用户名: 密码: 验证码:
被动锁模波长可调谐光纤激光器的理论和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
波长可调谐的被动锁模光纤激光器能够广泛地应用于光通信领域,因此本论文主要围绕此课题在理论和实验上展开研究工作。在实验上,利用半导体可饱和吸收镜(SESAM)实现线型腔掺镱光纤激光器的双波长锁模输出;利用非线性偏振旋转(NPR)实现环形腔双包层铒镱共掺光纤激光器的锁模。主要研究工作如下:
     1.波长可调谐SESAM锁模线型腔掺镱光纤激光器。输出被动锁模脉冲的重复频率为16.42MHz,在中心波长1030nm处,最大平均输出功率为10.2mW,单脉冲能量为0.63nJ。体布拉格光栅(VBG)既作为腔镜,又作为波长调谐器件。转动VBG,锁模脉冲中心波长可在1011.9~1050.6nm(38.7nm)范围内定性定量地调谐。以光栅公式为基础,可以在振荡波长和VBG的倾斜角度之间进行相互推算,建立一一对应关系;当顺时针调节VBG,波长向长波长方向调谐;反之,向短波长方向调谐。
     2.双波长可分别调谐的SESAM锁模线型腔掺镱光纤激光器。利用保偏分束器构建两个分支激光腔,这两个光腔共享同一段掺镱增益光纤,每个光腔内各对应一块VBG,其不仅作为该分支腔的腔镜,而且作为波长调谐器件。该激光器利用净增益均衡法输出双波长脉冲,其中心波长可分别在1020.3~1038.5nm和1027.2~1055.1nm的范围内定性定量地调谐,其重复频率分别为11.39和11.41MHz,最大单脉冲能量分别为0.47和0.33nJ。双波长脉冲的最大和最小波长间隔为34.8和2.4nm。
     3. NPR锁模环形腔铒镱共掺双包层光纤激光器。输出被动锁模脉冲的基频重复频率为12.12MHz,中心波长为1568.98nm时,光谱带宽为5.26nm,信噪比约60dB。调节两个偏振控制器,实现锁模脉冲的中心波长在1564.60nm~1568.98nm范围内连续调谐,调谐范围4.38nm。测得的脉宽中,最窄脉宽为1.78ps。当泵浦功率为3.9W时,平均输出功率达到最大值52.2mW。
     4.自调Q和自锁模环形腔铒镱共掺双包层光纤激光器。逐渐增大泵浦功率,自调Q脉冲的频率从4.17~55.56KHz调谐;同时,脉冲宽度从11.9~8.1μs调谐。自锁模的基频为12.58MHz,在1565.80nm处,光谱带宽为3.15nm;泵浦功率升高至2700mW时,自锁模消失。
The passively mode-locked fiber laser with central wavelength tunable can bewidely used in optical communication system. Hence, the passively mode-lockedfiber laser which pulse central wavelength can be tuned continuously is mainlystudied theoretically and experimentally in this thesis. In experiment, thedual-wavelength mode-locked pulses are obtained by semiconductor saturableabsorber mirror(SESAM) in linear cavity ytterbium-doped fiber laser. The passivelymode-locked pulse is realized by nonlinear polarization rotation(NPR) in ring cavitydouble-clad erbium/ytterbium co-doped fiber laser. The detail research work can beclassified as follows:
     1. Wavelength-tunable SESAM mode-locked linear cavity ytterbium-dopedfiber laser. The passively mode-locked pulse with the repetition rate of16.42MHz is achieved, which maximum average output power is10.2mW andsingle pulse energy is0.63nJ at central wavelength of1030nm. Volume Bragggrating(VBG) acts not only as the mirror of the laser cavity, but also thewavelength tuning device. By adjusting VBG, the central wavelength of themode-locked pulse is tuned from1011.9nm to1050.6nm qualitatively andquantitatively, which tuning range of38.7nm. Based on the grating formula,every output wavelength matches one of the angles of VBG. Through adjustingthe VBG along clockwise, the pulse wavelength is tuned to longer wavelength;conversely, it becomes shorter.
     2. Wavelength tunable dual-wavelength linear-cavity passively mode-lockedYtterbium-doped fiber laser based on SESAM. This fiber laser is constructedwith an Yb-doped fiber and two branch cavities by polarization-maintaining beamsplitter. This laser system can output simultaneous dual-wavelength pulses withthe qualitative and quantitative wavelength tuning range of1020.3~1038.5nm and1027.2~1055.1nm by net gain equalization method at room temperature with themaximum and minimum wavelength separation of34.8and2.4nm, whichrepetition rate of11.39and11.41MHz respectively. And their maximum singlepulse energy are0.47and0.33nJ.
     3. The mode-locked ring cavity double-clad erbium/ytterbium co-doped fiberlaser based on nonlinear polarization rotation. The passively mode-locked pulse is obtained with the repetition rate of12.12MHz, which optical spectrum bandwidthis5.26nm and signal-to-noise ratio is60dB at the central wavelength of1568.98nm. The minimum pulse duration is1.78ps. The central wavelength ofthe mode-locked pulse is tuned from1564.60nm to1568.98nm by adjustingpolarization controller with the tuning range of4.38nm. The maximum averageoutput power is52.2mW at the pump power of3.9W.
     4. Self-Q-switched and self-mode-locked ring cavity double-claderbium/ytterbium co-doped fiber laser. When increasing the pump powergradually, the repetition rate of the Self-Q-switched pulse is tuned from4.17KHzto55.56KHz. At the same time, the pulse duration is tuned from11.9μs to8.1μs.The repetition rate of the self-mode-locked pulse is12.58MHz with the opticalspectrum bandwidth of3.15nm at1565.80nm. The self-mode-locked pulsedisappears when the pump power is higher than2700mW.
引文
[1] E. Snitzer, Optical master action of Nd3+in barium crown glass, Phys. Rev. Lett.,1961,7:444
    [2] C. Koester, E. Snitzer, Amplification in a fiber laser, Applied Optics,1964,3:1182
    [3] G. C. Holst, E. Snitzer, R. Wallace, High-coherence high-power laser system at1.0621μm, IEEE J. Quant. Elect., QE-5,1969:342
    [4] G. C. Holst, E. Snitzer, Detection with a fiber laser preamplifier at1.06μm, IEEE J.Quant. Elect., QE-5,1969:319
    [5] B. Ross, E. Snitzer, Optical amplification of1.06μm InAs1-xPxinjection laseremission, IEEE J. Quant. Elect., QE-6,1970:361
    [6] J. Stone, C. A. Burrus, Neodynium-doped silica lasers in end-pumped fibergeometry, Appl. Phys. Lett.,1973,23:388
    [7] J. Stone, C. A. Burrus, Neodynium-doped fiber lasers: Room Temperature CWoperation with an injection laser pump, Applied Optics,1974,13:1256
    [8] S. B. Poole, D. N. Payne, M. E. Fermann, Fabrication of low loss optical fibrescontaining rare-earth ions, Electron. Lett.,1985,21:737
    [9] R. J. Mears, L. Reekie, S. B. Poole, et al., Neodynium-doped silica single-modefiber lasers, Electron. Lett.,1985,21:738
    [10] S. B. Poole, D. N. Payne, R. J. Mears, et al., Fabrication and characterization oflow-loss optical fibres containing rare-earth ions’, IEEE J. Lightwave Tech., LT-4,1986:870~876
    [11] M. J. F. Digonnet, Rare-Earth-Doped Fiber lasers and Amplifiers, Marcel Dekker,Inc,2001
    [12] A. Galvanauskas, Mode-scalable fiber-based chirped pulse amplification systemsIEEE J. Sel. Top. Quant. Electron,2001,7:504
    [13] R. Paschotta, J. Nilsson, A. C. Tropper, et al., Ytterbium-doped fiber amplifiersIEEE J. Quant. Electron,1997,33:1049
    [14] V. Cautaerts, D. J. Richardson, R. Paschotta, et al., Stretched pulse Yb3+silicafiber laser Opt. Lett.,1997,22:316
    [15] L. Lefort, J. H. V. Price, D. J. Richardson, et al., Practical low-noisestretched-pulse Yb3+-doped fiber laser, Opt. Lett.,2002,27:291
    [16] F. W. Quelle, presentation at SPIE Seminar on Laser Range Instrumentation, ElPaso, TX,1967
    [17] Morgner, U., et al., Sub-two-cycle pulses from a Kerr-lens mode-lockedTi:sapphire laser, Opt. Lett.,1999,24(6):411~413
    [18] D. Burns, W. Sibbett, Controlled amplifier modelocked Er fibre ring laser,Electron. Lett.,1990,26:505~506
    [19] H. Takara, S. Kawanishi, M. Saruwatari, et al., Generation of highly stable20GHz transform-limited optical pulses from actively mode-lcoked Er-dopedfibre lasers with an all-polarization maintaining ring cavity, Electron. Lett.,1992,28:2095~2096
    [20] K. Smith, K. Lucek, All-optical clock recovery using a mode-locked laser,Electron. Lett.,1992,28:1814~1815
    [21] I. N. Duling Ⅲ, Subpicosecond all-fibre erbium laser, Electron. Lett.,1991,27:544~545
    [22] D. J. Richardson, R. I. Laming, D. N. Payne, et al.,320fs soliton generation withpassively mode-locked erbium fibre laser, Electron. Lett.,1991,27:730
    [23] E. A. Desouza, C. E. Soccolich, W. Pleibel, et al., Saturable absorbermode-locked polarization maintaining erbium-doped fibre laser, Electron. Lett.,1993,29:447~449
    [24] K. Tamura, L. E. Nelson, H. A. Haus, et al., Soliton versus nonsoliton operationfiber ring lasers, Appl. Phys. Lett.,1994,64:149~151
    [25] Luís A. Gomes, Lasse Orsila, Tomi Jouhti, et al., Picosecond SESAM-BasedYtterbium Mode-Locked Fiber Lasers, IEEE JOURNAL OF SELECTEDTOPICS IN QUANTUM ELECTRONICS,2004,10(1):129~136
    [26]游小丽,王勇刚,薛迎红等,透射式SESAM实现掺Yb3+光纤激光器被动调Q锁模,红外与激光工程,2005,34(6):673~676
    [27] Pavel Polynkin, Alexander Polynkin, Dmitriy Panasenko, et al., All-fiberpassively mode-locked laser oscillator at1.5μm with watts-level average outputpower and high repetition rate, OPTICS LETTERS,2006,31(5):592~594
    [28] Kazuhiko Sumimura, Hidetsugu Yoshida, Kazuhiro Tanaka, et al., AllPolarization-Maintaining Type Yb Mode-Locked Fiber Laser with PhotonicCrystal Fiber, Electronics and Communication in Japan,2007,90(5):27~32
    [29] Ori Katz, Yoav Sintov, Yehuda Nafcha, et al., Passively mode-locked ytterbiumfiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control, OpticsCommunication,2007,269:156~165.
    [30]王旌,张洪明,张鋆等,基于饱和吸收镜的被动锁模光纤激光器,中国激光,2007,34(2):163~165
    [31] M. Zhang, L.L. Chen, C. Zhou, et al., Mode-locked ytterbium-dopedlinear-cavity fiber laser operated at low repetition rate, Laser Phys. Lett.,2009,6(9):657~660
    [32] Rui Song, Hong-Wei Chen, Sheng-Ping Chen, et al., A SESAM passivelymode-locked fiber laser with a long cavity including a band pass filter, J. Opt.,2011,13:035201-1~035201-5
    [33] Qing Wang, Jihong Geng, Zhuo Jiang, et al., Mode-Locked Tm–Ho-CodopedFiber Laser at2.06m, IEEE PHOTONICS TECHNOLOGY LETTERS,2011,23(11):682~684
    [34] CHEN LingLing, ZHANG Meng, WANG Xi, et al., Broadband SESAM formode locked Yb:fiber lasers, Chinese Science Bulletin,2011,56(13):1348~1351
    [35]刘鹏祖,侯静,张斌等,基于半导体可饱和吸收镜的1550nm被动锁模光纤激光器,中国激光,2011,31(8):0702017-1~0702017-3
    [36] Jiang Liu, Jia Xu, Pu Wang, High Repetition-Rate Narrow Bandwidth SESAMMode-Locked Yb-Doped Fiber Lasers, IEEE PHOTONICS TECHNOLOGYLETTERS,2012,24(7):539~541
    [37] Shinji Yamashita, Yusuke Inoue, Kevin Hsu, et al.,5-GHz Pulsed FiberFabry–Pérot Laser Mode-Locked Using Carbon Nanotubes, IEEEPHOTONICS TECHNOLOGY LETTERS,2005,17(4):750~752
    [38] Yong-Won Song, Sze Y. Set, Shinji Yamashita, et al.,1300-nm Pulsed FiberLasers Mode-Locked by Purified Carbon Nanotubes, IEEE PHOTONICSTECHNOLOGY LETTERS,2005,17(8):1623~1625
    [39] Shinji Yamashita, Sze Yun Set, Chee Seong Goh, et al., Ultrafast SaturableAbsorbers Based on Carbon Nanotubes and Their Applications to PassivelyMode-Locked Fiber Lasers, Electronics and Communications in Japan, Part2,2007,90(2):87~94
    [40] Khanh Kieu, Masud Mansuripur, Femtosecond laser pulse generation with a fibertaper embedded in carbon nanotube/polymer composite, OPTICS LETTERS,2007,32(15):2242~2244
    [41] A. V. Tausenev, E. D. Obraztsova, A. S. Lobach, et al.,177fs erbium-doped fiberlaser mode locked with a cellulose polymer film containing single-wall carbonnanotubes, APPLIED PHYSICS LETTERS,2008,92:171113-1~171113-4
    [42] Fumio Shohda, Masataka Nakazawa, Junji Mata, et al., A113fs fiber laseroperating at1.56μm using a cascadable film-type saturable absorber withP3HT-incorporated single-wall carbon nanotubes coated on polyamide, OPTICSEXPRESS,2010,18(9):9711~9712
    [43] E. J. R. Kelleher, J. C. Travers, Z. Sun, et al., Bismuth fiber integrated lasermode-locked by carbon Nanotubes, Laser Phys. Lett.,2010,7(11):790~794
    [44] I Hernandez-Romano, J Davila-Rodriguez, D A May-Arrioja, et al., Fabricationof PDMS/SWCNT thin films as saturable absorbers, Journal of Physics:Conference Series274,2011:012118-1~012118-5
    [45] M. Zhang, E. J. R. Kelleher, A. S. Pozharov, et al., Passive synchronization ofall-fiber lasers through a common saturable absorber, OPTICS LETTERS,2011,36(20):3984~3986
    [46] Chengbo Mou, Aleksey G. Rozhin, Raz Arif, et al., Polarization insensitivein-fiber mode-locker based on carbon nanotube with N-methyl-2-pryrrolidonesolvent filled fiber microchamber, APPLIED PHYSICS LETTERS,2012,100:101110-1~101110-5
    [47] You Min Chang, Hyungseok Kim, Ju Han Lee, et al., Multilayered graphemeefficiently formed by mechanical exfoliation for nonlinear saturable absorbers infiber mode-locked lasers, APPLIED PHYSICS LETTERS,2010,97:211102-1~211102-4
    [48] Z. Sun, X. C. Lin, D. Popa, et al., Wideband Tunable, High-power, GrapheneMode-locked Ultrafast Lasers,2011Conference on Lasers and Electro-OpticsEurope and12th European Quantum Electronics Conference, CLEO EUROPE/EQEC,2011, paper JSII2_5.
    [49]刘江,吴思达,徐佳等,基于氧化石墨烯锁模的2μm掺铥超短脉冲光纤激光器,中国激光,2012,39(3):0310001-7
    [50] Yichang Meng, Shumin Zhang, Xingliang Li, et al., Multiple-soliton dynamicpatterns in a grapheme mode-locked fiber laser, Optics Express,2012,20(6):6685~6692
    [51] Xiaoying He, Zhi-Bo Liu, Dongning Wang, et al., Passively Mode-Locked FiberLaser Based on Reduced Graphene Oxide on Microfiber for Ultra-Wide-BandDoublet Pulse Generation, Journal of light wave technology,2012,30(7):984~989
    [52] Zhi-Chao Luo, Wen-Jun Cao, Ai-Ping Luo, et al., Optical Deposition ofGraphene Saturable Absorber Integrated in a Fiber Laser Using a Slot Collimatorfor Passive Mode-Locking, Applied Physics Express,2012,5:055103-1~055103-3
    [53] Pi Ling Huang, Shau-Ching Lin, Chao-Yung Yeh, et al., Stable mode-locked fiberlaser based on CVD fabricated graphene saturable absorber, OPTICS EXPRESS,2012,20(3):2460~2465
    [54] Sun Young Choi, Dae Kun Cho, Yong-Won Song, et al., Graphene-filled hollowoptical fiber saturable absorber for efficient soliton fiber laser modelocking,OPTICS EXPRESS,2012,20(5):5652~5657
    [55] Song Wu, Jefferson Strait, Richard L. Fork, et al., High-power passivelymode-locked Er-doped fiber laser with a nonlinear optical loop mirror, OpticsLetters,1993,18(17):1444~1446
    [56] Joon Tae Ahn, Hak Kyu Lee, Kyong Hon Kim, et al., A passively mode-lockedfibre laser with a delayed optical path for increasing the repetition rate, OpticsCommunication,1998,48:59~62
    [57] Claude Aguergaray, Neil G. R. Broderick, Miro Erkintalo, et al., Mode-lockedfemtosecond all-normal all-PM Yb-doped fiber laser using a nonlinearamplifying loop mirror, Optics Express,2012,20(10):10545~10551
    [58] M. E. Fermann, M. J. Andrejco, Y. Silberberg, et al., Generation of pulses shorterthan200fs from a passively mode-locked Er fiber laser, Optics Letters,1993,18(1):48~50
    [59] V. J. Matsas, D. J. Richardson, T. P. Newson, et al., Characterization of aself-starting, passively mode-locked fiber ring laser that exploits nonlinearpolarization evolution, Optics Letters,1993,18(5):358~360
    [60] M. A. Putnam, M. L. Dennis, I. N. Duling III, et al., Broadband square-pulseoperation of a passively mode-locked fiber laser for fiber Bragg gratinginterrogation, Optics Letters,1998,23(2):138~140
    [61] W. S. Man, H. Y. Tam, M. S. Demokan, et al., Mechanism of intrinsic wavelengthtuning and sideband asymmetry in a passively mode-locked soliton fiber ringlaser, J.Opt.Soc.Am.B,2000,17(1):28~33
    [62] Yandong Gong, Ping Shum, Tee Hiang Cheng, et al., Bound soliton pulses inpassively mode-locked fiber laser, Optics Communication,2001,200:389~399
    [63] Herve′Leblond, Mohamed Salhi, Ammar Hideur, et al., Experimental andtheoretical study of the passively mode-locked ytterbium-doped double-cladfiber laser, Physical Review A,2002,65:063811-1~063811-9
    [64] Ammar Hideur, Bulend Ortac, Thierry Chartier, et al., Ultra-short bound statesgeneration with a passively mode-locked high-power Yb-doped double-clad fiberlaser, Optics Communication,2003,225:71~78
    [65] B. Zhao, D.Y. Tang, P. Shum, et al., Energy quantization of twin-pulse solitons ina passively mode-locked fiber ring laser, Appl. Phys. B,2003,77:585~588
    [66] D. Y. Tang, L. M. Zhao and B. Zhao, Soliton collapse and bunched noise-likepulse generation in a passively mode-locked fiber ring laser, OPTICS EXPRESS,2005,13(7):2289~2294
    [67] F. O. Ilday, J. Chen, and F. X. Ka¨rtner, Generation of sub-100-fs pulses at up to200MHz repetition rate from a passively mode-locked Yb-doped fiber laser,OPTICS EXPRESS,2005,13(7):2716~2721
    [68]赵德双,刘永智,王秉中等,飞秒被动锁模环形腔掺Er3+光纤激光器,应用光学,2006,27(3):220~224
    [69]魏莹,闫晗,费爱梅等,σ形腔自起振被动锁模掺铒光纤激光器,科学技术与工程,2007,7(7):1671~1819
    [70]赵慧,柴路,欧阳春梅,长腔全正色散锁模掺镱光纤激光器,中国激光,2010,37(12):2958~2963
    [71]陈祖聪,阮双琛,郭春雨,环形腔被动锁模掺饵光纤激光器,光子学报,2010,41(3):267~270
    [72]石明威,刘博文,王思佳等,输出大啁啾脉冲的展宽脉冲锁模光纤激光器,中国激光,2012,39(2):0202007-1~0202007-4
    [73] M. E. Fermann and D. Harter,J. D. Minelly and G. G. Vienne, Cladding-pumpedpassively mode-locked fiber laser generating femtosecond and picosecond pulses,Optics Letters,1996,21(13):967~969
    [74] Chun Zhou, Weijian Yang, Guangxiao Zhang, et al., Novel Ring Cavity forYtterbium-Doped Mode-Locked Fiber Laser Incorporated With Both SESAMand Grating Pair, IEEE PHOTONICS TECHNOLOGY LETTERS,2009,21(1):3~5
    [75] Yuanshan Liu, Jian-Guo Zhang, Guofu Chen, et al., Low-timing-jitter,stretched-pulse passively mode-locked fiber laser with tunable repetition rateand high operation stability, Journal of Optics(J. Opt.),2010,12:1~6
    [76] Zhi-Chao Luo, Ai-Ping Luo, Wen-Cheng Xu, Tunable and SwitchableMultiwavelength Passively Mode-Locked Fiber Laser Based on SESAM andInline Birefringence Comb Filter, IEEE Photonics Journal,2011,3(1):64~71
    [77] M. Margalit, M. Orenstein, and G. Eisenstein, Noise reduction by harmonicinjection locking of passively mode-locked erbium-doped fiber lasers, OpticsLetters,1995,20(18):1877~1879
    [78] Y.D. Gong, P. Shum, D.Y. Tang, et al., Regimes of operation states in passivelymode-locked fiber soliton ring laser, Optics&Laser Technology,2004,36:299~307
    [79] Jochen Schr der, Stéphane Coen, and Frédérique Vanholsbeeck, Passivelymode-locked Raman fiber laser with100GHz repetition rate, OPTICSLETTERS,2006,31(23):3489~3491
    [80] R. P. Davey, N. Langford, A. I. Ferguson, Subpicosecond pulse generation fromerbium doped fiber laser, Electron. Lett.,1991,27:726~728
    [81] T. F. Carruthers, I. N. Duling, M. L. Dennis, Active-passive modelocking in asingle-polarization erbium fibre laser, Electron. Lett.,1994,30:1051~1053
    [82] M. Romagnoli, S. Wabnitz, P. Franco, et al., Tunable erbium-ytterbium fibersliding-frequency soliton laser, J. Opt. Soc. Am. B,1995,12:72~76
    [83] M. I. Dzhibladze, Z. G. Esiashvili, E. Sh. Teplitskii, et al., Elektron.(Moscow),1983,10:432
    [84] Chung-Po Huang, Generation of transform-limited32-fs pulses from aself-mode-locked Ti:sapphire laser, Opt. Lett.,1992,17(2):139~141
    [85] A.Courjaud, N.Deguil, and F. Salin, High-power diode-pumped Yb:KWGultrafast laser, Lasers and Electro-Optics,2002. CLEO’02.2002:501~502
    [86] C. Schaffer, J. Garcia and E. Mazur, Bulk heating of transparent materials using ahigh repetition-rate femtosecond laser, Appl. Phys. A,2003,76(3):351~354
    [87] N.H.Bonadeo, W.H.Knox, J. M. Roth et al., Passive harmonic mode-lockedsoliton fiber laser stabilized by an optically pumped saturable Bragg reflector,Opt. LEtt.,2000,25(19):1421~1423
    [88] C.X.Yu, H.A.Haus, E.P.Ippen et al., Gigahertz-repetition-rate mode-locked fiberlaser for continuum generation, Opt. Lett.,2000,25(19):1418~1420
    [89] M. T. Asakictal. Generation of11-fs pulses from a self-mode-locked Ti:sapphireLaser. Opt. Lett.,1993,18(12):977~979
    [90] H.Sutter Dirk, D. Jung Isabella, X.Kartner Franz et al., Self-starting6.5-fs pulsesfrom a Ti:Sapphire laser using a semiconductor saturable absorber and doublechirped mirrors. IEEE J. Selected Topics in Quantum Electron.,1998,4(2):169~179
    [91] S. Chu, T. Liu, C. Sun, C. Lin et al., Real-time second-harmonic-generationmicroscopy based on a2-GHz repetition rate Ti:sapphire laser, Opt. Express,2003,11(8):933~938
    [92] C. Schaffer, J. Garcia, E. Mazur, Bulk heating of transparent materials using ahigh-repetition-rate femtosecond laser, Appl. Phys. A,2003,76:351
    [93] S. Chu, T. Liu, C. Sun, C. Lin, H. Tsai, Real-time second-harmonic-generationmicroscopy based on a2-GHz repetition rate Ti:sapphire laser, Opt. Express,2003,11:933~938
    [94] N. H. Bonadeo, W. H. Knox, J. M. Roth, K. Bergman, Passive harmonicmode-locked soliton fiber laser stabilized by an optically pumped saturableBragg reflector, Opt. Lett.,2000,25:1421
    [95] C. X. Yu, H. A. Haus, E. P. Ippen, W. S. Wong, A. Sysoliatin,Gigahertz-repetition-rate mode-locked fiber laser for continuum generation, Opt.Lett.,2000,25:1418
    [96]蓝信钜等,激光技术,北京:科学出版社,2005
    [97]周炳琨,高以智,陈倜嵘,陈家骅,激光原理(第5版),北京:国防工业出版社,2004
    [98] E. P. Ippen, Principles of passive mode locking, Appl. Phys. B,1994,58:159,
    [99] S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, J. E. Cunninggham,Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors, IEEE J.Sel. Top. Quant. Electron.1996,2:454
    [100] U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R.Fluck, C. Honninger, N. Matuschek, J. Aus der Au, Semiconductor saturableabsorber mirrors(SESAM's) for femtosecond to nanosecond pulse generationin solid-state lasers, IEEE J. Sel. Top. Quant. Electron.1996,2:435,
    [101] K. Ursula, J. W. Kurt, X. K. Franz, et. al., Semiconductor Saturable AbsorberMirrors(SESAM) for Femtosecond to Nanoseond Pulse Generation inSolid-State Lasers, IEEE Journal of Selected Topics in Quantum Electronics,1996,2:435~452
    [102] C. Honninger, R. Paschotta, F. Morier-Genoud, et. al., Q-switching stabilitylimits of continuous-wave passive mode locking, Journal of the Optical Sociatyof America B: Optical Physics,1999,16(1):46~56
    [103] U. Haiml, R. Grange, U. Keller, Optical characterization of semiconductorsaturable absorber, Applied Physics B: Lasers and Optics,2004,79(3):331~339
    [104] Govind P. Agrawal,非线性光纤光学原理及应用(贾东方,余震虹,王肇颖,杨天新译,李世忱审校),北京:电子工业出版社,2010.6
    [105] M. E. Fermann, F. Haberl, M. Hofer, H. Hochreiter, Nonlinear amplifying loopmirror, Opt. Lett.,1990,15(13):752~754
    [106] L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, E. P. Ippen, Ultrashort-pulsefiber ring lasers, Appl. Phys. B.,1997,65:277
    [107] J. Ares, M. T. Flores-Arias, V. Kermne, A. Desfarges-Berthe1emot, and A.Barthlmy. Numerical modelling of nonlinear ellipse rotation. In SPIEConference Series,2004,5622:1104~1108, USA,. International Society forOptical Engineering, USA, ISBN0277-786X.
    [108] Q. Lin and G. P. Agrawal. Vector theory of cross-phase modulation: Role ofnonlinear polarization rotation. IEEE J. of Quantum Elect.,2004,40:958~964
    [109] M. Salhi, H. Leblond, and F. Sanchez. Theoretical study of the erbium-dopedfiber laser passively mode-locked by nonlinear polarization rotation. Phys. Rev.A,2003,67:013802/1–013802/7
    [110] C. Vinegoni, M. Wegmuller, B. Huttner, and N. Gisin. Measurement ofnonlinear polarization rotation in a highly birefringent optical fibre using aFaraday mirror. J. Optics A,2000,2:314~318
    [111] V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne. Self-startingpassively mode-locked fibre ring soliton laser exploiting nonlinear polarizationrotation. Electron. Lett.,1992,28:1391~1393
    [112] K. Tamura, H. A. Haus, and E. P. Ippen. Self-starting additive pulsemodelocked erbium fibre ring laser. Electron. Lett,1992,28:2226~2228
    [113] D. U. Noske, N. Pandit, and J. R. Taylor. Subpicosecond soliton pulseformation from self-mode-locked erbium fibre laser using intensity dependentpolarization rotation, Electron. Letters,1992,28:2185~2186
    [114] A. Albert, V. Couderc, L. Lefort, and A. Barthelemy. High-energy femtosecondpulses from an Ytterbium-doped fiber laser with a new cavity design. IEEEPhot. Tech. Lett.,2004,16:416~418
    [115] M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober, A. J. Schmidt, Mode Iockingwith cross-phase and self-phase modulaton, Opt. Lett.1991,16:502~504
    [116] R. P. Davey, N. Langford, A. I. Ferguson, Role of polarization rotaion inmode-locking of an Er-fiber laser, Electron.Lett.1993,29:758-760
    [117] M. E. Fermann, M. J. Andrejco, M. L. Stock, Y. Silberg,.M. Weiner, PassiveModelocking in Fiber Lasers with Negative Group Delay, Appl. Phys. Lett.1993,62:910~912
    [118] J. K. Lucek, K. Smith, All-optical signal regenerator, Opt. Lett.,1993,18(12):226
    [119] E. J. Greer, K. Smith, All-optical FM mode-locking of fibre laser, Electron. Lett.,1992,28:1741
    [120] M. Obro, K. Lucek, K. Smith, K. J. Blow, An optically programmablemode-locked laser, IEEE Photon. Technol. Lett.,1994,6:799
    [121] T. Aakjer, J. H. Povlsen, Modelocking in cross phase modulated fiber lasers,Opt. Commun.,1994,112:315
    [122] D. S. Peter, G. Onishchukov, W. Hodel, H. P. Weber,570fs pulses from aPr3+-doped fibre laser modelocked by pump pulse induced cross-phasemodulation, Electron. Lett.,1994,30:1595
    [123] C. R. O. Cochlain, R. J. Mears, G. Sherlock, Low threshold tunable solitonsource, IEEE Phton. Technol. Lett.,1993,5:25
    [124] H. G. Winful, D. T. Walton, Passive mode locking through nonlinear coupling ina dual-core fiber laser, Opt. Lett.,1992,17:1688
    [125] O. G. Okhotnikov, M. Guina, Colliding-pulse harmonically mode-locked fiberlaser, Appl. Phys. B.2001,72:381
    [126] M. Margalit, M. Orenstein, and G. Eisenstein, Synchronized two-coloroperation of a passively mode-locked erbium-doped fiber laser by dual injectionlocking, OPTICS LETTERS,1996,21(19):1585~1587
    [127] C. X. Yu, H. A. Haus, E. P. Ippen. W. S. Wong and A. Sysoliatin,Gigahertz-repetition-rate mode-locked fiber laser for continuum generation,Opt. Lett.2000,25:1418
    [128] T.Carruthers, I.Duling and m.dennis, Active-passive modelocking in asingle-polarisation erbium fibre laser, Electron.Lett.1994,30:1051
    [129] N.H.Bonadeo, W.H.Knox, J.M. Roth, K.Bergman, Passive harmonicmode-locked soliton fiber laser stabilized by an optically pumped saturableBragg reflector, Opt.Lett.2000,25:1421
    [130] M.Guins and O.G.Okhotnikov, Harmonic mode locking by synchronous opticalpumping of a saturable absorber with the residual pump, Opt.Lett.2003,28:358
    [131] E. Yohida, Y. Kimura, M. Nakazawa, Laser diode‐pumped femtoseconderbium‐doped fiber laser with a sub‐ring cavity for repetition rate control,Appl. Phys. Lett.1992,60:932
    [132] A. N. Pilipetskii, E. A. Golovchenko, C. R. Menyuk, Acoustic effect inpassively mode-locked fiber ring lasers, Opt. Lett.1995,20:907
    [133] H. A. Haus, F. I. Khati, W. S. Wong, E. P. Ippen, K. R. Tamura, IEEE J. Quant.Electron.1996,32:917
    [134] J. N. Kurtz, B. C. Collings, K. Bergman, W. H. Knox, Stabilized pulse spacingin soliton lasers due to gain depletion and recovery, IEEE J. Quantum Electron.,1998:1749
    [135] Guo Y J, Sun J Q, Wang J, Li J, Design of a refractive/diffractive hybridinfrared bifocal optical system, Acta Phys. Sin.2007,56:4602
    [136]李艳军,全光纤OCT内窥镜技术及长周期光纤光栅形成机理研究,博士学位论文,天津大学,2010:17~18
    [137] Song C X, Xu W C, Luo Z C, Chen W C, Gao Y X, Liu S H, Acta Opt. Sin.2009,29:1292
    [138] Liu Y G, Zhang C S, Sun T T, Lu Y F, Wang Z, Yuan S Z, Kai G Y, Dong X Y,Acta Phys. Sin.2006,55:4769
    [139] Ouyang C M, Chai L, Zhao H, Hu M L, Song Y J, Wang Q Y, Experimentalstudy on all-normal-dispersion mode-locked fiber laser with optimal spectralfiltering position, Acta Phys. Sin.2010,59:3936
    [140] Chen N K, Lin J W, Liu F Z, Liao S K, IEEE Photonics Technology Letters,2010,22:700
    [141] Kivist S, Hakulinen T, Guina M, Okhotnikov O G, Tunable Raman solitonsource using mode-locked Tm–Ho fiber laser, IEEE Photonics TechnologyLetters,2007,19:934
    [142] Qin G S, Suzuki T, Ohishi Y, opt. Rev.2010,17:97
    [143] Zhang C, Hu M L, Song Y J, Zhang X, Chai L, Wang Q Y, An Yb-dopedlarge-mode-area photonic crystal fiber mode-locking laser with free outputcoupler, Acta Phys. Sin.2009,58:7727
    [144] Zhang P Z, Fan W, Wang X C, Lin Z Q, All-fiber ultrashort Yb3+doped fiberlaser self-started by spectral filter, Acta Phys. Sin.2011,60:024205
    [145] Sotobayashi H, Gopinath J T, Koontz E M, Kolodziejski L A, Ippen E P,Wavelength tunable passively mode-locked bismuth oxide-based erbium-dopedfiber laser, Opt. Commun.2004,237:399
    [146] Kivist S, Herda R, Okhotnikov O G, Electronically tunable Yb-dopedmode-locked fiber laser, IEEE Photonics Technology Letters,2008,20:51
    [147] Li Z, Zhao W, Zhang W, Chen G F, Wang Y S, Continuously tuning fiber laserswith wavelength of mode-locked pulses, Acta Photon. Sin.2009,38:1
    [148] Zhang S M, Meng Q S, Zhao G Z, All-fiber wavelength tunable passivelymode-locked erbium-doped ring laser, European Physical Journal D,2010,60:383
    [149] Wang F, Shen D Y, Fan D Y, Lu Q S, Widely tunable dual-wavelength operationof a high-power Tm:fiber laser using volume Bragg gratings, Opt. Lett.2010,35:2388
    [150] Liu D F, Wang C H, Single linearly polarized, widely and freely tunable twowavelengths Y3t b–doped fiber laser, Opt. Commun.2010,283:98
    [151] Feng Xiaoming, Wang Yonggang, Liu Yuanyuan et.al., Passive Q-switchingmode-locked Yb3+-doped fiber laser with GaAs absorber grown at lowtemperature, Chinese Physics Letters,2005,22(2):391~393
    [152] Luis A. Gomes, Lasse Orsila, Tomi Jouhti et al., Picosecond SESAM-BasedYtterbium Mode-locked Fiber Lasers, IEEE J.Sel.Top. Quantum Electron.,2004,10(1):129~136
    [153] A. A. Lagatsky, E. U. Rafailov, A. R. Sarmani, Efficient femtosecondgreen-light source with a diode-pumped mode-locked Yb3+:KY(WO4)2laser,Opt. Lett.,2005,30(10):1144~1146
    [154] G. Ju, L. Chai, Q. Y. Wang, et. al., Stable mode-locking in an Yb:YAG laserwith a fast SESAM. Chinese Optics Letters,2003,1(12):695~696
    [155] A. Garnache, S. Hoogland, A. C. Tropper, et. al., Sub-500-fs soliton-like pulsein a passively mode-locked broadband surface-emitting laser with100mWaverage power. Applied Physics Letters,2002,80(21):3892~3894
    [156] Yonggang W., M. Xiaoyu, J. Guifang, Passive mode locking Diode-end-pumpedYb:YAG Laser with Surface-state type of Semiconductor Saturable AbsorptionMirror. Chinese Journal of semiconductors,2004,8:1000
    [157] G. J. Spuhler, T. Sudmeyer, R. Pachotta, et. al., Passively mode-lockedhigh-power Nd:YAG lasers with multiple laser heads. Applied Physics B,2000,71:19~25
    [158] H nninger C, Paschotta R, Genoud F M, Moser M, Keller U, Q-switchingstability limits of continuous-wave passive mode locking, J. Opt. Soc. Am.B,1999,16:46
    [159] Paschotta R, Keller U, Passive mode locking with slow saturable absorbers,Appl. Phys. B,2001,73:652
    [160] H. M. Pask, Robert J. Carman, David C. Hanna. Ytterbium-Doped Silica FiberVersatile Sources for the1-1.2μ m Region. IEEE, Quantum Electronics,1995,1:2-13
    [161] J. Y. Allain, M. Monerie, H. Poignant. Ytterbium-doped fiber laser operating at1.02μ m. Electronics Letters,1992,28(11):988~989
    [162] R. Paschotta, J. Nilsson, A. C. Tropper, et. al., Ytterbium-doped fiber amplifiers.IEEE Journal of Quantum Electronics,1997,33(7):1049~1056
    [163] R. Paschota, J. Nilsson, P. R. Barber, et al., Life time quenching in Yb3+dopedfibers. Optics Communications,1997,136:375~378
    [164] D. C. Hanna, R. M. Percival, I. R. Ferry, et. al., An ytterbium-doped monomodefibre laser: broadly tunable operation from1.010μ m to1.162μ m andthree-level operation at974nm. Jounal of Modern Optics,1990,37(4):51~52
    [165]贾培军,LD泵浦掺镱光纤激光器及其倍频特性的研究,硕士学位论文,西北大学,2007
    [166]白扬博,向望华,祖鹏等,基于体光栅的可调谐线型腔双波长掺镱光纤激光器,中国激光,2011,38:1102004-1
    [167] D. Yoshitomi, Y. Kobayashi, and K. Torizuka, Characterization ofFourier-synthesized optical waveforms from optically phase-lockedfemtosecond multicolor pulses, Opt. Lett.2008,33:2925
    [168] A. Gambetta, G. Galzerano, A. G. Rozhin, A. C. Ferrari, R. Ramponi, P. Laporta,and M. Marangoni, Sub-100fs pump-probe spectroscopy of Single WallCarbon Nanotubes with a100MHz Er-fiber laser system, Opt. Express,2008,16:11727
    [169] F. Ganikhanov, S. Carrasco, X. S. Xie, M. Katz, W. Seitz, and D. Kopf,Broadly tunable dual-wavelength light source for coherent anti-Stokes Ramanscattering microscopy, Opt. Lett.2006,31:1292
    [170] X. Wushouer, H. Yu, P. Yan, and M. Gong, Investigation on mode matchingincluding thermal effects in LD end-pumped passively mode-locked Nd:YVO4laser, Chin. Opt. Lett.2010,8:1004
    [171] F. Li, N. Zong, Z. Wang, L. Han, Y. Bo, Q. Peng, D. Cui, and Z. Xu, Passivelymode-locked grown-together composite YVO4/Nd:YVO4crystal laser with asemiconductor saturable absorber mirror under880-nm direct pumping, Chin.Opt. Lett.2011,9:041405-1
    [172] H. Ma, W. Zhao, W. Zhang, Y. Wang, G. Chen, and Z. Cheng,Wavelength-tunable passively mode-locked fiber lasers, Laser Technology,2006,30:289
    [173] W. Hsiang, C. Chang, C. Cheng, and Y. Lai, Passive synchronization between aself-similar pulse and a bound-soliton bunch in a two-color mode-locked fiberlaser, Opt. Lett.2009,34:1967
    [174] D. Liu, X. Zhu, C. Wang, J. Yu, and D. Hu, Low-repetition-rate, high-energy,twin-pulse, passively mode locked Yb3+-doped fiber laser, Appl. Opt.2011,50:484
    [175] X. Zhao, Z. Zheng, L. Liu, Y. Liu, Y. Jiang, X. Yang, and J. Zhu, Switchable,dual-wavelength passively mode-locked ultrafast fiber laser based on asingle-wall carbon nanotube modelocker and intracavity loss tuning, Opt.Express,2011,19:1168
    [176] A. Luo, Z. Luo, W. Xu, V. Dvoyrin, V. Mashinsky, and E. Dianov, Tunable andswitchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laserbased on nonlinear polarization rotation, Laser Phys. Lett.2011,8:601
    [177] Y. Liu, X. Dong, P. Shum et al., Stable room-temperature multi-wavelengthlasing realization in ordinary erbium-doped fiber loop lasers. Opt. Express.,2006,14(20):9293~9298
    [178] Z. Liu, Y. Liu, J. Du et al., Switchable triple-wavelength erbium-doped fiberlaser using a single fiber Bragg grating in polarization-maintaining fiber.Opt.Commun.,2007,279(1):168~172
    [179]姜明顺,孟玲,冯德军等.基于PM-FBG的可开关双波长掺铒光纤激光器.压电与声光,2010,32(6):933~938
    [180]李尧,冯新焕,孙磊等.用偏振烧孔实现的室温双波长光纤激光器.光子学报,2005,34(2):173~175
    [181] Liu Zhiming, Li Jian. A novel dual-wavelength fiber laser based onphotosensitive and polarization maintaining erbium-doped fiber. Photonicsand Optoelectronic (SOPO),2010Symposium on,2010:1~3
    [182]徐攀,胡正良,马丽娜等.双波长环形腔掺铒光纤激光器输出的稳定性.中国激光,2009,36(6):1347~1351
    [183] MinYong Jeon, Namje Kim, Jaeheon Shin et al.. Widely tunabledual-wavelength Er3+-doped fiber laser for tunable continuous-wave terahertzradiation. Optics Express,2010,18(12):12291~12297
    [184] Liu Dongfeng, Wang Chinhua. Single linearly polarized, widely and freelytunable two wavelengths Yb3+-doped fiber laser. Optics Communications,2010,283(1):98~103
    [185]丁镭,徐雁军,开桂云,葛春风,袁树忠,董孝义,F-P腔自调Q掺铒光纤激光器,光子学报,2001,30(3):289~291
    [186] S. Bedo, W. Luthy, H. P. Weber, The effective absorption coefficient indouble-clad fibers, Opt. Commun.,1993,99:331~335
    [187] A. Liu, K. Ueda, The absorption characteristics of circular offset andrectangular double-clad fibers, Opt. Commun.,1996,132:511~518
    [188] D. Kouzenetsov, J. V. Moloney, Efficiency of pump absorption in double-cladfiber amplifiers, J. Opt. Soc. Am. B,2002,19(6):1259~1263
    [189] P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-doped fiber amplifiers,Academic Press, San Diego, CA,1999.
    [190] E. Snitzer, R. F. Woodcock, and J. Segre, Phosphate glass Er3+laser, IEEE J.Quantum Electron.1968,4:360
    [191] J. B. Townsend, W. I. Bames, I. K. P. Jedrzejewsk, et. al., Yb3+sensitized Er3+doped silica optical fiber with ultrahigh transfer efficiency and gain. Electron.Lett.,1991,27(21):1958~1959
    [192] F. Di Pasquale, M. Federighi, Improved gain characteristics in highconcentration Er3+/Yb3+co-doped glass waveguide amplifier, IEEE J. Quant.Electron.,1994,30(9):2127~2131

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700