用户名: 密码: 验证码:
聚合氯化铁—聚环氧氯丙烷胺复合混凝剂的性能及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文制备出一系列具有不同聚合氯化铁(PFC)的碱化度(B)、不同聚环氧氯丙烷-二甲胺(EPI-DMA)质量分数(w(E))和特性粘度(η)的无机-有机复合混凝剂PFC-EPI-DMA,并将其用于处理不同性质的模拟水样。通过烧杯试验、zeta电位的测定、Ferron逐时络合比色法、光散射法等多种化学分析方法及现代分析仪器测试技术对比研究了该复合混凝剂与传统混凝剂在模拟染料废水处理中的性能和混凝机理的差异,考察了w(E)值、η值、B值和熟化时间等对PFC-EPI-DMA复合混凝剂铁的水解形态分布和混凝性能的影响。主要结论归纳如下:
     (1)采用Ferron逐时络合比色法研究PFC-EPI-DMA复合混凝剂体系中铁的形态分布,发现该复合混凝剂中EPI-DMA的加入会影响铁的水解形态分布。单就Feb含量而言,w(E)=3.5%、η=850 mPa·s、B=0.5的PFC-EPI-DMA复合混凝剂熟化1天时其含量最高。
     (2)处理模拟活性艳红染料废水时PFC-EPI-DMA的性能明显优于PFC单独使用。与将PFC和EPI-DMA以不同的顺序投加相比,PFC-EPI-DMA在实验投加量范围内虽然电中和能力较弱,但是其脱色性能较高。而在处理模拟活性翠兰染料废水时PFC-EPI-DMA与PFC和EPI-DN(?)A以不同的顺序投加以及PFC单独使用相比,虽然其在较高投加量下电中和能力最强,但是其脱色性能最差。PFC-EPI-DMA处理模拟染料废水时一般在高w(E)值和高η值、低B值、低熟化时间、pH值接近中性条件下具有较好的脱色效果。
     (3)与PFC相比,PFC-EPI-DMA复合混凝剂在处理活性艳红时可以大幅提高絮体生成速度,缩短混凝剂与污染物反应时间,并提高最终絮体粒度,同时会增大絮体差异性;但PFC-EPI-DMA在处理活性翠兰时,较低投加量下降低絮体生成速度,并减小最终絮体粒度和絮体差异性。处理活性艳红时,w(E)值越大,PFC-EPI-DMA形成的絮体增长速度越快,形成的最终絮体粒度越大,同时絮体差异性增大。处理活性翠兰时,在较低投加量下,w(E)值越小,PFC-EPI-DMA形成的絮体增长速度越快,形成的最终絮体粒度越大,同时絮体差异性增大;在较高投加量下,w(E)值越大,PFC-EPI-DMA形成的絮体增长速度越快,形成的最终絮体粒度越大,同时絮体差异性减小。在η值较高、B值较低和pH值接近中性(6.0-7.5)条件下,PFC-EPI-DMA与染料反应时间较短,絮体增长速度较快,絮体最终粒度较大,絮体差异性较小。絮体增长速度、絮体最终粒度和絮体差异性随着熟化时间的变化规律较为复杂,而且大多与两种混凝剂处理模拟染料废水时脱色率随着熟化时间的变化规律不符合。
     (4)处理模拟天然地表水时,PFC-EPI-DMA与PFC相比其混凝效果有一定程度的降低。一般在低w(E)值和低B值、高η值条件下,PFC-EPI-DMA对模拟天然地表水具有较好的混凝效果。
     上述研究初步明确了PFC-EPI-DMA处理不同模拟水样的混凝效果、混凝行为和机理等,为高效、经济的PFC-EPI-DMA复合混凝剂的研发和应用提供理论指导。
In this paper, a series of composite inorganic-organic coagulant was prepared by polyferric chloride (PFC) and epichlorohydrin-dimethylamine (EPI-DMA) with different basicity (B) of PFC, different mass fraction (w(E)) and intrinsic viscosity (η) of EPI-DMA. The advantage of PFC-EPI-DMA over PFC and successive addition of PFC and EPI-DMA in coagulation efficiency and the difference of them in coagulation mechanism were revealed. The effect of B value, w(E),ηvalue and aging period on coagulation efficiency, Fe(Ⅲ) species distribution and floc aggregation process were studied by a variety of methods and technology, such as jar test, zeta potential measurement, Fe-Ferron method and photometric dispersion analyzer. The main conclusions are as follows:
     (1) Fe-Ferron method was used to examine Fe (Ⅲ) species distribution of PFC-EPI-DMA. The addition of EPI-DMA significantly affects the Fe (Ⅲ) species distribution of the composite coagulant. When w(E)=3.5%、η=850 mPa·s、B=0.5, the content of Feb was the highest in PFC-EPI-DMA with 1d aging.
     (2) For the treatment of synthetic reactive red wastewater, PFC-EPI-DMA was more efficient than PFC. Compared with successive addition of PFC and EPI-DMA in two reactive dyes wastewater, PFC-EPI-DMA gave higher color removal efficiency but weaker charge neutralization ability in reactive red wastewater treatment, whereas it gave lower color removal efficiency but stronger charge neutralization ability in reactive blue wastewater treatment. In the middle pH range, PFC-EPI-DMA generally achieved better color removal efficiency at higher w(E) andηvalue, lower B value and aging period.
     (3) For the treatment of synthetic reactive red wastewater, floc growth velocity (Growth rate), the average floc size (Ratio) and the time-weighted steady state variance (TWV) of PFC-EPI-DMA were larger than those of PFC. However, these three parameters of PFC-EPI-DMA were smaller than those of PFC at lower dosage range when treated synthetic reactive blue wastewater. With the increase of w(E) value, three parameters were all increased in reactive red wastewater treatment. For the treatment of synthetic reactive blue wastewater, PFC-EPI-DMA achieved larger Growth rate and Ratio but lower TWV at lower dosage with increasing w(E) value. However, the orders of three parameters at high dosage were contrary to those at low dosage. In the middle pH range, PFC-EPI-DMA with higherηvalue and lower B value achieved larger Growth rate and Ratio, smaller TWV. The effect of aging time on three parameters was complicated.
     (4) Compared with PFC, PFC-EPI-DMA achieved worse turbidity and organic matter removal in synthetic natural surface water treatment. Generally speaking, PFC-EPI-DMA with higherηvalue, lower w(E) and B value achieved better coagulation performance.
     The primary coagulation efficiency, coagulation behavior and coagulation mechanism of PFC-EPI-DMA were confirmed in different synthetic water treatment. These contents will provide the theory for impoldering and applying PFC-EPI-DMA.
引文
[1]汤鸿霄.无机高分子复合混凝剂的研制趋向[J].中国给水排水1999,15(2):1-4.
    [2]魏锦程,高宝玉,王燕,岳钦艳.聚合铁复合絮凝剂用于城镇纳污河河水化学强化处理的性能及机理研究[J].精细化工,2008,25(2)
    [3]Duan J, Gregory J. Coagulation by hydrolyzing metal salts[J]. Adv. Colloid Interface Sci.,2003,100:475-502.
    [4]Letterman R D, Modeling the effect of hydrolyzed aluminum and solution chemistry on flocculation kinetics[J]. Evn. Sci. Tech.,1985,19(8):673-681.
    [5]Orme J, Ohanian E V,1990. Assessing the health risks of aluminium. Environmental Geochemistry and Health 12 (1-2),55-58.
    [6]崔蕴霞,肖锦.铝盐絮凝剂及其环境效应[J].工业水处理,1998,18(3):6-9.
    [7]Harrington C R, Wischik C W, McArrhur F K. Alzheimer's-disease-like changes in tau protein processing:association with aluminum accumulation in brains of renal dialysis patients [J]. Spectrochimica Acta, Part B,1984,343:993-997.
    [8]Flaten T P,2001. Aluminium as a risk factor in Alzheimer's disease, with emphasis on drinking water. Brain Research Bulletin 55 (2),187-196.
    [9]Wei J C, Gao Y G, Yue Q Y, Wang Y, Lu L,2009. Performance and mechanism of polyferric-quarternary ammonium salt composite flocculants in treating high organic matter and high alkalinity surface water, Journal of Hazardous Materials 165:789-795.
    [10]Bell-Ajy K, Abbaszadegan M, Ibrahim E, Verges D, et al. Conventional and optimized coagulation for NOM removal [J]. J. Am. Water Works Assoc,2000, 92 (10):44-58.
    [11]Edzwald J K, Tobiason J E, Enhanced coagulation:US requirements and a broader view [J]. Water Sci. and Technol.,1999,40 (9):63-70.
    [12]Jiang J Q, Graham N J D. Observation of the comparative hydrolysis/ precipitation behaviour of ployferric sulphate and ferric sulphate [J]. Water Res., 1998,32:930-935.
    [13]郑怀礼,龙腾锐,舒型武.聚合铁类絮凝剂作用机理分析[J].重庆环境科学,2000,22(3):51-53.
    [14]Saar R A, Weber J H. Comparison of spectrofluorometry and ion-selective electrode potentiometry for determination of complexes between fulvic acid and heavy-metal ions [J]. Anal. Chem.,1980,52:2095-2100.
    [15]舒型武,郑怀礼.阳离子型有机絮凝剂研究进展[J].现代化工,1999,21(10):13-16.
    [16]Choi J H, Shin W S, Lee S H et al. Application of Synthetic Polyamine Flocculants for Dye Wastewater Treatment[J]. Separation Science and Technology.2001,36(13):2945-2958.
    [17]Duk Jong Joo, Won Sik Shin, Lee-Soon Park et al. Effect of Polyamine Flocculants Types on Dye Wastewater Treatment[J]. Separation Science and Technology.2003,38(3):661-678.
    [18]高宝玉,张华.聚环氧氯丙烷胺的制备及脱色性能[J].精细化工,2005,22(8):611-615.
    [19]Brian Bolto, John Gregory, Organic polyelectrolytes in water treatment. Water Res.41 (2007):2301-2324.
    [20]Aguilar M I, Saez J, Llorens M, et al, Microscopic observation of particle reduction in slaughterhouse wastewater by coagulation-flocculation using ferric sulphate as coagulant and different coagulant aids [J]. Water Res.,2003,37: 2233-2241.
    [21]Shi B, Tang Z,2006. Preparation and characterisation of organic polymer modified composite polyaluminium chloride. Journal of Environmental Sciences 18 (2),214-220.
    [22]Gao, B.-Y., Wang, Y., Yue, Q.-Y.,2005. The chemical species distribution of aluminiumin composite flocculants prepared from polyaluminum chloride (PAC) and Polydimethyldiallylammonium chloride (PDMDAAC). Acta Hydrochimica et Hydrobiologica 33 (4),365-371.
    [23]Gao, B.-Y., Wang, Y., Yue, Q.-Y., Wei, J.-C., Li, Q.,2007. Colorremoval from simulated dye water and actual textile wastewater using a composite coagulant prepared bypolyferric chloride and poly-dimethyldiallylammonium chloride. Separation and Purification Technology 54,157-163.
    [24]高宝玉,魏锦程,王燕,等.聚合铁复合絮凝剂处理地表水的性能研究[J].中国给水排水,2006,22(7):57-64.
    [25]Cohen J M,. Hannah S A. In the 3rd water quality and treatment (Eds:Hill M.), New York,1971,66-122.
    [26]Laussan J P, Commenges G.1H,13C and 27A1 NMR study of aluminum-ATP complexes:a possible relation with its mological application [J]. Nauv. J. Chim., 1983,7,579-583.
    [27]Parthasarathy N, Buffle J. Study of polymeric aluminiurn(Ⅲ) hydroxide solution for application in wastewater treatment:Properties of the polymer and optimal conditions of preparation [J]. Wat. Res.,1985,19:25-35.
    [28]Istv'an L.On the type of bond developing between the aluminum and iron(Ⅲ) hydroxide and organic substances [J]. Water Sci. Technol.,1993,27:242-252.
    [29]周琴,肖锦.给水原水处理中的混凝技术[J].工业水处理,1999,19(2):3-5.
    [30]国家环保局.混凝剂与絮凝剂[M].北京:中国科学出版社,1991.
    [31]胡翔,周定.聚硅酸系列混凝剂的发展与展望[J].化工进展,1998(6):20-22.
    [32]Levine N M, Natural Polymer Sources. In polyelectrolyte for water wastewater treatment [M]. W. L. K. Ed. CRC:Boca Roton, FL,1981,47
    [33]Moore K J, Johnson M G, Sistrunk W A. Effect of polyelectrolyte treatments on waste strength of snap and dry bean wastewaters [J]. Journal of Food Science, 1987,52:491-502.
    [34]Bulatovic S M. Use of organic polymers in the flotation of polymetallic ores:A review. Minerals Engineering,1999,12:341-354.
    [35]张彤,朱怀兰.微生物絮凝剂的研究和应用进展[J].应用与环境生物学报,1996,2(1):95-105.
    [36]苗晶.稳定高效聚合氯化铁混凝剂的基础研究[D].济南:山东大学,2002.
    [37]王燕.新型聚合铁基无机一有机复合混凝剂性能的研究[D].济南:山东大学,2007.
    [38]Gray K A. The preparation, characterization, and use of inorganic iron(Ⅲ) [D]. The John Hopkins Univ., Baltimore, MD.,1988.
    [39]Hedstrom B O A, The hydrolysis of the iron (Ⅲ) ion Fe3+[J]. Arkiv Kemi,1953, 5:1-12.
    [40]Biedermann G, Schindler P, On the solubitily product of precipitated iron (Ⅲ) hydroxide [J]. Acta Chemica Scandinavica,1957,11:731-740.
    [41]Bottero J Y, Manceau A,Villieras F, Tchoubar D, Structure and mechanisms of formation of FeOOH (Cl) polymers [J]. Langmuir,1994,10 (1):819-819.
    [42]Masion A, Rose J, Bottero J Y, et al. Nucleation and growth mechanisms of Fe Oxyhydroxide in presence of PO4 ions.l.Fe-Edge EXAFS study[J]. Langmuir, 1996,12(26):6701-6707.
    [43]Bottero J Y, Tchoubar D, Arnaud M, et al. Partial hydrolysis of ferric nitrate salt: structure investigation by dynamic light scattering and small angle X-ray scattering [J]. Langmuir,1991,7:1365-1369.
    [44]Tang H X, Stummn W. The coagulation behaviors of Fe(Ⅲ) polymeric species-Ⅰ preformed polymers by base addition [J]. Water Res.,1987,21: 115-122.
    [45]Tang H X, Stumm W. The coagulation behaviors of Fe(Ⅲ) polymeric species-Ⅱ Preformed polymers in various concentration [J]. Water Res.,1987,21:122-128.
    [46]Smith R W. Relations among equilibrium and non-equilibrium aqueous species of aluminium hyroxide complexes [J]. Adv. Chem. Ser.,1971,106:250-279.
    [47]Murphy P J, Posner A M, Quirk J P. Chemistry of iron in soil [J]. Aust. J. Soil Sci.,1975,13:189-201.
    [48]Murphy P J, Posner A M, Quirk J P, Characterization of Partially neutralized ferric nitrate solution [J]. J. Colloid Interface Sci.,1976,56:270-283.
    [49]Kimberly A G. The preparation, characterization, and use of inorganic iron (Ⅱ) polymers for coagulantion in water treatment [D], The John Hopkins Univ., Baltimore, MD.,1988,72:156-168.
    [50]高宝玉,王炳建,岳钦艳.聚合硅酸铝铁絮凝剂中铁的形态分布与转化[J]. 环境科学研究,2002,15(1):13-15.
    [51]田宝珍,汤鸿霄.Ferron逐时络合比色法测定Fe(Ⅲ)溶液聚合物的形态[J].环境化学,1989,8(4):27-34.
    [52]马喜平,胡星琪等.环氧氯丙烷-二甲胺阳离子聚合物的合成[J].高分子材料科学与工程,1996,12(4):50-54.
    [53]马喜平,邵定波.PA阳离子聚合物的合成及抑制性研究[J].钻采工艺,1999,22(1):47-48.
    [54]余逸男.阳离子改性剂聚环氧氯丙烷胺化物的应用,纺织学报,22(4):204-205.
    [55]严瑞.水处理剂应用手册[M].第一版,北京:化学工业出版社,2000.
    [56]Choi J H, Shin W S, Lee S H et al. Application of synthetic polymine flocculants for dye wastewater treatment. Separation Science and Technology,2001,36 (13): 2945-2958.
    [57]Lee-soon park, June-ho shin, Sang-june chol. Synthesis of polyamine type flocculant and properties in potable water treatment, Journal of the Korean Industrial and Engineering Chemistry,1998,9 (4).
    [58]Jeong-Hak Choi, Won Sik Shin, Seok-Hun Lee et al. Application of synthetic polyamine flocculants for dye wastewater treatment. Seperation Science and Technology,2001,36(13):2945-2968.
    [59]高宝玉,张华等.有机絮凝剂聚环氧氯丙烷胺的脱色性能研究.工业水处理,2006,25(10):39-41.
    [60]O'Melia C R. Coagulation in Wastewater Treatment [C]. In the Scientific Basis of Flocculation. NATO ASI Series. Ives K J. Ed. Sijthoff and Noordhoff. Aalphenaan den Rijin. Netherlands,1978.
    [61]Hahn H H, Stumm W.. Kinetics of Coagulation with Hydrolyzed Aluminum [J]. J Colloid and Inter Sci,1968,28:133-142.
    [62]Ruehrwein R A, Ward D W. Mechanism of Clay Aggregation by Polyelectrolytes [J]. Soil Sci,1952,73:485-492.
    [63]Micheals A S. Aggregation of Suspensions by Polyelectrolytes [J]. Ind Eng Chem, 1954,46:1485-1490.
    [64]Smellie R H, LaMer V K. Flocculation Subsidence and Filtration of Phosphate Slimes VI.A Quantitative Theory of Filtration of Flocculated Suspensions [J]. J Coll Sci,1956,13:589-599.
    [65]LaMer V K, Healy T W. Adsorption-Flocculation Reactions of Macromolecules at the Solid-Liquid Interface [J]. Rev Pure App Chem,1963,13:112-132.
    [66]Packham R F. Some Studies of the Coagulation of Dispersed Clays with Hydrolyzing Salts [J]. J Colloid Sci,1965,20:81-92.
    [67]Gregogy J. Turbidity floctuation in flowing suspensions [J]. J Colloid Interface Sci.,1985,105:357-371.
    [68]Burgess M S. On-line optical determination of floc size. Part I:Principles and techniques [J]. J. Pulp Pap. Sci.,2002,28 (2):63-65.
    [69]Shen Y., Dempsey B.A.. Synthesis and speciation of polyaluminum chloride for water treatment [J]. Environment International,1998,24:899-910.
    [70]Tang H.X.. Basic studies of inorganic polymer flocculants [J]. Environmental Chemistry,1990,9(3),1-12 (in Chinese).
    [71]陆柱,蔡兰坤,陈中兴.水处理药剂[M].北京:化学工业出版社,2002.8-10.
    [72]胡晓霞,史成武,戴文娟.不同碱化度聚合硫酸铁的除浊效果[J].安徽大学学报,1996,20(2):89-91.
    [73]Chen T., Gao B.Y., Yue Q.Y. Effect of dosing method and pH on color removal performance and floc aggregation of polyferric chloride-polyamine dual-coagulant in synthetic dyeing wastewater treatment [J]. Colloids Surf. A., 2010355(1-3):
    [74]Wen PC., Fung H.C.. A study of coagulation mechanisms of polyferric sulfate reacting with humic acid using a fluorescence-quenching method. Water Res.36 (2002)4581-4591.
    [75]Gregory J., Nelson D.W.. Monitoring of aggregates in flowing suspensions [J]. Colloids Surface,1986,18:175-188.
    [76]Tambo N., Matsui Y, Kurotani K., Kubota M., Akiyama H., Ohto T., Zaisu Y, Itoh H.. Control of coagulation process by dual wavelength particle analyzer [J]. Wat. Sci. Tech.,1997,36:135-142.
    [77]Gregory D., Clarson K.. Relationship of pH and floc formation kinetics to granular media ratioltiation performance [J]. Environ. Sci. Technol.,2003,37 (7): 1398-1403.
    [78]Gregory J.. Turbidity fluctuation in flowing suspensions [J]. J. Colloid Interface Sci.,1985,105:357-371.
    [79]Mccurdy K., Carlson K., Gregory D.. Floc morphology and cyclic shearing recovery:comparison of alum and polyaluminum chloride coagulants [J]. Water Res.,2004,38:486-494.
    [80]A.I. Zouboulis, G Traskas, Comparable evaluation of various commercially available aluminium-based coagulants for the treatment of surface water and for the post-treatment of urban wastewater, J. Chem. Technol. Biotechnol.80 (2005) 1137-1147.
    [81]D.C. Hopkins, J.J. Ducoste, Characterizing flocculation under heterogeneous turbulence, J. Colloid Interface Sci.264 (2003) 184-194.
    [82]王占生,刘文君.微污染水源饮用水处理[M].北京:中国建筑工业出版社,1999.9-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700