用户名: 密码: 验证码:
基于混合动态仿真的发电机模型有效性评估及参数校正研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国电网日益庞大和复杂,保证电力系统安全运行就需要准确掌握其动态特性,这必须借助于电力系统动态仿真工具。所以保证仿真的可信度至关重要,直接关系到电力系统规划、设计和运行等工作的顺利开展。发电机是决定电力系统动态行为特征的关键设备,其仿真模型的有效性水平将极大的影响动态仿真结果。因此,本文按混合动态仿真的技术实现、模型有效性的量化评估方法、模型参数的辨识校正策略这一流程,对如何评估与提高发电机模型有效性进行了研究。
     首先基于广域测量系统(WAMS)数据的混合动态仿真方法,利用动态仿真结果与实测值的差异实现电力系统仿真模型的有效性验证。本文结合发电机模型验证的研究特点,提出一种用电压源法实现的混合动态仿真验证策略,通过等值外部系统为电压源,将实际量测的电压模值和相角信号注入仿真子系统的边界母线,简单有效。
     然后量化仿真结果与实测值的差异,实现模型有效性评估。针对现有仿真误差计算方法的不足,本文结合相关系数法和残差分析法,并进行加权改进,提出一种基于形状相似度和数值相似度的模型有效性评估方法,建立了发电机模型有效性指标。该有效性指标能正确反映发电机模型的准确程度,并具有良好的抗噪能力。另外还结合扰动深度,给出了模型有效性的动态评估思想。
     最后对有效性指标较低的发电机模型进行参数校正。参数过多会给校正工作带来困难,本文提出基于摄动法灵敏度分析的发电机参数简化策略,找出对动态响应影响较大的参数,以减少待校正的参数个数。再应用一种遗传算法对经过简化的发电机及励磁系统参数进行辨识,并与原模型参数比较以寻找误差参数值,进行参数校正,提高模型有效性水平。
     基于Matlab编程实现了本文提出的算法,在Simulink/SPS仿真环境下进行了算例分析。结合测试系统的仿真数据和发电机模型的实测数据,计算结果均证明了本文所提方法是可行、正确的。
China’s power grid becomes more and more large and complex. Only the staff of learning about its dynamic characteristics accurately that the power system can run safely, this must resort to the dynamic simulation tools. So the credibility of simulation results is critical to almost every aspects in power systems, such as planning, design and operation, etc. The generator is the key equipment for the dynamic behavior of power system. The validity of its simulation model will greatly influence the dynamic simulation results. Thus, in this paper the problems of how to evaluate the validity of generator model and how to improve its validity level are analyzed following the order that realization of hybrid dynamic simulation, quantitative method to evaluate the validity of generator model, parameters identification and calibration of model.
     First, hybrid dynamic simulation based on the data from wide area measurement system (WAMS) is used to achieve simulation model validation of power system with the discrepancy between dynamic simulation results and measured values. Based on the research feature of generator model, this paper proposes a hybrid dynamic simulation validation strategy by using voltage source method. It replaces the external system with voltage source, then incorporates field data of voltage and angle into the boundary buses of simulation subsystem simply and effectively.
     Then, the differences between simulation results and measured values are quantified to achieve validity evaluation of model. To overcome the shortcomings of the current simulation error algorithm, a new validity algorithm of model based on shape similarity and numerical value similarity is proposed in this paper, which applies related coefficient and residual analysis with weighted improvement. A validity indicator of generator model is established through this methord. The indicator can correctly reflect the accuracy of generator model, and has good anti-noise performance. In addition, dynamic evaluation thoughts about model validity are also given with disturbance depth.
     Finally, if the validity indicator of generator model is low, the parameters will be calibrated. But too many parameters bring difficulty to calibration. Hence this paper proposes a simplified identification strategy for parameters of generator model based on the sensitivity analysis of perturbation theory. In the strategy only the parameters with great influence on dynamic response are identified to reduce the number of parameters for calibration. What’s more, a genetic algorithm is applied to identify simplified parameters of generator and excitation system. The model validity can be improved through parameters calibration, in which the identification results and the original parameters of model are compared in search of error parameters.
     The proposed algorithms are implemented based on Matlab program and simulation software Simulink/SPS. Case studies on test system with simulation data and generator model with field data demonstrate the efficiency of the method in this paper.
引文
[1]白茂金,陈刚,刘青,等.一种基于LS-SVR的电网在线暂态稳定性预测新方法[J].电力系统保护与控制,2008,36(19):9-14.
    [2]刘丽霞,岑海凤,李晓辉,等.天津电网大容量冲击负荷对邻近发电机组影响的仿真研究[J].电力系统保护与控制,2009,37(20):43-46.
    [3]宋新立,吴小辰,刘文焯,等.PSD-BPA暂态稳定程序中的新直流输电准稳态模型[J].电网技术,2010,34(1):62-67.
    [4]顾威,李兴源,魏巍.基于UPFC的风电场稳定性动态仿真研究[J].电力系统保护与控制,2010,38(11):70-74.
    [5] Kosterev D N,Taylor C W,Mittelstadt W A.Model validation for the August 10,1996 WSCC system outage[J].IEEE Trans on Power Systems,1999,14(3):967-979.
    [6]李靖霞,倪腊琴,鞠平,等.同步电机参数的可辨识性研究[J].电力系统自动化,1998,22(3):9-12.
    [7] Pourbeik P,Modau F.Model development and field testing of a heavy-duty gas-turbine generator[J].IEEE Trans on Power Systems,2008,23(2):664-672.
    [8] Huang Z,Kosterev D,Guttromson R,et al.Model validation with hybrid dynamic simulation[C].Proceedings of IEEE Power Engineering Society General Meeting,2006,Montreal,Canada:1-9.
    [9]沈善德,朱守真,焦连伟,等.电力系统辨识建模和暂态稳定校核分析[J].电力系统自动化,1999,23(19):43-47.
    [10] Phadke A G,de Moraes R M.The wide world of wide-area measuremen[tJ].IEEE Power and Energy Magazine,2008,6(5):52-65.
    [11] Kosterev D.Hydro turbine-governor model validation in Pacific Northwes[tJ].IEEE Trans on Power Systems,2004,19(2):1144-1149.
    [12] Yang B,Huang Z,Kosterev D.Multi-terminal subsystem model validation for Pacific DC intertie[C].Proceedings of IEEE Power and Energy Society General Meeting,2008,Pittsburgh,USA:1-8.
    [13] Huang Z,Guttromson R T,Hauer J.Large-scale hybrid dynamic simulation employing field measurements[C].Proceedings of IEEE Power Engineering Society General Meeting,2004,Denver,USA:1570-1576.
    [14] Huang Z,Nguyen T,Kosterev D,et al.Model validation of power system components using hybrid dynamic simulation[C].Proceedings of 2005/2006 IEEE PES Transmission andDistribution Conference and Exhibition,2006,Dallas,USA:153-160.
    [15]薄博,马进,贺仁睦.基于变阻抗方法的电力系统混合仿真验证策略[J].电力系统自动化,2009,33(6):6-10.
    [16]韩冬.大区电网实测负荷建模及仿真验证的研究[D].北京:华北电力大学,2008.
    [17]伍双喜,吴文传,张伯明,等.用PMU量测设置V-θ节点的混合动态仿真验证策略[J].电力系统自动化,2010,34(17):12-16.
    [18] Huang Z,Yang B,Kosterev D.Benchmarking of planning models using recorded dynamics[C].Proceedings of IEEE Power and Energy Society Power Systems Conference and Exposition,2009,Seattle,USA:1-6.
    [19]马进,盛文进,贺仁睦,等.基于广域测量系统的电力系统动态仿真验证策略[J].电力系统自动化,2007,31(18):11-16.
    [20]杨俊新,马进.基于电力系统混合仿真的低频振荡研究[J].华东电力,2009,37(11):1831-1834.
    [21]杨俊新,周成.基于电力系统混合仿真的静态电压稳定性分析[J].电网技术,2010,34(7):114-117.
    [22]周成.电力系统动态仿真模型及参数有效性评估[D].北京:华北电力大学,2010.
    [23]周成,贺仁睦.电力系统仿真模型有效性的动态评估[J].电网技术,2010,34(3):61-64.
    [24]贺仁睦.电力系统动态仿真准确度的探究[J].电网技术,2000,24(12):1-4.
    [25] Shestakov A L.Dynamic error correction method[J].IEEE Trans on Instrumentation and Measurement,1996,45(1):250-255.
    [26] Pourbeik P,Bowler C E J,Crocker V.Model validation testing for the purpose of determining generation equipment dynamic performance and torsional mechanical response[C].Proceedings of IEEE Power Engineering Society General Meeting,2004,Denver,USA:1510-1514.
    [27] Agrawal B,Kosterev D.Model validation studies for a disturbance event that occurred on June 14 2004 in the western interconnection[C].Proceedings of IEEE Power Engineering Society General Meeting,2007:1-5.
    [28]郑智琴,孟秀云.某型导弹系统仿真模型验证[J].计算机仿真,2004,21(10):38-40.
    [29]王建华,符文星,董敏周,等.最大熵谱估计在空空导弹仿真模型验证中的应用[J].弹箭与制导学报,2005,25(4):848-850.
    [30]高松,贺仁睦,马进,等.电力系统动态仿真误差评定准则研究[J].电力系统自动化,2006,30(4):6-10.
    [31]柳世考,刘兴堂,张文.利用相似度对仿真系统可信度进行定量评估[J].系统仿真学报,2002,14(2):143-145.
    [32]焦鹏,唐见兵,查亚兵.仿真可信度评估中相似度方法的改进及其应用[J].系统仿真学报,2007,19(12):2658-2660.
    [33]孙勇成,周献中,李桂芳,等.基于灰色关联分析的仿真模型验证及其改进[J].系统仿真学报,2005,17(3):522-524.
    [34]周成,贺仁睦,王吉利,等.电力系统元件模型仿真准确度评估[J].电网技术,2009,33(14):12-15.
    [35]周成,贺仁睦.应用界标分界法的电力系统动态仿真准确度评估[J].中国电机工程学报,2010,30(7):42-47.
    [36]李宏艳.关于灰色关联度计算方法的研究[J].系统工程与电子技术,2004,26(9):1231-1233.
    [37]汤胤.时间序列相似性分析方法研究[J].计算机工程与应用,2006,(1):68-71.
    [38] Pereira L,Kosterev D,Davies D,et al.New thermal governor model selection and validation in the WECC[J].IEEE Trans on Power Systems,2004,19(1):517-523.
    [39]刘洪波,穆钢,徐兴伟,等.使功-频过程仿真轨迹逼近实测轨迹的模型参数调整[J].电网技术,2006,30(18):20-24.
    [40]沈善德.电力系统辨识[M].北京:清华大学出版社,1993.
    [41]舒辉,文劲宇.发电机励磁系统参数辨识综述[J].电力自动化设备,2008,28(2):104-107.
    [42]朱守真,沈善德,韩波.频域法辨识同步机参数[J].清华大学学报:自然科学版,1995,35(1):107-114.
    [43]蒋平,戴列峰,黄霆,等.频域法在励磁系统参数辨识中的应用[J].电力系统自动化,2001,25(16):30-33.
    [44]王良,沈善德,朱守真,等.基于EE模型的励磁系统参数时域辨识法[J].电力系统自动化,2002,26(8):25-28.
    [45] Huang Z,Du P,Kosterev D,et al.Application of extended Kalman filter techniques for dynamic model parameter calibration[C].Proceedings of IEEE Power and Energy Society General Meeting,2009,Calgary,Canada:1-8.
    [46] Holland J H.Adaptation in natural and artificial systems[M].Ann Arbor:The University of Michigan Press,1975.
    [47] Goldberg D E . Genetic algorithms in search , optimization and machine learning[M].Addison-Wesley Publishing Company,1989.
    [48]张琦,韩祯祥,文福拴.进化规划方法在电力系统静态负荷模型参数辨识中的应用[J].电力系统自动化,1997,21(10):9-12.
    [49]鞠平,倪腊琴,韩敬东.同步发电机参数辨识的模拟进化方法[J].电工技术学报,1999,14(5):1-4.
    [50]程颖,鞠平,吴峰.负荷模型参数辨识的粒子群优化法及其与基因算法比较[J].电力系统自动化,2003,27(11):25-29.
    [51]黄其新,孙黎霞,甄威,等.同步发电机参数辨识的蚁群算法及扰动分析[J].电力自动化设备,2009,29(11):50-53.
    [52]倪良华,李先允.基于改进混合遗传算法的同步电机参数辨识[J].电力系统保护与控制,2010,38(1):51-55.
    [53]赵书强,王磊,马燕峰,等.基于改进遗传算法的非线性励磁系统参数辨识[J].电力自动化设备,2007,27(7):1-4.
    [54]王晓伟,蒋平,高磊,等.改进遗传算法在电力系统稳定器参数辨识中的应用[J].华东电力,2007,35(6):39-43.
    [55]戴义平,邓仁纲,刘炯,等.基于遗传算法的汽轮机数字电液调节系统的参数辨识研究[J].中国电机工程学报,2002,22(7):101-104.
    [56]金群,李欣然,刘艳阳,等.一种改进遗传算法及其在负荷建模中的应用[J].电力系统及其自动化学报,2006,18(2):35-40.
    [57]陈晓刚,易永辉,江全元,等.基于WAMS/SCADA混合量测的电网参数辨识与估计[J].电力系统自动化,2008,32(5):1-5.
    [58]李媛,刘涤尘,杜新伟,等.混合遗传算法在电力参数测量中的应用[J].电力系统自动化,2007,31(12):86-91.
    [59]郝丽丽,薛禹胜,Wu Q H,等.关于电力系统动态仿真有效性的评述[J].电力系统自动化,2010,34(10):1-7.
    [60]郝丽丽,薛禹胜,Dong Z,等.电力系统受扰轨迹的差异度及其在参数识别中的应用[J].电力系统自动化,2010,34(11):1-7.
    [61] Rifaat R M.Independent power producers (IPP) perspectives and experiences with WSCC requirements for generator model validation tests[J].IEEE Trans on Industry Applications,2001,37(4):1210-1216.
    [62]韩冬,马进,贺仁睦,等.电力系统时域仿真的动态一致性检验[J].电力系统自动化,2010,34(16):29-33.
    [63]石景海,贺仁睦.动态负荷模型多曲线拟合参数辨识[J].电力系统自动化,2003,27(24):18-22.
    [64] Hiskens I A.Nonlinear dynamic model evaluation from disturbance measurements[J].IEEE Trans on Power Systems,2001,16(4):702-710.
    [65]马进,贺仁睦,王景钢,等.综合负荷模型参数的简化辨识策略[J].电网技术,2006,30(9):28-34.
    [66]薛禹胜,徐伟,Dong Z,等.关于广域测量系统及广域控制保护系统的评述[J].电力系统自动化,2007,31(15):1-5.
    [67]中国南方电网公司.交直流电力系统仿真技术[M].北京:中国电力出版社,2007.
    [68]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社,2002.
    [69]邱关源.电路:第四版[M].北京:高等教育出版社,1999.
    [70]周兆庆,陈星莺.Matlab电力系统工具箱在电力系统机电暂态仿真中的应用[J].电力自动化设备,2005,25(4):51-54.
    [71]诸骏伟.电力系统分析:上册[M].北京:水利电力出版社,1995.
    [72] Klein M,Rogers G J,Kunder P.A fundamental study of inter-area oscillations in power systems[J].IEEE Trans on Power Systems,1991,6(3):914-921.
    [73] Anderson P M,Fouad A A.Power system control and stability[M].Ames Lowa,USA:The Lowa State University Press,1977.
    [74]张进.电力系统动态仿真可信度研究[D].北京:华北电力大学,2005.
    [75]王达,荣冈.时间序列的模式距离[J].浙江大学学报:工学版,2004,38(7):795-798.
    [76]刘威,邵良杉,曾繁慧,等.基于SAX方法的股票时间序列数据相似性度量方法研究[J].计算机工程与科学,2009,31(9):115-118.
    [77]周美立.相似性科学[M].北京:科学出版社,2004.
    [78]赵刚,朱旭东,陈文针.变压器冲击试验结果的波形相关系数判别法[J].高电压技术,2002,28(2):1-2.
    [79]罗航,黄建国,龙兵,等.基于相关系数方法的样本失效分布研究[J].系统工程与电子技术,2009,31(7):1776-1781.
    [80]盛骤,谢式千,潘承毅.概率论与数理统计:第三版[M].北京:高等教育出版社,2001.
    [81] Saaty T L.Principles of the analytical hierarchy process[M].USA:The University of Pittsburgh,1987.
    [82]鲁智勇,张磊,柯宏发,等.基于AHP的指控装备信息网络仿真可信度评估[J].系统仿真学报,2009,21(17):5357-5360.
    [83]胡寿松.自动控制原理:第四版[M].北京:科学出版社,2001.
    [84] SimPowerSystems user’s guide[R].The MathWorks,Inc,2008.
    [85] PSD-BPA暂态稳定程序用户手册:4.0版[R].中国电力科学研究院,2007.
    [86]苗峰显,郭志忠.灵敏度方法在电力系统分析与控制中的应用综述[J].继电器,2007,35(15):72-76.
    [87]贺仁睦,叶静,林盾,等.负荷模型及参数对系统动态过程中频率的影响[J].电力系统自动化,2010,34(24):27-30.
    [88] IEEE Std 421.5-1992,IEEE recommended practice for excitation system models for power system stability studies[S].
    [89]雷英杰,张善文,李续武,等.MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005.
    [90]高玮.改进的快速遗传算法及其性能研究[J].系统工程与电子技术,2003,25(11):1427-1430.
    [91]贺仁睦,郑晓雨,马进,等.基于轨迹灵敏度的负荷参数辨识范围调整方法[J].电力系统自动化,2009,33(13):17-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700