用户名: 密码: 验证码:
高功率光纤激光器的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于高功率双包层光纤激光器具有光束质量好、效率高、结构紧凑和散热性好等特点,近年来发展迅速,已广泛应用于光通信、激光加工、激光医疗和军事等领域。本论文利用数值模拟和理论分析的方法,对高功率掺镱双包层光纤激光器进行了深入系统的研究,为高功率光纤激光器的设计提供了理论依据。
     (1)根据高功率掺镱双包层光纤激光器的速率方程,推导出其近似解析式,并进行了数值模拟。研究了光纤中的激光和抽运光的分布特性,详细分析了光纤激光器的结构参量对输出特性的影响。
     (2)研究了LD尾纤与双包层光纤的侧面耦合,得到耦合效率与倾斜角的关系式,并进行了数值模拟。结果表明,存在一个最佳斜角,使得耦合效率取极大值。
     (3)建立了高功率掺镱双包层光纤激光器在多种抽运方式下的理论模型,推导出其近似解析式,并进行了数值模拟。研究了不同抽运方式对光纤激光器输出特性的影响。模拟结果表明,采用空间多点抽运方式,可以使抽运光在光纤中的分布更加平坦,从而使激光在光纤轴向上均衡地增大。
     (4)从热传导方程出发,推导出高功率掺镱双包层光纤激光器中温度分布的表达式,并数值模拟了光纤轴向和径向的温度分布。结果表明,采用空间多点抽运方式,可以使温度在整个光纤长度上均衡分布,而输出功率没有明显下降。选择适当的抽运光数目、合理设置抽运光注入位置,优化抽运光功率,可以降低光纤的温度,使温度分布更平坦。
     (5)研究了高功率双包层光纤激光器的受激喇曼散射和受激布里渊散射,利用打靶算法,对其进行了数值模拟。模拟结果表明,减小光纤长度、增大纤芯直径和降低掺杂浓度,可以提高受激喇曼散射和受激布里渊散射的阈值抽运光功率,从而抑制非线性效应。
     (6)研究了以闪耀光栅为色散元件的高功率掺镱双包层光纤激光器阵列的谱叠加技术,n个不同波长的激光束,经光栅衍射后在近场和远场重叠在一起,激光束的衍射效率>99%。
     (7)探讨了光热折变无机玻璃布拉格体光栅对宽谱、发散光束的衍射特性,研究了两束激光的体光栅谱叠加原理和技术,推导出衍射效率表达式,利用此式可以对体光栅的参量进行优化设计。
     (8)阐述了种子源主振荡放大光纤激光器的工作原理,并借助行波放大的暂态方程,对种子源脉冲放大进行了数值分析。
The high-power Yb3+-doped double-clad fiber lasers (HPYDDCFLs) develop very fast in recent years for its advantages such as excellent beam quality, high efficiency, compact structure and good heat dissipation. The fiber lasers have been widely applied in the fields of optical communication, laser processing, medical treatment and military etc. In this dissertation, HPYDDCFLs has been studied in numerically and theoretically. These works provide a theoretical basis to the optimum design of HPYDDCFLs.
     (1) Based on the steady state rate equations of HPYDDCFLs, an approximate analytic function of distributed laser along the whole fiber is obtained. The distribution of pump power and laser power, and the dependence of the performance of HPYDDCFLs on the parameters are discussed.
     (2) The principal of angle side-coupling between LD and the double-clad fiber is studied. The relationship between coupling efficiency and angle is derived. The numerical results show there is an angle to maximize the coupling efficiency.
     (3) A theoretical model of HPYDDCFLs based on different pump modes is presented. An approximate analytic function of distributed laser along the whole fiber is obtained. The influence of pump mode on the performance of HPYDDCFLs is discussed. The numerical results show that laser power increase uniformly by utilizing distributed pump and optimizing the arrangement of pump powers.
     (4) According to the heat conduction equation, the expression about the distribution of temperature in HPYDDCFLs is derived. The axial and radial temperature distributions are numerically simulated. It has been shown that the distributed pumping scheme is best to dissipate heat uniformly in fibers and reduces operating temperature without significant output power degradation. The heat dissipation issue in HPYDDCFLs can be effectively solved by optimizing the arrangement of pump powers and pump absorption coefficients.
     (5) The theoretical analyses of stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) in HPYDDCFLs are presented by solving the steady-state rate equations. Numerical results show that the SRS and SBS threshold power can be improved by shortening the cavity length, using large mode area fiber and lowering the Yb3+ concentration.
     (6) The outputs from an n-element HPYDDCFLs array have been combined into a single beam in the plane of the junction. This beam combining is achieved by use of a common external cavity containing a blazed grating, which simultaneously forces each array element to operate at a different, but controlled, wavelength and forces the beams from all the elements to overlap and propagate in the same direction. The grating diffraction efficiency is >99%.
     (7) Diffraction of the divergent beams with certain spectral width on VBG in inorganic photo-thermo-refractive glass is described. Design principles and technical approach for spectral combining of two HPYDDCFLs by VBG are developed. A mathematical model that reveals the critical parameters for high efficiency spectral beam combining by means of VBG has been presented. A general expression for the system efficiency can serve as a guideline when considering design issues of VBG.
     (8) The theory of the master-oscillator power amplifier (MOPA) is described. Numerical analysis of the transient-state of MOPA has been preformed.
引文
[1]聂秋华著.光纤激光器和放大器技术.北京:电子工业出版社, 1997. 28~32
    [2] T. Weber, W. Luthy, H.P. Weber, et al. Cladding-pumped fiber laser. IEEE J. Quantum Electron., 1995, 31(2): 326~329
    [3] D. C. Hanna, R. M. Percival, I. R. Perry, et al. Frequency up-conversion in Tm and Yb: Tm-doped silica fiber lasers. Opt. Commun., 1990, 78(1): 187~194
    [4]曾惠芳,肖芳惠.高功率光纤激光器及其应用.激光技术, 2006, 30(4): 438~441
    [5] T. Kazuyoku, T. Nriyuki, S. Daichi, et al. Concrete cutting using high-power fiber laser. Proc SPIE, 2006, 6101: 61011T1~8
    [6] D. J. Sames, T. M. Lehecka, J. G. Thomas, et al. Multiple applications for the 10 kW fiber laser at the Electro-Optics Center. Proc SPIE, 2006, 6101: 61011S1~10
    [7]楼祺洪,朱健强,周军等.双包层光纤激光器及其在军事中的应用.装备指挥技术学院学报, 2003, 14(5): 28~32
    [8]芳芳.光纤激光器在医疗应用领域寻求商机.光机电信息, 2006, (2): 36~39
    [9] J. E. Townsend, S. B. Poole, D. N. Payne. Solution-doping technique for fabrication of rare-earth-doped optical fibers. Electron. Lett., 1987, 23(7): 329-331
    [10] G. Meltz, W. Morey, H. glemm. Formation of Bragg a transverse holographic method. Opt. Lett., 1989, 14: 823~825
    [11] H. Po, J. D. Cao, B. M. Laliberte, et al. High power Neodymium-doped single transverse mode fiber laser. Electron. Lett., 1993, 29 (17): 1500~1501
    [12] H. Zellmer, U. Willamowski, A. Tunnermann, et al, High-power cw neodymium- doped fiber laser operating at 9.2W with high beam quality. Opt. Lett., 1995, 20(6): 578~580
    [13] H. M. Pask, J. L. Archambault, D. C. Hanna, et al. Operation of cladding-pumped Yb 3+ -doped silica fiber lasers in 1μm region. Electon. Lett., 1994, 30(11): 863~865
    [14]友清译.超高功率光纤激光器.激光与光电子学进展, 1998, 35(1): 40
    [15] V. Dominic, S. MacCormack, R. Waarts, et al. ll0W fiber laser. Electon. Lett., 2000, 35(14): 1158~1160
    [16] J.K. Sahu, Y. Jeong, D. J. Richardson, et al. A 103 W erbium–ytterbium co-doped large-core fiber laser. Opt. Commun., 2003, 227: 159~163
    [17] Y. Jeong, J. K. Sahu, S. Baek, et al. Cladding-pumped ytterbium-doped large-core fiber laser with 610W of output power. Opt. Commum., 2004, 234: 315~319
    [18] Y. Jeong, J. K. Sahu, D. N. Payne, et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power. Opt. Exp., 2004, 12(25): 6088-6092
    [19] J. Hecht. The highest single-mode powers of Yb-doped fiber lasers achieved 2 kW CW output. CLEO, 2005, 6: 508
    [20] R. E. Kennedy, S. V. Popov, A. B. Rulkov, et al. High power fiber-integrated sources. IET London Dec 2006, www. femto, ph. ic. ac. Uk
    [21] W. J. Wadsworth. Yb3+ doped photonic crystal fibre laser. Electron. Lett., 2000, 36 (17): 1452~1454
    [22] J. C. Knight. Large mode area photonic crystal fibre. Electron. Lett., 1998, 34 (13): 1347~1348
    [23] W. J. Wadsworth. High power air-clad photonic crystal fiber laser. Opt. Exp., 2003, 11(1): 48~53
    [24] J. Limpert. High-power air-clad large-mode-area photonic crystal fiber laser. Opt. Exp., 2003, 11(7): 818~823
    [25] G. Bonat, H. Voelcke, T. Gabler, et al. 1.53 kW from a single Yb-doped photonic crystal fiber laser. Photonics West, 2005, 5709-2a
    [26] P. Dupriez, A. Piper. High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode a1060 nm. IEEE Photon. Technol. Lett., 2006, 18 (9): 1013~1015
    [27]陈苗海.高功率光纤激光器的研究进展.激光与红外, 2007, 37(7): 589~592
    [28]楼祺洪.高功率光纤激光器研究进展.红外与激光工程, 2006, 35(2): 135~138
    [29]李晨.采用国产掺Yb双包层光纤的光纤激光器连续输出功率突破700W.中国激光, 2006, 33(6)738
    [30]赵鸿.大功率光纤激光器输出功率超过1.2kW.激光与红外, 2006, 36(10): 930
    [31]李伟.大功率光纤激光器输出功率突破1kW.强激光与粒子束, 2006, 18(6): 890
    [32]宁志勇. 196W功率输出的高功率包层泵浦光纤激光器.光通信研究, 2005, 6: 50
    [33]谢春霞.大模面积掺Yb双包层光纤激光器的实验研究.光子学报, 2005, 34(5): 644~647
    [34]李康.改进的F-P腔结构的大功率掺Yb3+双包层光纤激光器.光电子激光, 2006, 17(3): 302~305
    [35]张芳沛.高功率双包层光纤放大器.激光与光电子学进展, 2007, 44(1): 38~44
    [36] H. M. Pask, R. J. Cayman, D. C. Hanna. Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2pm region. IEEE Selected Topics in Quantum Electron, 1995, 1(1): 2-13
    [37] R. Pashotal, J. Nillson, A. C. Tropper, et al. Ytterbium-doped fiber amplifier. IEEE. J. Quantum Electron, l997, 33(7): 1049~1056
    [38] J. T. Kringlebotn, J. L. Archambault. Er: Yb-codoped fiber distributed-feedback laser. Opt. Lett., 1994, 19(24): 2101~2103
    [39] S. Magne, M. Druetta. An Ytterbium-doped mono-mode fiber laser: amplified spontaneous emission, modeling of the gain tenability in an external cavity. J. Lumin., 1994, 60: 647~650
    [40] E.Snitzer, H.Po, F.Hakimi, et al. Double-clad, offset core Nd fiber laser. Proc. Conf. Optical Fiber Sensors, Post deadline paper PD5.1988: 41
    [41] Martin. H. Optimal inner cladding shapes for double clad fiber lasers [J] Conf. Lasers and Electro-Optics, 1996: CtuU2.
    [42] V. Reichel, S. Unger. 8 W highly-efficient Yb-doped fiber lasers. Proc SPIE, 2000, 3989: 160~169
    [43] Liu, K. Ueda. The absorption characteristics of circular, offset and rectangular double-clad fibers. Opt. Commun., 1996, 132: 511-518
    [44] S. Bedo, W. Luthy, H. P. Weber. The effective absorption coefficient in double-clad fibers. Opt. Commun., 1993, 99: 331~335
    [45] D. Valerie, L. Olivier, M. Fabrice. Optimized absorption in a chaotic double-clad fiber amplifier. Opt. Lett., 2001, 26(12): 872~874
    [46] J. C. Knight, T. A. Birks, R. F. Cregan, et al. Large mode area photonic crystal fiber. Eleetron. Lett., 1998, 34: 1347~1348
    [47] W. J. Wadsworth, R. M. Pereival, G. Bouwmans, et al. Very high numerieal aperturefibers. IEEE Photon. Technol. Lett., 2004, 16: 843~845
    [48] W. J. Wadsworth. Yb3+ doped photonic crystal fiber laser. Electron. Lett., 2000, 36(17): 1452~1454
    [49] K. Furusawa. Mode-locked laser based on ytterbium doped holey fiber. Electron. Lett., 2001, 37(9): 560~561
    [50] P. S. Russell, J. C. Knight, T. A. Briks, et al. Recent progress in photonic crystal fiber. Proc, OFC 2000, 3: 98~100
    [51] P. Russell. Photonic crystal fibers. Science, 2003, 299: 358-362
    [52] T. A. Birks. Endlessly single-mode photonic crystal fiber. Opt. Lett., 1997, 22(13): 961~963
    [53] A. Ferrando, E. Silvestre. Nearly zero ultra-flattened dispersion in photonic crystal fibers. Opt. Lett., 2000, 25(12): 790~792
    [54] A. B. Ortigosa, J. C. Knight, W. J. Wadsworth, et al. Highly birefringence photonic crystal fiber. Opt. Lett., 2000, 25(18): 1325~1327
    [55] A. H. Amos, R. Oron. Signal amplification in strongly pumped fiber amplifiers. IEEE J. Quantum Electron, 1997, 33(3): 307~313
    [56] I. Kelson, A. H. Amos. Strongly pumped fiber lasers. IEEE J. Quant. Eletron., 1998, 34(9): 1570~1577
    [57] I. Kelson, A. H. Amos. Optimization of strongly pumped fiber lasers. IEEE J. Quant. Eletron., 1999, 17(5): 891~897
    [58] Xiao L M, Yan P, Gong M L, et al. An approximate analytic solution of strongly pumped Yb3+-doped double-clad fiber lasers without neglecting the scattering loss. Opt. Commun., 2004, 230: 401~410
    [59]张志涌.精通MATLAB.北京:北京航空航天大学出版社, 2003
    [60] C. Barnard, P. Myslinski, J. Chrostowski, et al. Analytical model for rare-earth-doped fiber amplifiers and lasers. IEEE J. Quant. Eletron., 1994, 30(8): 1817~1830
    [61] N. S. Kim, T. Hamada, M. Prabhu, et al. Numerical analysis and experimental results of output performance for Nd-doped double-clad fiber lasers. Opt. Commun., 2000, 180: 329–337
    [62] Wang Jian, Lu Fuyun, Xie Chunxia, et al. Numerical analysis and experimental results of output performance for large mode area Yb-doped double-clad fiber lasers. Proc. SPIE, 2005, 5644: 540~544
    [63]武自录,陈国夫,王贤华等.掺Yb双包层光纤激光器的数值分析.光子学报, 2002, 31(2): 332 ~336
    [64] M. J. Weber, J. E. Lynch, H. D. Blackburn, et al. Dependence of the stimulated emission cross section of Yb3+ on host glass composition. IEEE J. Quantum Electron, 1983, QE-19(10): 1600~1608
    [65] R. Paschotta, J. Nilsson, A. Tropper, et al. Ytterbium-doped fiber amplifiers. IEEE J. Quantum Electron., 1997, 33(7): 1049~1056
    [66]苏红新,阮双深,吕可诚等. F-P腔掺Yb3+双包层光纤激光器中的模式竞争.光子学报, 2003, 32(4): 405~408
    [67] I. Bennion, J. A. Williams, L. Zhang, et al. UV-written in fiber Bragg gratings. Opt. and Quantum Electron, 1996, 28(2): 93~135
    [68] G. Meltz, W. W. Morey, W. H. Glenn. Formation of Bragg gratings in optical fibers by transverse holographic method. Opt. Lett., 1989, 14(15): 823~825
    [69] K. O. Hill. Bragg grating fabricated in mono-mode photosensitive optical fiber by UV exposure through a phase mask. Appl. Phys. Lett.,1993,62(10): 1035~1037
    [70] H.G. Treusch, D. Keming, M. Baumann, et al. Fiber-coupling technique for high- power diode laser arrays. Proc SPIE, 1998, 3267: 98~106
    [71] G. Rolf, S. Peter, P, Torsten. Micro-optical beam transformation system for high-power laser diode bar with efficient brightness conservation. Proc SPIE, 1997, 3008: 202~210
    [72] Y. W. Peter. Beam-shaping optics delive high-power beams. Laser Focus World, 2001, 12: 115~118
    [73]金杰,焦强,姚建全等.高功率列阵式二极管激光器纵向泵浦的几种聚光方法及性能比较.激光杂志, 1998, 19(1): 19~22
    [74] D. Friedheim, H. Petra, N. Michael. High-brightness fiber-coupled diode laser module. Proc SPIE, 1998, 3285: 192~198
    [75]吴中林,楼棋洪,周军等.双包层光纤激光器泵浦源的光束整形及耦合系统.科学技术与工程, 2004, 4(2): 115~117
    [76] C. Goldberg. V-groove side pumped 1.5μm fiber amplifier. Electron. Lett., 1997, 33 (25): 2127~2129
    [77] D. J. Ripin, L. Goldberg. High efficiency side-coupling of light into optical fibers using imbedded v-grooves. Electron. Lett., 1995, 31: 2204~2205
    [78] Ou Pan, Yan Ping, Gong Mali, et al. Coupling efficiency of angle-polished method for side-pumping technology. Opt. Eng, 2004, 43(4): 816~821
    [79] Ou Pan, Yan Ping, Gong Mali, et al. Multi-coupler side-pumped Yb-doped double-clad fiber laser. Chinese Opt. Lett., 2004, 2(5): 285~287
    [80] A. A. Hardy, R. Oron. Amplified spontaneous emission and Rayleigh backscattering in strongly pumped fiber amplifiers. J. Lightwave Technol., 1998, 16(10): 1865 ~1873
    [81] A. Jhon, Y. Amonon. Spontaneous and stimulated Raman scattering in long low loss fibers. IEEE J. Quantum Electron., 1978, QE14(5): 347~352
    [82] Y. Wang. Stimulated Raman scattering in high-power double-clad fiber lasers and power amplifiers. Opt. Eng., 2005,44(11): 114202-1~12
    [83] M. David, K. Victor, M. Upendra, et al. Large mode area double clad fibers for pulsed and CW lasers and amplifiers. Proc SPIE, 2004, 5335: 140~150
    [84] A. B. Nathan. Stimulated Brillouin scattering in a dual-clad fiber amplier. J. Soc. Am. B, 2002, 19(11): 2551~2557
    [85] L. Zenteno. High-power double-clad fiber lasers, J. Lightwave Technol., 1993, 11(9): 1435~1446
    [86] M. K. Davis, M.J.F. Digonnet, R.H. Pantell. Thermal effects in doped fibers. J. Lightwave Technol., 1998, 16(6): 1013~1023
    [87] D.C. Brown, H.J. Hoffman. Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers. IEEE J. Quantum Electron., 2001, 37(2): 207~217
    [88] Y. Wang, C. Q. Xu, H. Po. Thermal effects in kilowatt fiber lasers. IEEE Photon. Technol. Lett., 2003, 16(1): 63~65
    [89] G. P. Agrawal. Nonlinear Fiber Optics. Third Edition. Beijing: Publishing House ofElectronics Industry, 2002
    [90] A. B. Nathan, L. Kalliroi. Thermal effect in a dual-clad ytterbium fiber laser. Opt. Lett, 2001, 26(21): 1669~1671
    [91] A. K. Cousins. Temperature and thermal, stress scaling in finite-length end-pumped laser rod. IEEE J. Quantum Electron., 1992, 28(4): 1057~1069
    [92] W. Koechner.固体激光工程.孙文,江泽文,程国祥译.北京:科学出版社, 2002, 356~409
    [93] M. E. Innocenzi, H. T. Yura, C. L. Fincher, et al. Thermal modeling of continuous- wave end-pumped solid-state lasers. Appl. Phys. Lett., 1990, 56(19): 1831~1833
    [94] Y. Wang. Heat dissipation in kilowatt fiber power amplifiers. IEEE J. Quantum Electron., 2004, 40(6): 731~740
    [95] R. H. Stolen, E. P. Ippen. Raman gain in glass optical wave-guides. Appl. Phys. Lett., 1973, 22(6): 276~278
    [96] Y.Wang, C. Q. Xua, H. Po. Analysis of Raman and thermal effects in kilowatt fiber lasers. Opt. Commun., 2004, 242: 487~502
    [97] W. P. Urquhaet, P. J. Laybourn. Effective core area for stimulated Raman scattering in single-mode optical fibers. IEE Proc, 1985, 132(4): 201~204
    [98] D. Kincaid, W. Cheney. Numerical analysis: mathematics of scientific computing. Third edition, Beijing: China Machinery Press, 2003. 572~589
    [99] Y. H. Ja. Using the shooting method to solve boundary-value problems involving nonlinear coupled-wave equations. Opt. & Quantum Electron., 1983, 15: 529~538
    [100] A. Kobyakov, M. Mehendale, M. Vasilyev. Stimulated Brillouin scattering in Raman- pumped fibers: a theoretical approach. J. Lightwave Technol., 2002, 20(8): 1635~1643
    [101] S. L. Zhang, J. J. Oreilly. Effect of stimulated Brillouin scattering on distributed Erbium-doped fiber amplifier. IEEE Photon. Technol. Lett., 1993, 5(5): 537~539
    [102] A. Liu. Novel SBS suppression scheme for high power fiber amplifiers. Proc SPIE, 2006, 6102: 6102R1-9
    [103] J. Anderegg, S. Brosnan, M. Weber, et al. 8-W coherently phased 4-element fiber array. Proc SPIE, 2003, 4974: 1~6
    [104] A. Shirakawa, T. Saitou, T. Sekiguchi, et al. Coherent addition of fiber lasers by use of a fiber coupler. Opt. Express, 2002, 10: 1167~1172
    [105] P. K. Cheo, A. Liu, G. G. King. A high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array. IEEE Photon. Technol. Lett., 2001, 13(5): 439~441
    [106] H. Bruesselbach, D. C. Jones, M. S. Mangir, et al. Self-organized coherence in fiber laser arrays. Opt. Lett., 2005, 30: 1339~1341
    [107] Q. Peng, Z. Sun, Y. Chen, et al. Efficient improvement of laser beam quality by coherent combining in an improved Michelson cavity. Opt. Lett., 2005, 30: 1485 ~1487
    [108] M.Tondusson, C. Froehly, V. Kermene, et al. Coherent combination of four laser beams in a multi-axis Fourier cavity using a diffractive optical element. J. Opt. A: Pure Appl. Opt., 2001, 3: 521~526
    [109] L. Liu, Y. Zhou, F. Kong, et al. Phase locking in a fiber laser array with varying path lengths. Appl. Phys. Lett., 2004, 85: 4837~4839
    [110] H. L. Thomas, A. Liu, P. R. Hoffman, et al. 258W of spectrally beam combined power with near-diffraction limited beam quality. Proc SPIE, 2006, 6102: 61020S-1~8
    [111] A. Liu, R. Mead, T. Vatter, et al. Spectral beam combining of high power fiber lasers. Proc SPIE, 2004, 5335: 81~88
    [112] S.J. Augst, A.K. Goyal, R.L. Aggarwal, et al. Wavelength beam combining of ytterbium fiber lasers. Opt. Lett., 2003, 28: 331~333
    [113] V. Daneu, A. Sanchez, T.Y. Fan, et al. Spectral beam combining of a broad-stripe diode laser array in an external cavity. Opt. Lett., 2000, 25: 405~407
    [114] C. Hamilton, S. Tidwell, D. Meekhof, et al. High power laser source with spectrally beam combined diode laser bars. Proc SPIE, 2004, 5336: 1~10
    [115] I. V. Ciapurin, L. B. Glebov, V. L. Smirnov. Spectral combining of high power fiber laser beams using Bragg grating in PTR glass. Proc SPIE, 2004, 5335: 116-124
    [116] E. J. Bochove. Theory of spectral beam combining of fiber lasers. IEEE J Quant Electron., 2002, 38(6): 432~446
    [117] A. R. Rashed, B. E. Saleh, Decentered Gaussian beams. Appl. Opt., 1995, 34(30):6819~6825
    [118] LüBd, Ma H. Coherent and incoherent off-axis Hermite-Gaussian beam combinations. Appl. Opt., 2000, 39(8): 1279-1289
    [119]郑辉.闪耀光栅对厄米-高斯光束的衍射.中国激光, 1982, 10(1): 1-7
    [120] M. C. Hutley. Diffraction gratings. Academic press Inc, 1982
    [121] I. V. Ciapurin, L. B. Glebov, L. N. Glebova. Incoherent combining of 100-W Yb-fiber laser beams by PTR Bragg grating. Proc SPIE, 2003, 4974: 209~219
    [122] B. L. Volodin, S. V. Dolgy, E. D. Melnik, et al. Performance enhancement of the high-power laser diodes and arrays by use of the volume Bragg grating? technology. Proc SPIE, 2005, 5711: 185~188
    [123] L. B. Glebov. High brightness laser design based on volume Bragg grating. Proc SPIE, 2006, 6216: 1~10
    [124] A. Sevian, O. Andrusyak, I. Ciapurin, et al. Spectral beam combining with volume Bragg gratings: Cross-talk analysis and optimization schemes. Proc SPIE, 2006, 6216: 62160v-1~12
    [125] I. Ciapurin, L. Glebov, V. Smirnov. Modeling of phase volume diffractive gratings, part 1: Transmitting sinusoidal uniform gratings. Opt. Eng., 2006, 45: 015802
    [126] J. Anderegg, S. Brosnan, E. Cheung, et al. Coherently coupled high power fiber arrays. Proc SPIE, 2006, 6102: 61020U-1~5
    [127] T. M. Shay, V. Benham. First experimental demonstration of phase locking of optical fiber arrays by RF phase modulation. Proc SPIE, 2004, 5550: 313~319
    [128] T. M. Shay, V. Benham, L. J. Spring. Self-referenced locking of optical coherence by single-detector electronic-frequency tagging. Proc SPIE, 2006, 6102: 61020V-1~5
    [129] T. M. Shay. Theory of electronic phase locking of an optical array without a reference beam. Proc SPIE, 2006, 6102: 61020S-1~11
    [130] T. M. Shay, V. Benham, J. T. Baker, et al. Narrow line-width coherent beam combining of optical fiber amplifier arrays. Proc SPIE, 2007, 6451: 6451N1-1~15
    [131] Y. Huo, R. T. Brown, G. G. King, et al. Kinetic modeling of Q-switched high-power ytterbium-doped fiber lasers. Appl. Opt., 2004, 43(6): 1404~1411
    [132] Y. Wang, C. Q. Xu. Modeling and optimization of Q-switched double-clad fiberlasers. Appl. Opt., 2006, 45(9): 2058~2071
    [133] A. Albert, V. Couderc, L. Lefort, et al. High-energy femtosecond pulses from an ytterbium-doped fiber laser with a new cavity design. IEEE Photon. Technol. Lett., 2004, 16(2): 416~418
    [134] S. Maryashin, A. Unt, V.P.Gapontsev. 10-mJ pulse energy and 200 W average power Yb-doped fiber laser. Proc. SPIE, 2006, 6102: 61020O-1~5
    [135]蓝信矩.激光技术.北京:科学出版社, 2000
    [136]杜卫冲,谭华耀,刘颂豪.一种新型的光纤光栅调Q掺Er光纤激光器.光学学报, 1997, 17(8): 1077~1079
    [137] S. V. Chernikov, Y. Zhu, J. R. Taylor, et al. Supercontinuum self-Q-switched ytterbium fiber laser. Optics Lett., 1997, 22(5): 298~300
    [138]黄琳,刘永智,代志勇.提高声光调Q光纤激光器输出功率的关键因素分析.光电子技术与信息, 2006, 19(2): 30~34
    [139] G.T. Harey, L. F. Mollenauer. Harmonically mode-locked fiber ring laser with an internal Fabry-Perot stabilizer for soliton transmission. Opt. Lett., 1993, 18(2): 107~109
    [140] Wu Xiaoying. Mode lock fiber laser. Optoelectronics·Laser, 1997, 8(2): 36~40
    [141] I. N. Duling, C. J. Chen, P. K. Wai, et al. Operation of a nonlinear loop mirror in a laser cavity. IEEE J Quantum. Electron., 1994, 30(1): 194~199
    [142] P. Wessels, M. Auerbach, C. Fallnich. Narrow-line-width master oscillator power amplifier system with very low amplified spontaneous emission. Opt. Commun., 2002, 205: 215~219
    [143]沈柯.激光原理教程.北京:北京工业学院出版社. 1986, 339~348
    [144]楼棋洪,周军,孔令峰等.高功率脉冲双包层光纤激光器的新进展.量子电子学报, 2005, 22(4): 510~515
    [145] Y. Wang, H. Po. Dynamic characteristics of double-clad fiber amplifiers for high-power pulse amplification. J. Lightwave Technol., 2003, 21(10): 2262~2270
    [146] S. R. Chinn. Simplified modeling of transients in Gain-clamped Erbium-doped fiber amplifiers. J. Lightwave Technol., 1998, 16(6): 1095~1100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700