用户名: 密码: 验证码:
分子排列控制超短脉冲非线性效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超短强激光脉冲在空气中传输时,会引发一系列的光学非线性效应,例如,光学克尔自聚焦、多光子电离、等离子体散焦、自相位调制、自陡峭效应、群速度色散等。当克尔自聚焦和等离子体散焦达到动态平衡时,介质中将形成一条传输距离远远大于瑞利长度的自引导的光丝通道。线偏振的超短脉冲激光在空气中传输时,将改变空气中的N2和O2分子的排列方向,泵浦脉冲结束之后,被激发的空气分子表现出无外场条件下的周期性排列回复的行为。
     本论文以空气分子的无外场排列控制超短脉冲的传输为基础,主要研究了分子排列对于光丝中的三次谐波产生和等离子体光栅的调制作用,提出了一种基于分子排列的超快光学偏振门,并且应用这种偏振门的特性,从原理性实验上实现了基于分子排列的超快光学成像。具体工作可以分为以下几个部分:
     一、利用空气介质中的无外场分子排列,提出一种基于分子排列的超快光学偏振门。分析此偏振门的基本特性,包括双折射效应,瞬时开关时间,周期性回复,空间上的类透镜作用,以及频谱调制。
     二、原理性实验上实现了基于空气分子排列的超快光学成像方法。实验中,通过泵浦探测技术,写脉冲将图像信息加载到分子排列中,预排列分子作为缓冲存储器,读脉冲在特定延时下经过预排列分子后,读取图像信息,实现了二维单色成像,全息成像以及彩色成像。
     三、研究了空气分子排列对于光丝中的三次谐波产生过程的影响。通过分析分子排列对介质的线性以及三阶非线性极化率的改变,发现当分子的排列方向与探测光丝的偏振方向相同时,光丝中的三次谐波增强。同时,还分析了分子排列对三次谐波的频谱调制,比较了探测光丝中基波和三次谐波光谱受分子排列影响的异同。
     四、研究了空气分子排列对等离子体光栅的线性和非线性方面的影响。在预排列分子中形成的等离子体光栅,由于分子排列相关的电离率导致了等离子体光栅的线性衍射效率的变化。同时,分子排列通过对三阶非线性极化率的调制,操控等离子体光栅增强的三次谐波的转换效率。
     五、研究了泵浦光丝对于后续共线传输的探测光丝的影响。通过测量探测光丝产生的等离子密度的变化,分别研究了泵浦光丝产生的等离子体和尾波中的分子排列对于探测光丝的钳制强度和电子密度的调制。同时,还分析比较了两光丝零延时附近的克尔效应,等离子效应,以及分子排列的作用。
Intense ultrashort laser pulses propagating in air include several nonlinear optical effects, such as optical Kerr self-focusing, multi-photon ionization, plasma defocusing, self-phase modulation, self-steepening and group velocity dispersion. The dynamical balance between Kerr self-focusing and plasma defocusing leads to a self-guide filament with a propagating range longer than Rayleigh length. Molecules in air can be aligned by a linearly polarized ultrashort pulse and the excited molecules present periodic revivals of alignment after the pump pulse.
     In this dissertation, based on the manipulation of the ultrashort pulse propagation in air by molecular alignment, we investigate the modulation of the plasma grating and the third-harmonic generation in the pre-aligned molecules and propose an ultrafast optical gating by molecular alignment and explored an application of this gating in ultrafast optical imaging. Mainly includes the following:
     1. A novel ultrafast optical gating is proposed based on the molecular alignment in air. The optical gating has unique features including birefringence, femtosecond-scale switching time, periodic revivals, spatial quasi-lens effect and spectral modulation.
     2. A proof-of-principle experiment of ultrafast optical imaging by using impulsive alignment of diatomic molecules in air is carried out. By employing the pump-probe technique, the image information is written into the molecular alignment by the writing pulse and then can be read out at periodic molecular alignment revivals by a reading pulse. The capacities of raised and intagliated monochromatic imaging, as well as colorful and even holographic-like imaging are experimentally demonstrated.
     3. Experimentally investigate the modulation of the third harmonic generation (THG) in a filament by molecular alignment. Due to the perturbations of the effective linear and third-order susceptibility induced by the molecular alignment, the THG is enhanced or suppressed by following the impulsive molecular alignment. And the spectral modulation of the third harmonic and is also studied by comparing with the case of the fundamental wave from the same filament.
     4. Experimentally demonstrate the precise manipulation of the multiphoton-ionization-induced plasma grating by impulsive molecular alignment. The plasma grating induced in the pre-aligned molecules is modulated due to the alignment-dependent-ionization, leading to the modulation of the linear diffraction efficiency. And the dependence of the plasma-grating-enhanced nonlinear THG on the impulsive molecular alignment is also investigated.
     5. Experimentally investigate the role of the pump filament on the filamentation dynamics of succeeding collinearly-propagating probe pulse. The clamping intensity and electron density of the probe filament are modulated by the plasma and impulsive molecular alignment created by the pump filament. Also, the roles of the Kerr effect, plasma effect, and molecular alignment are indentified in the interaction between the two collinearly-propagating filaments around zero time delay.
引文
[1]T. H. Maiman, "Stimulated optical radiation in ruby", Nature 187,493 (1960).
    [2]F. J. McClung and R. W. Hellwarth, "Giant Optical Pulsations from Ruby", J. Appl. Phys.33,828 (1962).
    [3]V. Shank and E. P. Ippen, "Subpicosecond kilowatt pulses from a mode-locked cw dye laser", Appl. Phys. Lett.24,374 (1974).
    [4]M. Protopapas, C. H. Keitel, and P. L. Knight, "Atomic physics with super-high intensity lasers", Rep. Prog. Phys,60,389 (1997).
    [5]D. Strickland and G. Mourou, "Compression of amplified chirped optical pulse", Opt. Commun.56,219 (1985).
    [6]D. E. Spence, P. N. Kean, and W. Sibbett, "60-fsec pulse generation from a self-mode-locked Ti:sapphire laser", Opt. Lett.16,42 (1991).
    [7]A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourn, "Self-channeling of high-peak-power femtosecond laser pulse in air", Opt. Lett.20,73 (1995).
    [8]A. Couairona, and A. Mysyrowiczb, "Femtosecond filamentation in transparent media", Phys. Rep.441,47 (2007).
    [9]M. Rodriguez, R. Bourayou, G. Mejean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eisloffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Woste, and J.-P. Wolf, "Kilometric-range nonlinear propagation of femtosecond laser pulses", Phys. Rev. E 69,036607 (2004).
    [10]G. Mechain, C. D'Amico, Y.-B. Andre, S. Tzortzakis, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, E. Salmon, and R. Sauerbrey, "Length of plasma filaments created in air by a multiterawatt femtosecond laser", Opt. Commun. 247,171 (2005).
    [11]G. G. Luther, A. C. Newell, J. V. Moloney, and E. M. Wright, "Short pulse conical emission and spectral broadening in normally dispersive media", Opt. Lett.19,789(1994).
    [12]E. T. J. Nibbering, P. F. Curley, G. Grillon, B. S. Prade, M. A. Franco, F. Salin, and A. Mysyrowicz, "Conical emission from self-guided femtosecond pulses in air", Opt. Lett.21,62 (1996).
    [13]S. L. Chin, St. Petit, F. Borne, and K. Miyazaki, "The white light supercontinuum is indeed an ultrafast white light laser", Jpn. J. Appl. Phys.38, L126-L128 (1999).
    [14]J. Yu, D. Mondelain, G. Ange, R. Volk, S. Niedermeier, J. P. Wolf, J. Kasparian, and R. Sauerbrey, "Backward supercontinuum emission from a filament generated by ultrashort laser pulses in air", Opt. Lett.26,533 (2001).
    [15]I. S. Golubtsov, V. P. Kandidov, and O. G. Kosareva, "Initial phase modulation of a high-power femtosecond laser pulse as a tool for controlling its filamentation and generation of a supercontinuum in air", Quant. Electron.33,525 (2003).
    [16]H. S. Chakraborty, M. B. Gaarde, and A. Couairon, "Single attosecond pulses from high harmonics driven by self-compressed filaments", Opt. Lett.31,3662 (2006).
    [17]A. Couairon, H. S. Chakraborty, and M. B. Gaarde, "From single-cycle self-compressed filaments to isolated attosecond pulses in noble gases", Phys. Rev. A 77,053814 (2008).
    [18]T. Brabec and F. Krausz, "Intense few-cycle laser fields:Frontiers of nonlinear optics", Rev. Mod. Phys.72,545 (2000).
    [19]Krausz, S. Panja, M. Uiberacker, W. E. Schmid, A. Becker, M. Scalora, and M. Bloemer, "Extending the supercontinuum spectrum down to 200 nm with few-cycle pulses", New J. Phys.8,177 (2006).
    [20]C. P. Hauri, A. Guandalini, P. Eckle, W. Kornelis, J. Biegert, and U. Keller, "Generation of intense few-cycle laser pulses through filamentation—Parameter dependence", Opt. Express 13,7541 (2005).
    [21]A. Couairon, M. Franco, A. Mysyrowicz, J. Biegert, and U. Keller, "Pulse self-compression to the single-cycle limit by filamentation in a gas with a pressure gradient", Opt. Lett.30,2657 (2005).
    [22]C. Winterfeldt, C. Spielmann, and G. Gerber, "Colloquium:Optimal control of high-harmonic generation", Rev. Mod. Phys.80,117 (2008).
    [23]D. S. Steingrube, E. Schulz, T. Binhammer, T. Vockerodt, U. Morgner, and M. Kovacev, "Generation of high-order harmonics with ultra-short pulses from filamentation", Opt. Express,17,16177 (2009).
    [24]T. Loff ler, F. Jacob, and H. G. Roskos, "Generation of terahertz pulses by photoionization of electrically biased air", Appl. Phys. Lett.77,453 (2000).
    [25]C. D'Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and V. T. Tikhonchuk, "Conical Forward THz Emission from Femtosecond-Laser-Beam Filamentation in Air", Phys. Rev. Lett.98,235002 (2007).
    [26]Y. Liu, A. Houard, B. Prade, S. Akturk, A. Mysyrowicz, and V. T. Tikhonchuk, "Terahertz radiation source in air based on bifilamentation of femtosecond laser pulses", Phys. Rev. Lett.99,135002 (2007).
    [27]K. Stelmaszczyk, P. Rohwetter, G. Mejean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Woste, "Long-distance remote laser-induced breakdown spectroscopy using filamentation in air", Appl. Phys. Lett.85,3977 (2004).
    [28]G. G. Matvienko, V. V. Veretennikov, G. M. Krekov, and M. M. Krekova, "Remote sensing of atmospheric aerosols with a white-light femtosecond lidar", Atmos. Oceanic Opt.16,1013 (2003).
    [29]R. T. H. Collis, P. B. Russell, "Lidar measurement of particles and gases by elastic backscattering and differential absorption", in Topics in Applied Physics: Laser Monitoring of the Atmosphere, ed. by E.D. Hinkley, Springer, New York. (1976).
    [30]Q. Luo,_H. L. Xu, S. A. Hosseini, J-F. Daigle, F. Theberge, M. Sharifi, S. L. Chin, "Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy", Appl. Phys. B 82,105 (2006).
    [31]J. Kasparian, M. Rodriguez, G. Mejean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, L. Woste, "White-light for atmospheric analysis", Science 301,61 (2003).
    [32]D. Comtois, C. Y. Chien, A. Desparoi, F. Genin, G. Jarry, T. W. Johnston, J.-C. Kieffer, B. La Fontaine, F. Martin, R. Mawassi, H. Pepin, F. A. M. Rizk, F. Vidal, P. Couture, H. P. Mercure, C. Potvin, A. Bondiou-Clergerie, and I. Gallimberti, "Triggering and guiding leader discharges using a plasma channel created by an ultrashort laser pulse", Appl. Phys. Lett.76,819 (2000).
    [33]R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Mejean, E. Salmon, J. Yu, J. Kasparian, G. Mechain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, L. Woste, and J. P. Wolf, "Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions", Appl. Phys. Lett.85,23 (2004).
    [34]P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W.M. Nakaema, Y. Petit, M. Queiβer, R. Salame, E. Salmon, L. Woste and J-P Wolf, "Laser-induced water condensation in air", Nat. Photonics 4,451 (2010).
    [35]J. Ju, J. Liu, C. wang, H. Sun, X. Ge, C. Li, S. L. Chin, R. Li and Z. Xu, "Laser-filamentation-induced condensation and snow formation", Opt. Lett.37, 1214(2012).
    [36]H. Stapelfeldt and T. Seideman, "Colloquium:Aligning molecules with strong laser pulses", Rev. Mod. Phys.75,543 (2003).
    [37]J. J. Larsen, K. Hald, N. Bjerre, and H. Stapelfeldt, "Three dimensional alignment of molecules using elliptically polarized laser fields", Phys. Rev. Lett.85,2470 (2000).
    [38]T. Kanai, S. Minemoto, and H. Sakai, "Quantum interference during high-order harmonic generation from aligned molecules", Nature 435,470 (2005).
    [39]J. Itatani, D. Zeidler, J. Levesque, M. Spanner, D. M. Villeneuve, and P. B. Corkum, "Controlling high harmonic generation with molecular wave packets", Phys. Rev. Lett.94,123902 (2005).
    [40]J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pepin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, "Tomographic imaging of molecular orbitals", Nature (London) 432,867 (2004).
    [41]H. Cai, J. Wu, A. Couairon, and H. Zeng, "Spectral modulation of femtosecond laser pulse induced by molecular alignment revivals", Opt. Lett.34,827 (2009).
    [42]J.Wu, H. Cai, A. Couairon, and H. Zeng, "Wavelength tuning of a few-cycle laser pulse by molecular alignment in femtosecond filamentation wake", Physical Review A 79,063812 (2009).
    [43]N. Zhavoronkov and G. Korn, "Generation of single intense short optical pulses by ultrafast molecular phase modulation", Phys. Rev. Lett.88,203901.(2002).
    [44]Y. Feng, W. Li, J. Liu, H. Pan, J. Wu, and H. Zeng,"Direct retrieval of Kerr and plasma effects from alignment-induced spatiotemporal modulation", Opt. Lett.37, 3846 (2012).
    [45]H. Li, W. Li, Y. Feng, J. Liu, Ha. Pan, and H. Zeng, "Measurement of molecular polarizability anisotropy via alignment-induced spatial focusing and defocusing", Phys. Rev. A 85,052515 (2012).
    [46]R. A. Bartels, T. C. Weinacht, N. Wagner, M. Baertschy, C. H. Greene, M. M. Murnane, and H. C. Kapteyn, "Phase modulation of ultrashort light pulses using molecular rotational wave packets", Phys. Rev. Lett.88,013903 (2001).
    [47]H. Cai, J. Wu, H. Li, X. Bai, and H. Zeng, "Elongation of femtosecond filament by molecular alignment in air", Opt. Express 17,21060 (2009).
    [48]H. Cai, J. Wu, P. Lu, X. Bai, L. Ding, and H. Zeng, "Attraction and repulsion of parallel femtosecond filaments in air", Phys. Rev. A 80,051802 (R) (2009).
    [49]Robert W. Boyd, Nonlinear Optics, second edition" (Academic Press, New York (2003).
    [50]S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Akozbek, A. Becker, V. P. Kandidov,O. G. Kosareva, H. Schroeder, "The propagation of powerful femtosecond laser pulses in opticalmedia:physics, applications, and new challenges", Can. J. Phys.83,863 (2005).
    [51]W. Liu and S. L. Chin, "Direct measurement of the critical power of femtosecond Ti:sapphire laser pulse in air", Opt. Express,13,5750 (2005).
    [52]J. H. Marburger, E. Dawes, "Dynamical formation of a small-scale filament", Phys. Rev. Lett.21,556 (1968).
    [53]A. Talebpour, J. Yang, S. L. Chin. "Semi-empirical model for the rate of tunnel ionization of N2 and O2 molecule in an intense Ti:sapphire laser pulses", Opt. Commun.163,29(1999).
    [54]J. Kasparian, R. Sauerbrey, and S. L. Chin. "The critical laser intensity of self-guided light filaments in air," Appl. Phys. B 71,877 (2000).
    [55]A. Becker, N. Akozbek, K. Vijayalakshmi, E. Oral, C. M. Bowden, and S. L. Chin, "Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas", Appl. Phys. B 73,287 (2001).
    [56]W. Liu, S. Petit, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, "Intensity clamping of a femtosecond laser pulse in condensed matter", Opt. Commun.202,189 (2002).
    [57]W. Liu, F, Th6berge, E. Arevalo, J.-F. Gravel, A. Becker, S. L. Chin, "Experiment and simulations on the energy reservoir effect in femtosecond light filaments", Opt. Lett.30,2602 (2005).
    [58]http://large.stanford.edu/courses/2011/ph240/nicholsonl/.
    [59]F. Theberge, W. Liu, Q. Luo, and S. L. Chin, "Ultrabroadband continuum generated in air (down to 230 nm) using ultrashort and intense laser pulses," Appl. Phys. B 80,221 (2005).
    [60]J. Kasparian, R. Sauerbrey, D. Mondelain, S. Niedermeier, J. Yu, J.-P. Wolf, Y. B. Andre, M. Franco, B. Prade, A. Mysyrowicz, S. Tzortzakis, M. Rodriguez, H. Wille, L. Woste, "Infrared extension of the supercontinuum generated by fs-TW-laser pulses propagating in the atmosphere", Opt. Lett.25,1397 (2000).
    [61]K. Hartinger, S. Nirmalgandhi, J. Wilson, and R. A. Bartels," Efficient nonlinear frequency conversion with a dynamically structured nonlinearity", Opt. Express 13,6919(2005).
    [62]V. Renard, M. Renard, S. Guerin, Y. T. Pashayan, B. Lavorel, O. Faucher, and H. R. Jauslin, "Postpulse molecular alignment measured by a weak field polarization technique", Phys. Rev. Lett.90,153601 (2003).
    [63]J. Wu, H. Cai, Y. Peng, and H. Zeng, "Controllable supercontinuum generation by the quantum wake of molecular alignment", Phys. Rev. A 79,041404(R) (2009).
    [64]H. Cai, J. Wu, Y. Peng, and H. Zeng, "Comparison study of supercontinuum generation by molecular alignment of N2 and O2", Opt. Express 17,5822 (2009).
    [65]F. Rosca-Pruna and M. J. J. Vrakking, "Experimental observation of revival structures in picosecond laser-induced alignment of I2", Phys. Rev. Lett.87, 153902 (2001).
    [66]R. A. Bartels, T. C. Weinacht, N. Wagner, M. Baertschy, C. H. Greene, M. M. Murnane, and H. C. Kapteyn, "Phase modulation of ultrashort light pulses using molecular rotational wave packets", Phys. Rev. Lett.88,013903 (2001).
    [67]N. Zhavoronkov and G. Korn, "Generation of single intense short optical pulses by ultrafast molecular phase modulation", Phys. Rev. Lett.88,203901 (2002).
    [68]R. A. Bartels, N. L. Wagner, M. D. Baertschy, J. Wyss, M. M. Murnane, and H. C. Kapteyn, "Phase-matching conditions for nonlinear frequency conversion by use of aligned molecular gases", Opt. Lett.28,346 (2003).
    [69]J. Itatani, D. Zeidler, J. Levesque, M. Spanner, D. M. Villeneuve, and P. B. Corkum, "Controlling high harmonic generation with molecular wave packets", Phys. Rev. Lett.94,123902 (2005).
    [70]T. Kanai, S. Minemoto, and H. Sakai, "Quantum interference during high-order harmonic generation from aligned molecules", Nature 435,470 (2005).
    [71]E. Hertz, A. Rouzee, S. Guerin, B. Lavorel, and O. Faucher, "Optimization of field-free molecular alignment by phase-shaped laser pulses", Phys. Rev. A 75, 031403(R) (2007).
    [72]V. Loriot, E. Hertz, B. Lavorel, and O. Faucher, "Field-free molecular alignment for measuring ionization probability", J. Phys. B:At. Mol. Opt. Phys.41,015604 (2008).
    [73]M. Meckel, D. Comtois, D. Zeidler, A. Staudte, D. Pavicic, H. C. Bandulet, H. Pepin, J. C. Kieffer, R. Dorner, D. M. Villeneuve, P. B. Corkum, "Laser-induced electron tunneling and diffraction", Science 320,1478 (2008).
    [74]P. Lu, J. Liu, H. Li, H. Pan, J. Wu, and H. Zeng, "Cross-correlation frequency-resolved optical gating by molecular alignment for ultraviolet femtosecond pulse measurement", Appl. Phys. Lett:97,061101 (2010).
    [75]J. Liu, Y. Feng, H. Li, P. Lu, H. Pan, J. Wu, and H. Zeng, "Supercontinuum pulse measurement by molecular alignment based cross-correlation frequency resolvedoptical gating", Opt. Express 19,40 (2010).
    [76]F. Calegari, C. Vozzi, S. Gasilov, E. Benedetti, G. Sansone, M. Nisoli, S. De Silvestri, and S. Stagira, "Rotational Raman effects in the wake of optical filamentation", Phys. Rev. Lett.100,123006 (2008).
    [77]S. Varma, Y.-H. Chen, and H. M. Milchberg, "Trapping and destruction of long-range high-intensity optical filaments by molecular quantum wakes in air", Phys. Rev. Lett.101,205001 (2008).
    [78]J. Wu, H. Cai, H. Zeng, and A. Couairon, "Femtosecond filamentation and pulse compression in the wake of molecular alignment", Opt. Lett.33,2593 (2008).
    [79]J. Wu, Y. Tong, X. Yang, H. Cai, P. Lu, H. Pan, and H. Zeng, "Interaction of two parallel femtosecond filaments at different wavelengths in air", Opt. Lett.34, 3211(2009).
    [80]J. Wu, Y. Tong, M. Li, H. Pan, and H. Zeng, "THz generation by a two-color pulse in prealigned molecules", Phys. Rev. A 82,053416 (2010).
    [81]I. V. Litvinyuk, K. F. Lee, P. W. Dooley, D. M. Rayner, D. M. Villeneuve, and P. B. Corkum, "Alignment-dependent strong field ionization of molecules", Phys. Rev. Lett.90,233003 (2003).
    [82]P. W. Dooley, I. V. Litvinyuk, K. F. Lee, D. M. Rayner, M. Spanner, D. M. Villeneuve, and P. B. Corkum, "Direct imaging of rotational wave-packet dynamics of diatomic molecules", Phys. Rev. A 68,023406 (2003).
    [83]V. Renard, M. Renard, A. Rouzee, S. Guerin, H. R. Jauslin, B. Lavorel, and O. Faucher, "Nonintrusive monitoring and quantitative analysis of strong laser-field-induced impulsive alignment", Phys. Rev. A 70,033420 (2004).
    [84]H. Li, J. Liu, Y. Feng, C. Chen, H. Pan, J. Wu, and H. Zeng, "Temporal and phase measurements of ultraviolet femtosecond pulses at 200 nm by molecular alignment based frequency resolved optical gating," Appl. Phys. Lett. 99,011108(2011).
    [85]H. Kawamoto, "The history of liquid-crystal displays", Proceedings of the IEEE 90,460 (2002).
    [86]J. A. Castellano, Liquid Gold:The Story of Liquid Crystal Displays and the Creation of an Industry, World Scientific Publishing Company (2005).
    [87]P. Bejot, Y. Petit, L. Bonacina, J. Kasparian, M. Moret, and J.-P. Wolf, "Ultrafast gaseous 'half-wave plate'", Opt. Express 16,7564 (2008).
    [88]P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, "Supercontinuum generation in gases", Phys. Rev. Lett.57,2268 (1986).
    [89]J. Wu, P. Lu, J. Liu, H. Pan, and H. Zeng, "Ultrafast optical imaging by molecular wakes", Appl. Phys. Lett.97,161106 (2010).
    [90]S. Backus, J. Peatross, Z. Zeek, A. Rundquist, G. Taft, M. Murnane, H. C. Kapteyn, "16-fs,1-μJ ultraviolet pulses generated by third-harmonic conversion in air", Opt. Lett.21,665 (1996).
    [91]G. Mejean, J. Kasparian, J. Yu, S. Frey, E. Salmon, R. Ackermann, J.P. Wolf, L. Berge, S. Skupin, "UV-Supercontinuum generated by femtosecond pulse filamentation in air:Meter-range experiments versus numerical simulations", Appl. Phys. B 82,341 (2006).
    [92]杨旋.超短强激光脉冲成丝间的相互作用对光丝传播过程及其非线性效应影响的研究.[D].上海:华东师范大学,2010.
    [93]N. Akozbek, A. Iwasaki, A. Becker, M. Scalora, S. L. Chin, and C. M. Bowden, "Third-Harmonic Generation and Self-Channeling in Air Using High-Power Femtosecond Laser Pulses", Phys. Rev. Lett.89,143901 (2002).
    [94]M. Kolesik, E. M. Wright, and J. V. Moloney, "Supercontinuum and third-harmonic generation accompanying optical filamentation as first-order scattering processes", Opt. Lett.32,2816 (2007).
    [95]M. Kolesik, E. M. Wright, A. Becker, and J. V. Moloney, "Simulation of third-harmonic and supercontinuum generation for femtosecond pulses in air", Appl. Phys. B 85,531 (2006).
    [96]F. Theberge, N. Akozbek, W. Liu, J.-F. Gravel, and S. L. Chin, "Third-harmonic beam profile generated in atmospheric air using femtosecond laser pulses", Opt. Commun.245,399 (2005).
    [97]F. Theberge, N. Akozbek, W. Liu, J. Filion, and S. L. Chin, "Conical emission and induced frequency shift of third-harmonic generation during ultrashort laser filamentation in air", Opt. Commun.276,298 (2007).
    [98]R. A. Bartels, N. L. Wagner, M. D. Baertschy, J. Wyss, M. M. Murnane, and H. C. Kapteyn, "hase-matching conditions for nonlinear frequency conversion by use of aligned molecular gases", Opt. Lett.28,346 (2003).
    [99]K. Hartinger, and R. A. Bartels, "Enhancement of third harmonic generation by a laser-induced plasma", Appl. Phys. Lett.93,151102 (2008).
    [100]X. Yang, J. Wu, Y. Peng, Y. Tong, S.Yuan, L. Ding, Z. Xu, and H. Zeng, "Noncollinear interaction of femtosecond filaments with enhanced third harmonic generation in air", Appl. Phys. Lett.95,111103 (2009).
    [101]J. Yao, B. Zeng, W. Chu, J. Ni, and Y. Cheng, "Enhancement of third harmonic generation in femtosecond laser induced filamentation-comparison of results obtained with plasma and a pair of glass plates", J. Mod. Opt.59,245 (2012).
    [102]Y. Liu, M. Durand, A. Houard, B. Forestier, A. Couairon, A. Mysyrowicz, "Efficient generation of third harmonic radiation in air filaments:A revisit", Opt. Commun.248,4706 (2011).
    [103]S. Suntsov, D. Abdollahpour, D. G. Papazoglou, and S. Tzortzakis, "Efficient third-harmonic generation through tailored IR femtosecond laser pulse filamentation in air", Opt. Express 17,3190 (2009).
    [104]Z. Liu, P. Ding, Y. Shi, X. Lu, S. Sun, X. Liu, Q. Liu, B. Ding, and B. Hu, "Control of third harmonic generation by plasma grating generated by two noncollinear IR femtosecond filaments", Opt. Express 20,8837 (2012).
    [105]L. Feng, X. Lu, T. Xi, X. Liu, Y. Li, L. Chen, J. Ma, Q. Wang, Z. Sheng, D. He, and J. Zhang, "Numerical studies of third-harmonic generation in laser filament in air perturbed by plasma spot", Phys. Plasma 19,072305 (2012).
    [106]S. Suntsov, D. Abdollahpour, D. G. Papazoglou, and S. Tzortzakis, "Filamentation-induced third-harmonic generation in air via plasma-enhanced third-order susceptibility", Phys. Rev. A 81,033817 (2010).
    [107]A. Chrissanthopoulos, U. Hohm, and U. Wachsmuth, "Frequency-dependence of the polarizability anisotropy of CO2 revisited," J. Mol. Struct.526,323 (2000).
    [108]H. Cai, J. Wu, X. Bai, H. Pan, and H. Zeng, "Molecular alignment assisted high-energy supercontinuum pulse generation in air", Opt. Lett.35,49(2010).
    [109]L. Dhar, K. Curtis, and T. Facke, "Holographic data storage:Coming of age," Nature Photon.2,403 (2008).
    [110]J. Rosen and G. Brooker, "Non-scanning motionless fluorescence three-dimensional holographic microscopy", Nature Photon.2,190 (2008).
    [111]S. Suntsov, D. Abdollahpour, D. G. Papazoglou, and S. Tzortzakis, "Femtosecond laser induced plasma diffraction gratings in air as photonic devices for high intensity laser applications", Appl. Phys. Lett.94,25114 (2009).
    [112]X. Yang, J. Wu, Y. Tong, L. Ding, Z. Xu, and H. Zeng, "Femtosecond laser pulse energy transfer induced by plasma grating due to filament interaction in air", Appl. Phys. Lett.97,071108 (2010).
    [113]M. Durand, Y. Liu, B. Forestier, A. Houard, and A. Mysyrowicz, "Experimental observation of a traveling plasma grating formed by two crossing filaments in gases", Appl. Phys. Lett.98,121110 (2011).
    [114]S. L. Chin, T.-J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.-F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, "Advances in Intense Femtosecond Laser filamentation in Air", Laser Phys.22,1-53(2012).
    [115]M. Centurion, Y. Pu, Z. Liu, and D. Psaltis, "Holographic recording of laser-induced plasma", Opt. Lett.29,772 (2004).
    [116]M. Centurion, Study of the nonlinear propagation of femtosecond laser pulse: [D]. California:California Institute of Technology,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700