol Cell 2002; 10:1223-1233.
    [162]Cervoni N, Szyf M. Demethylase activity is directed by histone acetylation. J Biol Chem 2001; 276:40778-40787.
    [163]Geiman TM, Robertson KD. Chromatin remodelling, histone modifications, and DNA methylation—how does it all fit together? J. Cell Biochem 2002; 87:117-125.
    [164]Jeppesen F. Histone acetylation:A possible mechanism for the inheritance of cell memory at mitosis. Bioassays 1997; 19:67-74.
    [165]Jenuwein T, Allis CD. Translating the histone code. Science 2001; 293: 1074-1080.
    [166]Adenot PG, Mercier Y, Renard JP, Thompson EM. Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos. Development 1997; 124:4615-4625.
    [167]Kim JM, Liu H, Tazaki M, Nagata M, Aoki F. Changes in histone acetylation during mouse oocyte meiosis. J Cell Biol 2003; 162:37-46.
    [168]Sarmento OF, Digilio LC, Wang Y, Perlin J, Herr JC, Allis CD, Coonrod SA. Dynamic alterations of specific histone modifications during early murine development. J Cell Sci 2004; 117:4449-4459.
    [169]Spinaci M, Seren E, Mattioli M. Maternal chromatin remodelling during maturation and after fertilization in mouse oocytes. Mol Reprod Devel 2004; 69:215-221.
    [170]Akiyama T, Kim JM, Nagata M, Aoki F. Regulation of histone acetylation during meiotic maturation in mouse oocytes. Mol Reprod Devel 2004; 69: 222-227.
    [171]Li E. Chromatin modification and epigenetic reprogramming in mamma- lian development. Nat Rev Genet 2002; 3:662-673.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700