用户名: 密码: 验证码:
高性能视网膜修复芯片的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球因视网膜色素变异(RP:retinitis pigmentosa)或老年黄斑(AMD:age-related macular degeration)而致盲的人,数以百万计。这类患者中,尽管视网膜内的光感受器完全受损,但与光感受器相连的神经细胞存活率较高,视觉传送的通路依然完好。研究发现,用适当的电信号刺激这些存活的神经细胞,这类盲人能在一定程度上获得视觉感知。随着集成电路技术、微系统加工工艺技术、射频无线技术和生物医学技术等的进步,基于神经电刺激的人工视觉功能修复技术已成为当前人工器官领域的研究热点之一。本文在国家自然科学基金项目(No.30470469)资助下,旨在从电路层面上研究一种适用于自然光照条件的、替代盲人视网膜中受损光感受器的CMOS视网膜修复芯片。
     利用国际上已有的研究成果和相关文献,论文首先介绍了人工视觉功能修复技术的概念、分类及特点。从视网膜的多层细胞结构及其信号传导过程出发,阐述了神经细胞电刺激产生动作电位的原理;在分析神经电刺激视觉修复技术所涉及的几个重要因素之后,得出了开展本论文研究的理论与实验依据。从电路层面综述了国际上在这一领域内的研究现状,在比较这些主流方案的优点与不足之后,提出了本论文拟研制的视网膜修复芯片的功能要求和结构组成。
     提出了一种适用于自然光照条件下的视网膜修复电路:光电脉冲频率调制像元电路。每一个像元都是一个独立的振荡器,其输出信号的正脉冲宽度(高电平持续时间)在其动态工作范围内基本保持恒定、频率受入射光强度调制并与入射光强度成比例。对影响像元电路性能的因素做了深入的研究,对像元电路的关键指标进行了优化设计。实验结果表明,较之相似视网膜修复电路,本文提出的的像元电路具有一系列较高的性能:动态范围大、脉冲宽度基本恒定、功耗低、像元面积小等优点。
     一般采用射频无线感应传输技术为植入体内的器件提供电源。论文利用相关文献对无线感应能源传输技术进行了阐述和总结。提出了一种可以片上集成的射频电源电路,对其各组成部分:整流滤波单元、参考电压源和单位增益缓冲器等进行了设计和验证。仿真结果表明,输入射频信号的幅值在一个比较大的变化范围内,设计的射频电源电路都能为光电脉冲频率调制像元阵列提供稳定的直流电压。
     结合所选的0.5μm 2P3M CMOS加工工艺,进行了视网膜修复芯片的版图设计。所设计的样片上包含了一个8×8的光电脉冲频率调制像元阵列、5个光电二极管面积不同的测试像元及片上射频电源电路。单个像元的尺寸约为50μm×50μm。
     作者在标准色温灯和自然光照条件下,分别对加工的视网膜修复芯片进行了测试。测试包含3个方面的内容:直流电压驱动下光电脉冲频率调制像元电路的性能、射频电源电路的性能以及射频电源电路提供驱动电压下像元电路的性能。测试结果表明,射频电源电路能为像元阵列提供稳定的电压和所需的驱动电流,适用于为体内植入器件提供电源;光电脉冲频率调制像元电路在几个关键指标上都表现出了较高的性能,基本达到了设计目标。整个电路设计符合视网膜修复芯片高密度、低功耗的发展方向,在电路层次上已经达到了视网膜视觉功能修复的应用要求。
     本文从“视网膜-电极界面模型”对视网膜电刺激信号的特殊要求出发,从电路的层次上研究了一种模仿视网膜内光感受器工作机理的高性能视网膜修复电路及片上射频电源电路。本论文的研究工作处于人工视网膜工程的最前端,后续还有诸多工作亟待完成。本文的研究工作和后续配套的研究工作,有望为视网膜病变患者重拾光明带来福音!
Millions of people suffering from diseases such as RP (Retinitis Pigmentosa) and AMD (Age-related Macular Degeneration) are legally blind due to the loss of photoreceptor function. Fortunately, a large percentage of the neural cells connected to the photoreceptors remain viable, and electrical stimulation of these cells has been shown to result in visual perception. With advance in microfabrication, integrated circuits, wireless technologies, and biomedicine, much attention in the field of artificial organs has been attracted by artificial visual functions recovery based on electrical stimulation of the neural cells. Under the supports of NSFC (No.30470469), this dissertation aims to develope a CMOS retinal prosthesis microchip with high perfermance at the circuit level for natural light illumination.
     Ultilizing the existed research achievements and related documents, this dissertation introduces the concept, classification and characteristics of artificial visual functions recovery technology. The theoretic and experimental foundations for designing a CMOS retinal prosthesis microchip are constructed after such key techeniques in the fields are analyzed as the generation principles of action potential by neuronal electrical stimulation and signal transmission process based on the multilayer structure of retina. The research progress in artifical retina is reviewed and advantage and disadvange of some mainstream schemes at the circuit level for visual recovery are also summarized. Then, a CMOS retinal prosthesis microchip with the satisfying fuction and structure is proposed in this dissertation.
     An OPFM (Optoelectronic Pulse Frequency Modulation) circuit for nature light illumilation is proposed. Each pixel is an independent oscillator whose frequency is proportional to the intensity of incident light while its pulsewidth holds constant. The factors effecting performance of the pixel are analyzed and some pivotal indexes of the pixel are optimized. The simulation results showed this proposed OPFM circuit possessed high dynamic range of more than 70dB and power consumtion of less than 1.46μA per pixel.
     A wireless inductive link is employed to power the implanted devices. The key technology in this field is summerized. And a monilithic radio frequency energy recovery circuit is presented, which consists of a full-wave rectifier, a voltage reference and a unity gain buffer. It exhibits an excellent supply independency and it can output a stable DC voltage for OPFM array in a wide range of input supply voltage.
     The layout of the retinal prosthesis microchip on 0.5μm 2P3M standard CMOS process is designed. The designed prototype contains an 8×8 pixels array, five independent pixels for test and a radio frequency energy recovery circuit. The pixel size is 50μm×50μm approximately.
     The fabricated retina prosthesis microchip is tested under tungsten lamp illumination at standard color temperature and natural light illumination, respectively. The tests involve three parts: the performance test of OPFM circuit powered by DC voltage, the performance test of the radio frequency energy recovery circuit and the performance test of OPFM circuit powered by the radio frequency energy recovery circuit. The tested rerults showed the fabricated chip possessed desired fuctions. And the results also demonstrate the potential of the integration for retinal implants.
     This dissertation aims at presenting a high performance CMOS microchip for visual fuction recovery at the circuitry level. Consequent researches need to be done, including electrode package, surgical implantation, physiology tests of the device, and so on, which requires interdiscipline collabrations of researcher in the fields of eye surgery medicine, neurobiology, material science and micro machine process. The author hope the dissertation can provide some help for further research in this field.
引文
[1] L.Hymen, Epidemiology of eye diseases in the elderly. Eye, 1987, (1): 330-341.
    [2] The University of Washington Department Opthamology,“Statistics on blindness and blinding diseases in the United States”, 2002.
    [3] Zrenner E. Will retinal implants restore vision ? [J].S cience 2002;295 (5557) : 1022-1025.
    [4]惠延年,王静波,王琳,人工视网膜的研究进展[J].眼科新进展,2003,23(2):73-75. Hui yannian, Wang jingbo, Wang lin, Recent advance in research of retinal prosthesis[J]. Recent advance of ophthalmol, 2003, 23 (2) : 73-75( in Chinese).
    [5] C.W.Oyster, The human eye: structure and function. Sunderland: Sinauer Associates, Inc., 1999
    [6] J.V.Forrester, A.D.Dick, P.G.McMenamin, et.al, The Eye:basic sciences in practice, 2nd Edition ed. Lodon: Harcourt Publishers limited, 2002.
    [7] D.Pruves, G.J.Augustine, D.Fitzpatrick, et.al,“Neuroscience.”Sunderland: Sinauer Associates, Inc., 1997.
    [8] S.J.Ryan,“Retina.”St.Louis: Mosby, 2001.
    [9] Mark S. Humayun. Introcular retinal prosthesis. Tr. Am. Ophth. Soc., 2001, 99:271-300.
    [10] L.B.Merabet, J.F.Rizzo, A.Amedi, et al., What blindness can tell us about seeing again: Merging neuroplasticity and neuroprostheses? Nature Reviews Neuroscience. 2005, 6: 71-77.
    [11] Humayun MS, de Juan E Jr, Dagnelie G, et al: Visual perception elicited by electrical stimulation of retina in blind humans. rch Ophthalmol 114:40–6, 1996.
    [12] Weiland JD, Humayun MS, Dagnelie G, et al: Understanding the origin of visual percepts elicited by electrical stimulation of the human retina. Graefes Arch Clin Exp Ophthalmol 237:1007–13, 1999.
    [13] Veraart C, Raftopoulos C, Mortimer JT, et al: Visual sensations produced by optic nerve stimulation using an implanted selfsizing spiral cuff electrode. Brain Res 813:181–6, 1998.
    [14] Monroe R: Pigmentosa patients get retina on a chip.EyeNet 4:14, 2000.
    [15] W.Krieg, In: Functional Neuroanatomy, 2nd Edition ed. New York: Blakiston, 1953.
    [16] Brindley GS, Lewin WS: The sensations produced by electrical stimulation of the visual cortex. J Physiol, 1968, 196:479–493.
    [17] Brindley GS, Lewin WS: The visual sensations produced by electrical stimulation of the medial occipital cortex. J Physiol, 1968, 194:54–55.
    [18] Brindley G, Rushton D: Implanted stimulators of the visual cortex as visual prosthetic devices.Trans Am Acad Ophthalmol Otolaryngol,1974, 78:741–745.
    [19] W.H. Dobelle and W.G.Mladejovsky,“Phosphenes produced by electrical stimulation of human occipital cortex and their application to the development of a prosthesis for blind.”J.Physiol., vol. 243, pp. 553-576, 1974.
    [20] Jones KE, Normann RA: An advanced demultiplexing system for physiological stimulation. IEEE Trans Biomed Eng, 1997,44:1210–2120.
    [21] Normann RA, Maynard EM, Rousche PJ, Warren DJ: A neural interface for a cortical vision prosthesis. Vision Res, 1999,39:2577–2587.
    [22] C.Veraart, C.Raftopoulos, and J.Mortimer,“Visual sensation produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode”, Brain Research, vol. 813, pp. 181-186, 1998.
    [23] 165. Yagi T, Watanabe M: A computational study on an electrode array in a hybrid retinal implant. Proceedings IEEE International Joint Conference on Neural Networks, 1998:780–783。
    [24] Yagi T, Hayashida Y: Implantation of the artificial retina. Nippon Rinsho, 1999,57:1208–1215
    [25] Humayun MS. Is Surface Electrical Stimulation of the Retina a Feasible Approach Towards The Development of a Visual Prosthesis? [D]. Chapel Hill: University of North Carolina at Chapel Hill, 1992.
    [26] J.F. Rizzo and J.L. Wyatt,“Retinal prosthesis,”in Age-Related Macular Degeneration, pp. 412-432, J.W. Berger, S.L. Fine, and M.G. Maguire, Eds. St. Louis, MO: Mosby Press, 1998.
    [27] R. Echmiller,“Learning retina implants with epiretinal contact,”Ophthalmic Research, vol. 29, pp. 281-289,1997.
    [28] T.Yagi, Y.Tto, H.Kanda, S.Tanaka, M.Watanabe, and Y.Uchikawa,“Hybrid retinal implant: fusion of engineering and neuroscience,”in Proceeding of the 1999 IEEE International Conference on Systems, Man, and Cybernetics, vol. 4, pp. 382-385,1999.
    [29] G.J. Suaning and N.H. Lovell,“A 100-channel stimulator for exitation of retinal ganglion cells,”Proceedings of the 20th International Conference of the IEEE Engineering in Medicine and Biology Society, October 1998.
    [30] M. Clements, K. Vichienchom, W.Liu, C. Hughes, E.McGucken, C.DeMarco, et. al.,“An implantable neuro-stimulator device for a retinal prosthesis,”International Solid-state Circuits conference, pp. 216-217,February 1999.
    [31] R.A. Normann, E.M. Maynard, K.S. Guillory, and D.J. Warren,“Cortical implants for the blind,”IEEE Spetrum, vol. 33, no. 5, pp. 54-59, May 1996.
    [32] J.L. Wyatt, Personal communication, 1999.
    [33] J.Rizzo, M.Socha, D.Edell, B.Antkowiak, and D.Brock,“Development of a silicone retinal implant: surgical methods and mechanical design,”Investigative Ophthalmology and Visual Science, vol. 35, no.4. p.1380,April 1994.
    [34] A.Y. Chow and V.Y. Chow,“Subretinal electrical stimulation of the rabbit retina,”Neuroscience Letters, vol. 225, pp, 13-16,1997.
    [35] G.. Peyman, A.Y. Chow, C. Liang, V.Y. Chow, J.I. Perlman, and N.S. Peachey,“Subretinal semiconductor microphotodiode array,”Ophthalmic Surgery and Lasers, vol. 29. pp. 234-241, 1998.
    [36] Wilfried Mokwa,Peter Walter,Michael Goertz,First Results of a Study on a Completely Implanted Retinal Prosthesis in Blind Humans,IEEE SENSORS 2008 Conference,1237-1240.
    [37] Palanker D, Huie P, Vankov A, et al. Migration of retinal cells through a perforated membrane: Implications for a high-resolution prosthesis. Investigative Ophthalmology & Visual Science, 2004, 45 (9): 3266-3270.
    [38] T. Leng, J.M. Miller, K.V. Bilbao, et al. The Chick Chorioallantoic Membrane (CAM) as a Model Tissue for Surgical Retinal Research and Simulation.. Retina, 2004, 24(3): 427-434.
    [39] Palanker D, Vankov1 A, Huie1 P, et al. Design of a High Resolution Optoelectronic Retinal Prosthesis. Journal of Neural Engineering, 2005, 2(1): S105-S12.
    [40] Rattay F, Analysis of the electrical excitation of CNS neurons. IEEE Trans Biomed Eng 45:766–772, 1998.
    [41] BeMent SL, Ranck JB Jr, A model for electrical stimulation of central myelinated fibers with monopolar electrodes.Exp Neurol 24:171–186, 1969.
    [42] Greenberg RJ, Analysis of electrical stimulation of the vertebrate retina- work towards a retinal prosthesis. PhD Dissertation, The Johns Hopkins University Baltimore, MD,1998.
    [43] Shepherd RK, Hatsushika S, Clark GM, Electrical stimulation of the auditory nerve: the effect of electrode position on neural excitation. Hear Res 66:108–20, 1993.
    [44] Bostock H, The strength-duration relationship for excitation of myelinated nerve: computed dependence on membrane parameters. J Physiol 341:59–74, 1983.
    [45] Grill WM, Mortimer JT, The effect of stimulus pulse duration on selectivity of neural stimulation. IEEE Trans Biomed Eng 43:161–6, 1996.
    [46] West DC, Wolstencroft JH, Strength-duration characteristics of myelinated and non-myelinated bulbospinal axons in the cat spinal cord. J Physiol 337:37–50, 1983.
    [47] Schmidt EM, Bak MJ, Hambrecht FT, et al., Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain 119:507–22, 1996.
    [48] Veraart C, Raftopoulos C, Mortimer JT, et al., Visual sensations produced by optic nerve stimulation using an implanted selfsizing spiral cuff electrode. Brain Res 813:181–6, 1998.
    [49] Schubert M, Hierzenberger A, Lehner H, et al. Optimizing photodiodes arrays for the use as retinal implants. Sensors Actuators, 1999,74:193–197.
    [50] Gorman PH, Mortimer JT, The effect of stimulus parameters on the recruitment characteristics of direct nerve stimulation.IEEE Trans Biomed Eng 30:407–14, 1983.
    [51] Robblee LS, Mangaudis M, Lasinski E, et al., Charge injection properties of thermally-prepared iridium oxide films. Proc Mat Res Soc Symp 55:303–10, 1986.
    [52] Ranck JB Jr, Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res 98:417–40, 1975.
    [53] Lilly JC, Injury and excitation by electric currents: The balanced pulse-pair waveform, in Sheer DE (ed): Electrical Stimulation of the Brain. Austin, University of Texas Press, 1961, pp 60–4.
    [54] Rizzo JF, Wyatt J: Prospects for a visual prosthesis. Neuroscientist 3:251–62, 1997.
    [55] Humayun MS, de Juan E Jr, Dagnelie G, et al: Visual perception elicited by electrical stimulation of retina in blind humans. Arch Ophthalmol 114:40–6, 1996.
    [56] Weiland JD, Humayun MS, Dagnelie G, et al: Understanding the origin of visual percepts elicited by electrical stimulation of the human retina. Graefes Arch Clin Exp Ophthalmol 237:1007–13, 1999.
    [57] Chow AY, Chow VY: Subretinal electrical stimulation of the rabbit retina. Neurosci Lett 225:13–6, 1997 153. Veraart C, Raftopoulos C, Mortimer JT, et al: Visual sensations produced by optic nerve stimulation using an implanted selfsizing spiral cuff electrode. Brain Res 813:181–6, 1998.
    [58] Humayun M, Propst R, de Juan E Jr, et al: Bipolar surface electrical stimulation of the vertebrate retina. Arch Ophthalmol 112:110–6, 1994.
    [59] Grumet AE, Wyatt JL, Rizzo JF: Multi-electrode stimulation and recording in the isolated retina. J Neurosci Methods 101:31–42, 2000.
    [60] Stett A, Barth W, Weiss S, et al: Electrical multisite stimulation of the isolated chicken retina. Vision Res 40:1785–95, 2000.
    [61] Stett A, Tepfenhart M, Kohler K, et al: Charge sensitivity of electrically stimulated chicken and RCS rat retinae [abstract]. Invest Ophthalmol Vis Sci 40(Suppl):S736, 1999.
    [62] Hodgkin A, Huxley A: A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–44, 1952.
    [63] Hodgkin A, Huxley A: Currents carried by sodium and potassium ions through the membraneof the giant axon of loligo. J Physiol 116:472–9, 1952.
    [64] Lui W, Humayun MS, Weiland JD, et al. Multiple Unit Artificial Retina Chipset System to Benefit the Visual Impaired [M]. Theodorescu N.,Ed. Raton B.,FL :CRC,ch.2,2000.
    [65] A. E. Grumet, J. L. Wyatt, and J. F. Rizzo. Multi electrode stimulation and reconrding in the isolated retina. J. Neurosci. Meth., 2000, 101, 1: 31–42.
    [66] McHardy J, Robblee LS, Marston JM, Brummer SB: Electrical stimulation with pt electrodes. IV. Factors influencing Pt dissolution in inorganic saline. Biomaterials 1:129–34,1980.
    [67] Ziaie B, Nardin MD, Coghlan AR et al. A single-channel implantable microstimulator for functional neuromuscular stimulation. IEEE Trans Biomed Eng, 1997, 44:909–920.
    [68] Janders M, Egert U, Stelze M et al. Novel thin-film titanium nitride micro-electrodes with excellent charge transfer capability for cell stimulation and sensing applications. IEEE 19th International Conf EMBS, 1996:1191–1193.
    [69] Zrenner E, Stett A, Weiss S, et al: Can subretinal microphotodiodes successfully replace degenerated photoreceptors? Vision Res,1999, 39:2555–2567.
    [70] Rose TL, Kelliher EM, Robblee LS. Assessment of capacitor electrodes for intracortical neural stimulation. J Neurosci Methods,1985, 12:181–193.
    [71] Brindley GS: The number of information channels needed for efficient reading. J Physiol 177:44, 1965.
    [72] Sterling TD, Vaughn HG Jr: Feasibility of electrocortical prosthesis, in Sterling TD, et al (eds): Visual prosthesis: the interdisciplinary dialogue. New York, Academic Press,1971: 1–17.
    [73] Jones KE, Campbell PK, Normann RA: A glass/silicon composite intracortical electrode array. Ann Biomed Eng 20:423–37, 1992.
    [74] Heetderks WJ: RF powering of millimeter and submillimeter sized neural prosthetic implants. IEEE Trans Biomed Eng 35:323–6, 1988.
    [75] Peyman G, Chow AY, Liang C, et al: Subretinal semiconductor microphotodiode array. Ophthalmic Surg Lasers 29:234–41, 1998.
    [76] Zrenner E, Miliczek KD, Gabel VP, et al: The development of subretinal microphotodiodes for replacement of degenerated photoreceptors. Ophthalmic Res 29:269–80,1997.
    [77] Zrenner E, Stett A, Weiss S, et al: Can subretinal microphotodiodes successfully replace degenerated photoreceptors?Vision Res 39:2555–67, 1999.
    [78] Marshall SV, Skitek GG: Electromagnetic Concepts and Applications.New Jersey, Prentice-Hall, 1987 ed 2, pp 58–72.
    [79] Schubert M, Hierzenberger A, Lehner H, Werner J: Optimizingphotodiodes arrays for the useas retinal implants.Sensors Actuators 74:193–7, 1999.
    [80]饶程,外层型CMOS人工视网膜芯片的研究[D],重庆,重庆大学, 2006.
    [81] DOE Office of Science. DOE Labs, Universities and Second Sight Partner to Speed Development of“Artificial Retina”, Press Releases, 2004.
    [82] M.Humayun,“Intraocular Retinal Prosthesis,”Tr.Am.Ophth. Soc, vol. 99,pp. 271-300, 2001.
    [83] Singh V, Cela C.J, Lazzi G., et al., Bioelectromagnetics for a Retinal Prosthesis to Restore Partial Vision to the Blind .Electromagnetics in Advanced Applications, 2007. ICEAA 2007. International Conference on.17-21 Sept. 2007 Page(s):1030– 1033.
    [84] Lazzi G., Qusba A, Singh V, On the design of telemetry coils and implantable small antennas for a retinal prosthesis to restore partial vision to the blind. Antennas and Propagation Society International Symposium, 2008. AP-S 2008. IEEE 5-11 July 2008 Page(s):1– 3.
    [85] Lazzi G.;Thermal effects of bioimplants. Engineering in Medicine and Biology Magazine, IEEE Volume 24, Issue 5, Sept.-Oct. 2005 Page(s):75– 81.
    [86] Mahadevappa M, Weiland JD, Greenberg RJ, et al.Perceptual thresholds and electrode impedance in three retinal prosthesis subjects. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2005,13(2): 201-206.
    [87] Zhou DD, Greenberg RJ.Microsensors and microbiosensors for retinal implants, Frontiers in Bioscience,2005, 10:166-179.
    [88] Humayun M, Greenberg RJ, Mech BV, et al. Chronically implanted intraocular retinal prosthesis in two blind subjects. Investigative Ophthalmulogy & Visul Science,2003, 44: 4206.
    [89] Yanai D, Weiland JD, Mahadevappa M, et al. Visual perception in blind subjects with microelectronic retinal prosthesis. Investigative Ophthalmulogy & Visul Science,2003, 44: 5056.
    [90] Weiland J.D, Fink W, Humayun M.S. et al., Systems design of a high resolution retinal prosthesis. Electron Devices Meeting, 2008. IEDM 2008. IEEE International 15-17 Dec. 2008 Page(s):1-4.
    [91] Wentai Liu, Sivaprakasam M.; Guoxing Wang, et al.,Implantable biomimetic microelectronic systems design. Engineering in Medicine and Biology Magazine, IEEE. Volume 24, Issue 5, Sept.-Oct. 2005 Page(s):66– 74.
    [92] Theogarajan L, Wyatt J, Rizzo J, et al., Minimally Invasive Retinal Prosthesis, Solid-State Circuits Conference, 2006. ISSCC 2006. Digest of Technical Papers. IEEE International 6-9 Feb. 2006 Page(s):99 - 108
    [93] Luke S. Theogarajan A, Low-Power Fully Implantable 15-Channel Retinal Stimulator Chip,IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 10, OCTOBER 2008:2322-2337.
    [94] Chow AY, Pardue MT, Chow VY, et al. Implantation of silicon chip microphotodiode arrays into the cat subretinal space. IEEE Transactions on Rehabilitation Engineering, 2001, 9(1): 86-95.
    [95] Chow AY, Peyman GA, Pulido J. Safety and feasibility of subretinal Artificial Silicon Retina (TM) retinal prosthesis for the treatment of patients with retinitis pigmentosa. Investigative Ophthalmology & Visual Science, 2001, 42(4): 5042.
    [96] Chow AY, Pardue MT, Perlman JI, et al. Subretinal implantation of semiconductor-based photodiodes: Durability of novel implant designs Journal of Rehabilitation Research and Development, 2002,39(3): 313-321.
    [97] Chow AY, Chow VY, Packo KH, et al. The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa Archives of Ophthalmology,2004, 122(4): 460-469.
    [98] Chow AY, Packo KH, Pollack JS, et al. Subretinal artificial silicon retina microchip for the treatment of retinitis pigmentosa: 3 1/2 year update. Investigative Ophthalmology & Visual Science, 2004, 45:3398.
    [99] Chow AY, Effect of sham surgery on retinal function after subretinal transplantation of the artificial silicone retina - Reply, Archives of Ophthalmology, 2005, 123 (8): 1156-1157.
    [100] K.Kohler, E.Zrenner, and R.Weiler,“Ethambutol Alters Spinule-Type Synaptic Connections and Iduces Morphologic Alterations in the Cone Pedicles of the Fish Retina,”Investigative Ophthalmology & Visual Science, vol. 36, pp. 1046-1055, 1995.
    [101] E.Zrenner, V.P. Gabel, H. Haemmerle, et al., Subretinal implants,”Ophthalmic Research, vol. 30, pp. 197-198, 1998.
    [102] E.Zrenner,“the subretinal implant: can microphotodiode arrays replace degenerated retinal photoreceptors to restore vision?,”Ophthalmologica, vol. 216, pp. 8-20,2002.
    [103] Palanker D, Huie P, Vankov A, et al. Migration of retinal cells through a perforated membrane: Implications for a high-resolution prosthesis. Investigative Ophthalmology & Visual Science, 2004, 45 (9): 3266-3270.
    [104] T. Leng, J.M. Miller, K.V. Bilbao, et al. The Chick Chorioallantoic Membrane (CAM) as a Model Tissue for Surgical Retinal Research and Simulation.. Retina, 2004, 24(3): 427-434.
    [105] Palanker D, Vankov1 A, Huie1 P, et al. Design of a High Resolution Optoelectronic Retinal Prosthesis. Journal of Neural Engineering, 2005, 2(1): S105-S120.
    [106] J. Ohta, N. Yoshida, K. Kagawa et al., "Proposal of application of pulsed vision chip for retinal prosthesis," J. Jpn. Appl. Phys., vol. 41 pp. 2322-2325, 2002.
    [107] T. Tokuda, Yi-Li Pan, A. Uehara, et al., "Flexible and extendible neural interface device based on cooperative multi-chip CMOS LSI architecture," Sensors & Actuators: A, vol. 122, pp. 88-98, 2005.
    [108] J. Ohta, T. Tokuda, K. Kagawa, et al., IEEE Engineering in Medicine and Biology Magazine, vol. 25, pp. 47-59, 2006.
    [109] T. Tokuda, S. Sugitani, M. Taniyama, et al., "Fabrication and validation of a multi-chip neural stimulator for in vivo experiments toward retinal prosthesis", Jpn. J. Appl. Phys, vol. 46, pp. 2792-2798, 2007.
    [110] T. Tokuda, R. Asano, S. Sugitani, et al., "Retinal stimulation on rabbit using CMOS-based multi-chip flexible stimulator toward retinal prosthesis," Jpn. J. Appl. Phys. 47 (4B), 2008.
    [111] Tokuda T, Sawamura S, Terasawa Y, et al., CMOS LSI-based multi-chip flexible retinal prosthesis device for subretinal implantation Custom Integrated Circuits Conference, 2008. CICC 2008. IEEE 21-24 Sept. 2008 Page(s):325– 328.
    [112] D. Ziegler, P. Linderholm, M. Mazza, S. Ferazzutti, D. Bertrand ,A.M. Ionescu, Ph. Renaud, An active microphotodiode array of oscillating pixels for retinal stimulation Sensors and Actuators A 110 (2004) 11–17.
    [113] Marco Mazza, Philippe Renaud, Daniel C. Bertrand, and Adrian M. Ionescu,CMOS Pixels for Subretinal Implantable Prothesis,IEEE SENSORS JOURNAL, VOL. 5, NO. 1, FEBRUARY 2005:32-37.
    [114]毕查德.拉扎维著,陈贵灿,程军,张瑞智,等译.模拟CMOS集成电路设计[M].西安交通大学出版社, 2003. 310-312.
    [115] Henri J Oguey, Daniel Aebischer. CMOS Current Reference Without Resistance [J]. Solid-State Circuits, 1997, 32(7): 1132-1134.
    [116] UEHARA A., Back-illuminated pulse-frequency-modulated photosensor using silicon-on-sapphire technology developed for use as epi-retinal prothesis device[J],Electronics Letters,2003,39(15):1102-1104.
    [117] LIU Jinbin,An Optoelectronic Pulse Frequency Modulation Circuit for Retina Prosthesis[J]. Chinese Journal of Semiconductor,2006 ,27(4):700-704.
    [118]饶程,袁祥辉,张思杰.外层型CMOS人工视网膜修复芯片[J].仪器仪表学报, 2007, 28(4):645-649.
    [119]彭承琳,夏露,侯文生,标准CMOS工艺的外层型人工视网膜芯片设计[J],重庆大学学报,2009,32(8):859-863.
    [120] W. Zhang and M. Chan. Properties and design optimization of photodiodes available in a current CMOS technology[D]. In IEDM. 1998: 22-25.
    [121] M. Loose. A self-calibrating CMOS image sensor with logarithmic response. ph.D. Dissertation, University of Heidlberg, Heidelberg, Germany, 1999.
    [122] P. Aubert et al. Monolithic position encoder with on chip photodiodes. IEEE Journal of Solid State Circuit, 1988, 23, 2: 465-473.
    [123] A. Makynen et al. CMOS photodetectors for industrial posotion sensing. IEEE Transactions on Instrumentation and Measurement, 1994, 43, 3: 489-492.
    [124] I. Brouk, Y. Nemirovsky. Dimensional effects in CMOS photodiodes. Solid-State Electronics, 2002, 46, 1: 19-28.
    [125] O. Y. Pecht, R. Ginsoar. A random access photodiode array for intelligent image capture. IEEE Transactions on Electron Devices, 1991, 38, 8: 1772-1779.
    [126] R. M. Guidash, T. H. Lee, P. P. K. Lee, and D. H. Sackett. A 0.6μm CMOS pinned photodiode color imager technology. In IEDM.1997:927-929.
    [127] J. S. Ho and M. C. Chiang et al. A new design for a 1280×1024 digital CMOS image sensor with enhanced sensitivity, dynamic range and FPN. In Proc. Int. Symp. VLSI Technology, Systems, and Applications. 1999:235-238.
    [128] W. Zhang and M. Chan. Properties and design optimization of photodiodes available in a current CMOS technology. In IEDM. 1998: 22-25.
    [129] S.A.O’Connor,“Vagus nerve stimulation as an adjunctive therapy in the treatment patients with medically intractable epilepsy,”IEEE Colloquium on Electrical Engineering and Epilepsy: A Successful Partnership, pp. 9/1-9/4, June 1998.
    [130] R.S.Sanders and M.T.Lee,“Implantable pacemakers,”Proceedings of the IEEE, vol. 84, pp. 480-486, Marcch 1996.
    [131] F.A.Spelman,“The past, present, and future of cochlear prostheses,”IEEE Engineering in Medicine and Biology Magazine, vol. 18, pp. 27-33, May-June 1999.
    [132] O.P.Gandhi,“Electromagnetic fields: human safety issues,”Annu. Rev. Biomed. Eng., vol.4, pp.211-34,2002.
    [133] F.G.Zeng,“Trends in Cochlear Implant,”Trends in Amplification, vol. 8, no.1,pp. 1-34,2004.
    [134] C.M.Zierhofer, I.J.Hochmair-Desoyer, E.S.Hochmair,“Electronic Design of a Cochlear Implant for Multichannel High-Rate Pulsatile Stimulation Strategies,”IEEE Tran. On Rehabilitation Engineering, vol.3, no.1, pp.112-1226,March 1995.
    [135] R.S.Sanders and M.T.Lee,“Implantable pacemakers,”Proceedings of the IEEE, vol. 84, pp. 480-486, Marcch 1996.
    [136] T.H.Nishimura, T.Eguchi, A.Kubota, et al.,“a Non Invasive Rechargeable Cardiac Pacemaker Battery System with a Transcutaneous Energy Transformer,”20th Annual InternationalConference of the IEEE Engineering in Medicine and Biology Society, vol. 21, no.1, 1998.
    [137] J.Schulman,“Wireless network inside the human body,”6th University of California System Wide Bioengineering Symposium, June 2005.
    [138] Q.Xu, J.He, Y.Wang, et al.,“A review of fundamental mechanisms and techniques in functional electrical stimulation,”Proceedings of Neural Interface and Control, 2005,pp.201-204,May 2005.
    [139] M.Humayun, R.J.Greenberg, B.V.Mech, et al.,“Chronically Implanted Intraocular Retinal Prosthesis in Two Blind Subjects,’Proceedings of ARVO Annual Meeting, April 2003.
    [140] W.Liu, K.Vichienchom, M.Clements, et al.,“A Neuro-stinmulus Chip with Telemetry Unit for Retinal Prosthetic Device,”IEEE J. Solid-state Circuits, vol. 35, no. 10, pp. 1487-1497, Oct. 2000.
    [141] S.K.Moore,“Zapping away the blues: a pacemaker-like device to treat depression takes a giant step forward,”IEEE Spectrum, vol. 42, pp. 16-17,May 2005.
    [142] Alan Guberman,“Vagus nerve stimulation in the treatment of epilepsy Division of Neurology,”Neurology, vol. 171, pp. 1165-1166, Nov,2004.
    [143] S. Takeuchi, I.Shimoyama,“A radio-telemetry system with a shape memory alloy microelectrode for neural recording of freely moving insects,”Biomedical Engineering, IEEE Transactions on, vol. 51, pp. 133-137, Jan, 2004.
    [144] N.M.Neihart, R.R.Harrison,“Micropower Circuits for Bidirectional Wireless Telemetry in Neural Recording Applications,”Biomedical Engineering, IEEE Transactions on, vol. 52, pp. 1950-1959, Nov, 2005.
    [145] Tang Z.,“A multi-channel implantable stimulation and telemetry system for neuromuscular control,”Dissertation, Case Western Reserve University, 1997.
    [146] Adair R.E., Petersen C.R.,“Biological effects of radio-frequency/microwave radiation,”IEEE Transactions on Microwave Theory and Techniques, vol. 50, pp. 953-962, March 2002.
    [147] USAF School of Aerspace Medicine, Aerospace Medical Division,“Radiofrequency Radiation Dosimetry Handbook”, Fourth Edition, 2004.
    [148] F. C. Flack, et al.,“Mutual Inductance of Air-Cored Coils: Effect on Design of Radio-Frequency Coupled Implants,”Med. & Biol. Engng., vol. 9, pp. 79-85, Jan. 1971.
    [149] Thompson,“Inductance Calculation Techniques—Part II: Approximations and Handbook Methods,”Power Control and Intelligent Motion, Dec. 1999.
    [150] N. Sokal and A. Sokal,“Class-E——A new class of high-efficiency tuned single-ended switching power amplifiers,”IEEE J. Solid-State Circuits, vol.10, pp. 168-176, June 1975.
    [151] M. Kazimierczuk and K. Puczko,“Exact analysis of class E tuned power amplifier at any Qand switch duty cycle”, IEEE Transactions on Circuits and Systems, vol. cas-34, no 2, Feb 1987.
    [152] Fatih Kocer, Michael P.Flynn, An RF-Powered, Wireless CMOS Temperature Sensor[J]. IEEE Sensors Journal, 2006,6(3): 557-564.
    [153] Maysam Ghovanloo, Khalil Najafi, Full Integrated Power Supply Design for wireless biomedical implants[C]. 2nd Annual International IEEE-EMBS Spcial Topic Conference on Microtechnologies in Medicine&Biology. Wisconsin USA. Madaison. 2002:414-419.
    [154] Nattapon Chaimanonart, Wen H. Ko, and Darrin J. Young, Remote RF Powering circuit for MEMS sensors. 2004:1522-1525.
    [155] Huang, P.H., Lin, H., and Lin, Y.T.:‘A simple subthreshold CMOS voltage reference circuit with channel– length modulation compensation’, IEEE Trans. Circuit Syst. II, 2006, 53, (9), pp. 882–885.
    [156] Y.-B. Gu, S.-F. Yueh, T.-W. Chang CMOS voltage reference with multiple outputs IET Circuits Devices Syst., Vol. 2, No. 2, April 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700