用户名: 密码: 验证码:
三维机织整体中空复合材料的结构及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三维机织整体中空复合材料是一种新型夹芯结构材料,国外称之为三明治结构。该材料主要由100%的E-Glass纤维织造而成,其三明治结构通过Z向纤维整体连接织物的上、下2个层面,其典型空间特征是芯部沿经向呈现出“8”字形,沿纬向呈现出“I”字形。三维机织整体中空复合材料具有优异的整体性能,克服了传统蜂窝、泡沫等夹芯复合材料易分层、耐冲击性能差的缺点,目前已广泛应用于大面积船身、机翼、油罐的夹层、各种地板、隔墙等。
     迄今为止对三维机织整体中空复合材料的研究主要集中在基本力学性能、低速冲击等实验研究上,而对整体中空织物的制备、结构参数对材料力学性能与低速冲击的影响、低速冲击后材料剩余强度,以及材料的结构理论等方面研究甚少。本课题在成功制备三维机织整体中空复合材料的基础上,对材料的力学性能、低速冲击性能、结构理论研究等方面作了较为详细的研究。论文主要工作包括:
     (1)三维机织整体中空复合材料的制备。第一步,设计不同类型的整体中空织物,包括“8”字形、“88”字形、2.5维整体中空织物等。第二步,整体中空织物的织造,包括工艺调整、织造生产等。第三步,树脂基体的制备。选取树脂(环氧618)、固化剂(聚酰胺651)、稀释剂(环氧丙烷丁基醚660)等组成树脂基体,配比为100:50:30。第四步,整体中空织物的复合成型。采用手糊成型、真空辅助成型等方式制备三维机织整体中空复合材料。
     (2)三维机织整体中空复合材料的力学性能研究。研究整体中空复合材料在平压、侧拉、侧压、剪切、弯曲等载荷作用下的力学特性,重点分析芯材高度、芯材密度等结构参数对材料力学性能的影响。结果表明:三维机织整体中空复合材料的平压、剪切等性能随着芯材高度的增加而减小;侧拉、侧压、弯曲等性能随着芯材高度的增加而增加;整体中空复合材料的平压、侧拉、侧压、剪切、弯曲等性能随着芯材密度的增加而增加。
     (3)三维机织整体中空复合材料的低速冲击性能研究。第一步,选取芯材高度为5mm的材料,分别进行1~10 J能量的低速冲击,研究材料的低速冲击特性;第二步,选取芯材高度分别为5、6、7mm的材料,进行8J能量的低速冲击,研究芯材高度对低速冲击性能的影响;第三步,选取芯材高度为7mm、铝蒙皮厚度为0.3 mm的材料,进行8 J能量的低速冲击,并将实验结果与未蒙皮的材料进行比较,研究蒙皮对低速冲击性能的影响。
     (4)三维机织整体中空复合材料低速冲击后剩余强度研究。第一步,选取芯材高度分别为5、6、7 mm的材料,进行8 J能量低速冲击,研究材料低速冲击后的剩余强度特性;第二步,选取芯材高度为7mm的材料,分别进行6、8、10J的能量冲击,研究冲击能量对低速冲击后剩余强度的影响;第三步,选取芯材高度为7mm、铝蒙皮厚度为0.3 mm的材料,进行8 J能量的低速冲击,测试材料的剩余压缩强度,并将实验结果与未蒙皮的材料进行比较,研究蒙皮对低速冲击后剩余强度的影响。
     (5)三维机织整体中空复合材料结构理论研究。利用有限元软件ANSYS,建立整体中空复合材料的结构模型,进行压缩力学特性分析。利用该模型,研究芯材高度、芯材密度、弹性模量、泊松比等结构参数对材料压缩性能的影响。结果表明:三维机织整体中空复合材料在受压状态下,芯材与上下面板相接处应力最大,最容易发生压缩破坏;材料的压缩强度随着芯材高度的增加而下降,随着芯材密度、泊松比的增加而增加;弹性模量对材料压缩性能的影响不大。
The 3D woven integrated sandwich composites are new types of sandwich structure materials, which are also called sandwich structures in overseas. The 3D composites are mainly made of 100 percent of E-Glass fibers, and the sandwich structures are formed by the Z-direction fibers connecting the down and upper face-sheet of the fabrics. The typical spatial characteristics of the composites are that the piles show "8"-shape in warp direction, and " I "-shape in weft direction. The 3D composites have excellent integrated performance, which overcomes the weakness of easy delamination and poor impact resistance of the traditional sandwich structures, such as honeycomb and foam ones. Nowadays the 3D composites have been widely used in large areas of boats, aircraft wings, sandwich of oil tanks, various floors, and partition walls.
     So far the studies on the 3D composites have mainly focused on the experimental tests, such as the basic mechanical performance, low-velocity impact and other properties. However, the other studies on the 3D composites, such as the preparation of the 3D integrated sandwich fabrics, the effect of the structure parameters on the mechanical performance and low-velocity impact, the residual strength of the composites after low-velocity impact, and the structural theory of the composites, have not been properly studied.In the paper, the studies of the 3D composites on the mechanical performance, low-velocity impact, and structural theory were carried out in detail. The main work includes as follows.
     (1) The preparation of the 3D woven integrated sandwich composites. First step, the design of different types of 3D integrated sandwich fabrics, included "8"-shape, "88"-shaped, and 2.5D integrated sandwich fabrics. Second step, the weaving of the 3D sandwich fabrics, included processing adjustment, weaving production, and so on. Third step, the preparation of the resin matrix, which was made from the resin (epoxy resin 618), curing agent (PA 651), diluents (propylene oxide-butyl ether 660), and the ratio of the resin matrix is 100:50:30. Fourth step, the molding of the 3D integrated sandwich fabrics. In the paper, the method of hand lay-up molding and vaccum assisted resin infusion molding (VARIM) were used to prepare the 3D composites.
     (2) The studies of the mechanical properties on the 3D woven integrated sandwich composites.In the paper, the mechanical characteristics of the 3D integrated sandwich composite under flat compressive, side tensile, side compressive, shear and flexural loads were studied, and the effects of pile height and pile density on the mechanical properties were investigated too. The results indicated that the side tensile strength, side compressive strength and flexural strength increased, while the flat compressive strength and shear strength decreased with the increase of the pile height. The flat compressive strength, side tensile strength, side compressive strength, shear strength, and flexural strength all increased with the increase of the pile density. The results contribute to the optimal design of the 3D sandwich composites.
     (3) The studies of low-velocity impact behavior on the 3D woven integrated sandwich composites. First step, the low velocity impact characteristics of the 3D composites were investigated as a function of the pile height with 5mm under different impact energy from 1 to 10J respectively. Second step, the effects of pile height on low-velocity impact behavior were investigated as a function of the pile height with 5mm,6mm and 7mm under impact energy of 8J. Third step, the effects of covered skins on the low-velocity impact behavior were investigated by the comparison of behavior of the 3D composites that covered and uncovered with aluminum skins for 7mm.
     (4) The studies of residual strength on the 3D woven integrated sandwich composites after low-velocity impact. First step, the residual strength characteristics were investigated as a function of pile height with 5mm,6mm and 7mm under impact energy of 8 J. Second step, the effect of impact energy on the residual strength was investigated as a function of pile height with 7mm under impact energy of 6J,8J and 10J. Third step, the effects of covered skins on the residual strength were investigated by the comparison of behavior of the 3D composites that covered and uncovered with aluminum skins for 7mm.
     (5) The studies of structure theory on the 3D woven integrated sandwich composites. On the basis of previous studies, a new structural model was developed for the compressive analysis of 3D integrated sandwich composites by using the finite element software ANSYS. The effects of pile height, pile density, material elastic modulus and poisson ratio of the 3D composites on the compressive properties were studied in detail. The results show that the maximum value of the stress appears in the interface between pile and face-sheet when the 3D composites are subject under compressive loads, in which the composites damage easily. The compressive properties of the 3-D composites increase with the increase of the pile density, poisson ratio, and decrease with that of the pile height. The elastic modulus has little effect on the compressive properties of the composites. The results provide reference for the structure optimum of the 3D composites.
引文
1.高爱君,李敏,王绍凯,等.三维间隔连体织物复合材料力学性能[J].复合材料学报,2008,25(2):87-93.
    2.Karssson K F,Astrom T.Manufacturing and application of structural sandwich components [J].Composite Part A:Application Science,1997,28(2):97-111.
    3.Hosur M V,Abdullah M,Jeelani S.Dynamic compression behavior of integrated core sandwich composites[J].Materials Science and Engineering A,2007,445:54-64.
    4.赵景丽.蜂窝夹层结构复合材料的性能研究[D]:[硕士学位论文].西安:西北工业大学材料系,2002,1-10.
    5.窦润龙,胡培.复合材料泡沫夹层结构在民机中的应用[J].民用飞机设计与研究,2004,(3):42-45.
    6.李瑞淳.蜂窝夹层结构复合材料设计及应用研究[J].铁道机车车辆,2009,29(6):3-6.
    7.Abrate S.Localized impact on sandwich structures with laminated faceings[J]. Applied Mechanics Reviews,1997,50(2):69-82.
    8.Vaidya U K,Nelson S,Sinn B,et al.Processing and high strain rate impact response of multifunctional sandwich composites[J]. Composite Structures,2001,52(3):429-440.
    9.Nettles A T,Hodge A J.Impact testing of glass/phenolic honeycomb panels with graphite/ epoxy face sheets[C].Proceedings of 35th International SAMPE Symposium and Exhibition. Anaheim CA,1990,35:1430-1440.
    10.Kim C G,Jun E J.Impact characteristics of composite laminated sandwich structures [C]. Proceedings of 8th International Conference on Composite Materials (ICCM/8).Honolulu, 1991,32:1-8.
    11.Charles J P,Guedra-Degeorges D.Impact damage tolerance of helicopter sandwich structures[C].Proceedings of 23rd International SAMPE Conference.NewYork:Kiamesha Lake,1991,51-61.
    12.Kim C G,Jun E J.Impact resistance of composite laminated sandwich plates[J].Journal of Composite Materials,1992,26(15):2247-2261.
    13.Herup E W J,Palazotto A N.Low velocity impact damage initiation in graphite/epoxy/ nomex honeycomb-sandwich plates[J].Composites Science and Technology,1998,57(12)1581-1598.
    14.Weeks C A,Sun C T.Multi-core composite laminates [J].Journal of Advanced Materials, 1994,25(3):28-37.
    15.Cartic D D,Fleck N A.The effect of pin reinforcement upon the through-thickness compressive strength of foam-cored sandwich panels[J].Composites Science and Technology, 2003,63(16):2401-2409.
    16.Potluri P,Kusak E,Reddy T Y.Novel stitch-bonded sandwich composite structures[J]. Composite Structures,2003,59(2):251-259.
    17.Caprino G,Teti R.Impact and post impact behavior of foam core sandwich structures [J]. Composite Structures,1994,29(1):47-55.
    18.李涛,陈蔚,成理,等.泡沫夹层结构复合材料的应用与发展.科技创新导报,2009,(14):3-5.
    19.Wu C L,Sun C T.Low velocity impact damage in composite sandwich beams [J]. Composite Structures,1996,34(1):21-27.
    20.Hazizan A M,Cantwell W J.The low velocity impact response of foam based sandwich structures[J].Composites Part B:Engineering,2002,33(3):193-204.
    21.Abot J L,Daniet I M.Composite sandwich beams under low-velocity impact[C].CD Proc 42 AIAA/ASME/ASCE/AHS/ASC SD Conf.Seattle.2001,1186.
    22.Anderson T,Madenci E.Experimental investigation of low velocity impact characteristics of sandwich composites[J].Composite Structures,2000,50(3):239-247.
    23.Corigliano A,Rizzi E.Experimental characterization and numerical simulations of a synactic-foam/glass-fibre composite sandwich[J].Composites Science and Technology,2000, 60(11):2169-2180.
    24.Mines R A W,Worrall C M,Gibson A GLow velocity perforation behaviour of polymer composite sandwich panels[J].International Journal of Impact Engineering,1998,21(10):855-879.
    25.Belingardi QCavatotra M P,Duella R.Material characterization of a composite-foam sandwich for the front structure of a high speed train[J].Composite Structures,2003,61(2): 13-25.
    26.Torre L,Kenny J M.Impact testing and simulation of composite sandwich structures for civil transportation[J].Composite Structures,2000,50(3):257-267.
    27.Hosur M V,Abdullah M,Jeelani S.Manufacturing and low-velocity impact characterization of foam filled 3D integrated core sandwich composites with hybrid face sheets[J].Composite Structures,2005,69(2):167-181.
    28.Vaidya U K,Kamath M V,Mahfuz H,et al.Low velocity impact response of resin infusion molded foam filled honeycomb sandwich composites[J].Journal of Reinforced Plastics and Composites,1998,17(9):819-849.
    29.Vaidya U K,Nelson S,Sinn B,et al.Processing and high strain rate impact response of multifunctional sandwich composites[J]. Composite Strucrures,2001,52(3):429-440.
    30.Vaidya U K,Kumar P,Hosur M V,et al.Low velocity and high strain rate impact of pin reinforced foam core sandwich structures[C].In:Newaz QGibson R F,eds.Proceedings of the Eight Japan-US Conference on Composite Materials,1998,721-729.
    31.Vaidya U K,Kamath M V,Hosur M V,et al.Low velocity impact response of hollow and foam filled Z-pin reinforced core[J].Journal of Composites Technology & Research,1999,21 (2):84-97.
    32.Rice M C,Fleischer C A,Zupan M.Study on the collapse of pin-reinforced foam sandwich panel cores[J]. Experimental Mechanics,2006,46(2):197-204.
    33.匡宁,周光明,张立泉,等.整体夹芯中空复合材料的开发与应用[J].玻璃纤维,2007,(5):15-20.
    34.Ko F,Du G W.Processing of textile performs[C].In:Gutowski T G,eds.Advanced Composites Manufacturing.New York:John Wiley & Sons,1997,182-189.
    35.祝成炎.3D立体机织物及其复合材料[J].丝绸,2005(1):44-47.
    36.匡宁,张建钟,杨朝坤,等.整体夹芯中空复合材料的研究[J].航空制造技术,2007(291):53-56.
    37.Vaidya U K, Hosur M V, Earl D, et al. Impact response of integrated hollow core sandwich composite panels[J]. Composites Part A:Applied Science and Manufacturing,2000,31 (8): 761-772.
    38.Shyr T W,Pan Y H.Low velocity impact responses of hollow core sandwich laminate and interply hybrid laminate[J]. Composite Structures,2004,64(2):189-198.
    39.Dasgupta A,Agarwal R K,Bhandarkar S M.Three-dimensional modeling of woven-fabric composites for effective thermo-mechanical and thermal properties[J].Composites Science and Technology,1996,56(3):209-223.
    40.Drechsler K,Brandt J,Arendts F J.Integrally woven sandwich-structures[C].Proc ECCM-3. Bordeaux,Elsevier Applied Science,1989.365-371.
    41.Verpoest I,Wevers M,De M P,et al.2.5D-and 3D-fabrics for delamination resistant composite laminates and sandwich structures [J]. SAMPE Journal,1989,25(3):51-56.
    42.Verpoest I,Wevers M.3D-fabrics for compression and impact resistant composite sand wich structures[C].35th International SAMPE Symposium.Anaheim:Covina,1990.296-307.
    43.Ivens J,Vandeurzen P H,Van Vuure A W,et al.Modeling of the skin properties of 3D sandwich fabric composites[C].In:Miravete A,eds.Proceedings of ICCM-9.England: Woodhead Publishing Ltd,1993.540-547.
    44.van Vuure A W,Ivens J,Verpoest I.Sandwich-fabric panels[C].40th International SAMPE Symposium. Anaheim:SAMPE,1995.1281-1292.
    45.Freitas QMagee C,Dardzinski P,et al.Fiber insertion process for improved damage tolerance in aircraft laminates[J]. Journal of Advanced Materials,1994,25(4):36-43.
    46.Barrett D J. A micromechanical model for the analysis of Z-Fiber reinforcement[C]. AIAA/ ASCE/ASME/AHS SDM Conference,Utah:Salt Lake City,1996,62-67.
    47.Bannister M K,Braemar R,Crothers P J.The mechanical performance of 3D woven sandwich composites[J].Composite Structures,1999,47(4):687-690.
    48.祝成炎,陈俊俊,朱俊萍,等.三维整体夹芯织物增强复合材料的研制[J].纺织学报,2007,28(1):56-59.
    49.田伟,祝成炎,王善元.三维整体夹芯机织复合材料的抗冲击与能量吸收性能[J].材料工程,2007,Z1:111-116.
    50.周光明,钟志珊,张立泉,等.整体中空夹层复合材料力学性能的实验研究.南京航空航天大学学报,2007,39(1):11-15.
    51.张明俊,周罗庆.间隔机织物的生产和性能[J].上海纺织科技,2006,34(7):52-53.
    52.张明俊,周罗庆.三维机织间隔织物复合材料的设计和织造[J].纺织导报,2006,(7):68-69.
    53.Judawisastra H,Ivens J,Verpoest I S.Indentation testing of 3D woven sandwich composites [C].ECCM-8.Cambridge:Woodhead Publishing Ltd,1998.575-582.
    54.Judawisastra H,Ivens J,Verpoest I.The fatigue behavior and damage development of 3D woven sandwich composites[J].Composite Structures,1998,43(1):35-45.
    55.Mouritz A P,Bannister M K,Falzon P J,et al.Review of application for advanced three-dimensional fibre textile composites[J].Composites Part A,1999,30(12):1445-1461.
    56.Brandt J,Drechsler K,Arendits F J.Mechanical performance of composites based on various three-dimensional woven-fibre preforms[J].Composites Science and Technology,1996, 56(3):381-386.
    57.Dhont D. Mechanical properties of parabeam (three-dimensional woven glass fabric epoxy panels). Test Report. Student Aeronautical engineering (Netherlands),1994.
    58.van vuure A W,Ivens J A,Verpoest L.Mechanical properties of composite panels based on woven sandwich-fabric preforms[J].Composites Part A,2000,31(7):671-680.
    59.Fleck N A,Sridhar I.End compression of sandwich columns [J].Composites Part A,2002,33 (3):353-359.
    60.Li M,Wang S K,Zhang Z G,et al.Effect of structure on the mechanical behaviors of three-dimensional spacer fabric composites[J].Applied Composite Materials,2009,16(1):1-14.
    61.匡宁,周光明,张立泉,等.三维中空复合材料力学性能研究.材料工程,2007,(Z1):117-120.
    62.庄桂增,孙志杰,王绍凯,等.三维间隔连体织物泡沫夹层结构复合材料的基本力学特性[J].复合材料学报,2009,26(5):27-32.
    63.周光明,朱波.整体中空夹层复合材料低速冲击损伤及剩余强度实验研究.材料工程, 2009,(Z2):289-293.
    64.JM霍奇金森主编.先进纤维增强复合材料性能测试[M].白树林,戴兰宏,张庆明,译.北京:化学工业出版社,2005.
    65.Shyr T W,Pan Y H.Low velocity impact responses of hollow core sandwich laminate and interply hybrid laminate[J].Composite Structures,2004,64(2):189-198.
    66.Hosur M V,Abdullah M,Jeelani S.Manufacturing and low-velocity impact characterization of hollow integrated core sandwich composites with hybrid facesheets[J].Composite Structures,2004,65(1):103-115.
    67.Vaidya A S,Vaidya U K,Uddin N.Impact response of three-dimensional multifunctional sandwich composite[J].Materials Science and Engineering A,2008,472(1-2):52-58.
    68.刘静,钱坤,曹海建.整体中空层连织物复合材料预埋作用中的新结构[J].玻璃钢/复合材料,2008,(4):22-24.
    69.周红涛,钱坤,曹海建,等.铝蒙皮整体中空夹层复合材料低速冲击的实验研究[J].玻璃钢/复合材料,2009,(5):49-52.
    70.Reissner E.Finite deflection of sandwich plates[J].Journal of Aerospace Science,1948, 15(7):435-440.
    71.何录武,冯春.复合材料层合壳有限元分析的预测——修正法[J].力学季刊,2004,25(3):317-321.
    72.丁淑蓉.夹层板的稳定性分析方程[J].机床与液压,2005,(1):187-189.
    73.冯跃中,何录武.复合材料层合板的热应力分析[J].兰州大学学报(自然科学版),2005,41(6):94-99.
    74.Hoff N J.Bending and buckling of rectangular sandwich plates[J].NASA TN-2225,1950.
    75.吴晖.含压电致动器的四结点矩形复合材料夹层板单元[J].工程力学,2004,21(4):156-161.
    76.马永斌,邱平,杨静宁,等.FRP特种航空集装箱夹层板力学行为分析[J].甘肃科学学报,2006,18(3):21-24.
    77.石勇,朱锡,李海涛,等.考虑表层抗弯刚度影响的夹层板静力学等效分析[J].海军工程大学学报,2006,18(6):106-110.
    78.郭中泽,罗景润,陈裕泽.基于Hoff夹层板理论计算约束阻尼结构的结构损耗因子[J].机械强度,2007,29(1):77-80.
    79.杜庆华.三合板的一般弹性理论[J].物理学报,1954,10(4):395-411.
    80.王海英,赵德有.芯板横向可压缩\位移模式的夹层板结构动力有限元分析[J].船舶力学,2009,13(5):795-802.
    81.曹志远,杨晟田.厚板动力学理论及其应用[M].北京:科学出版社,1983.
    82.Lee L J,Fan Y J.Bending and vibration analysis of composite sandwich plates[J]. Computers and Structures,1996,61(1):103-112.
    83.Bai J M,Sun C T.The effect of viscoelastic adhesive layers on structural damping of sandwich beams[J]. Mechanics of Structures and Machinery,1995,23(1):1-16.
    84.况祺,夏凌辉,常春伟.ANSYS在复合材料夹层结构屈曲分析中的应用[J].科学技术与工程,2005,5(23):1836-1838.
    85.石建军,吴东辉,迟波,等.Shel191单元在复合材料蜂窝夹层结构分析中的应用[J].纤维复合材料,2006,(3):40-42.
    86.沈瑶,刘慧,钱静.经编间隔织物球形压缩试验与仿真分析[J].湖南工业大学学报,2008,22(5):1-4.
    87.姚秀冬,周叮,刘伟庆.复合材料夹层板芯层内树脂柱对性能的影响[J].材料科学与工程学报,2009,27(6):937-941.
    88.张艳红,钱坤,曹海建.基于最小势能原理的2.5D机织物的结构模型[J].玻璃钢/复合材料,2008,(3):18-20.
    89.曹海建,钱坤,李鸿顺.2.5D机织复合材料的设计与织造[J].上海纺织科技,2009,37(1):12-18.
    90.曹海建,钱坤,盛东晓.2.5D机织复合材料结构与力学性能关系的研究[J].玻璃钢/复合材料,2009,(3):13-15.
    91.杨彩云,李嘉禄.复合材料用3D角联锁结构预制件的结构设计及新型织造技术[J].东华大学学报,2005,31(5):53-58.
    92.聂建斌,卢士艳.角联锁织物的组织设计[J].纺织学报,2006,27(3):90-91.
    93.卢士艳,聂建斌.角度联锁三维机织物的设计与生产[J].棉纺织技术,2005,33(2):8-11.
    94.顾平.织物结构与设计学[M].上海:东华大学出版社,2004:106-110.
    95.Byun J H,Chou T W.Elastic properties of three-dimensional angle-interlock fabric performs[J].Journal of the Textile Institute,1990,81(4):538-548.
    96.黄发荣,周燕.先进树脂基复合材料[M].北京:化学工业出版社,2008.
    97.晏石林.复合材料建筑结构及其应用[M].北京:化学工业出版社,2006.
    98.陶肖明,冼杏娟,高冠勋.纺织结构复合材料[M].北京:科学出版社,2001.
    99.邓杰,成敏苏.大尺寸CFRP固体火箭发动机壳体湿法缠绕用树脂配方研制[J].宇航学报,2010,31(2):556-561.
    100.陈平,王德中.环氧树脂及其应用[M].北京:化学工业出版社,2004,2.
    101.黄家康,岳红军,董永棋.复合材料成型技术[M].北京:化学工业出版社,1999.
    102.赵伟超,宁荣昌,郭延强.风电叶片用环氧树脂固化体系的研究[J].中国胶粘剂,2010,19(2):1-3.
    103.毕春华,甘常林,赵世崎.环氧树脂固化促进剂作用特性研究[J].热固性树脂,1996,11(2):34-37.
    104.柴红梅,汪鹏,王雷,等.固化剂含量对RTM用环氧树脂体系固化性能的影响[J].玻璃钢/复合材料,2009,(5):48-49.
    105.张玉金,饶秋华,王东涛.高活性环氧树脂增韧稀释剂的合成及应用[J].热固性树脂,2010,25(1):48-51.
    106.Park S J,Park W B,Lee J R.Characterization of the impact properties of three-dimensional glass fabric-reinforced vinylester matrix composites [J].Journal of Materials Science,2000, 35(24):6151-6154.
    107.全国纤维增强塑料标准化技术委员会,中国标准出版社第五编辑室主编.纤维增强塑料(玻璃钢)标准汇编[M].第二版.北京:中国标准出版社,2006,403-410.
    108.全国纤维增强塑料标准化技术委员会,中国标准出版社第五编辑室主编.纤维增强塑料(玻璃钢)标准汇编[M].第二版.北京:中国标准出版社,2006,353-363.
    109.全国纤维增强塑料标准化技术委员会,中国标准出版社第五编辑室主编.纤维增强塑料(玻璃钢)标准汇编[M].第二版.北京:中国标准出版社,2006,411-420.
    110.全国纤维增强塑料标准化技术委员会,中国标准出版社第五编辑室主编.纤维增强塑料(玻璃钢)标准汇编[M].第二版.北京:中国标准出版社,2006,421-429.
    111.全国纤维增强塑料标准化技术委员会,中国标准出版社第五编辑室主编.纤维增强塑料(玻璃钢)标准汇编[M].第二版.北京:中国标准出版社,2006,431-441.
    112.曹海建,钱坤.整体中空复合材料低速冲击响应研究.材料工程,2008(z1):199-203.
    113.布赖恩·哈里斯.工程复合材料.北京:化学工业出版社,2004.6.
    114.白瑞祥,陈浩然.低速冲击后含损复合材料夹层板剩余强度研究进展[J].力学进展,2002,32(3):402-414.
    115.程小全,寇长河,郦正能.复合材料蜂窝夹芯板低速冲击后的压缩[J].北京航空航天大学学报,1998,24(5):551-554.
    116.程小全,寇长河,郦正能.复合材料蜂窝夹芯板低速冲击损伤研究[J].复合材料学报,1998,15(3):124-128.
    117.Prandy J,Boyd J,Recker H,et al.Effect of absorbed energy on the CAI performance for composite materials[C].In:Proc 36th Int SAMPE Symp and Exhibition,1991.901-911.
    118.Kassapoglous C H.Compression strength of composite sandwich structures after barely visible impact damage[J]. Journal of Composites Technology & Research,1996,18(4):274-284.
    119.McGowan D M,Ambur D R.Structural response of composite sandwich panels impacted with and without compression loading[J] Journal of Aircraft,1999,36(3):596-602.
    120.刘坤,吴磊.ANSYS有限元方法精解[M].北京:国防工业出版社,2005.
    121.徐鹤山主编.ANSYS建筑钢结构工程实例分析[M].北京:机械工业出版社,2007.
    122.白葳,喻海良.通用有限元分析ANSYS8.0基础教程[M].北京:清华大学出版社,2005.
    123.李黎明主编.ANSYS有限元分析实用教程[M].北京:清华大学出版社,2005.
    124.张力主编.有限元法及ANSYS程序应用基础[M].北京:科学出版社,2008.
    125.祝效华等主编.ANSYS高级工程有限元分析范例精选[M].北京:电子工业出版社,2004.
    126.Saeed Moaveni主编.有限元分析[M].王菘等译.北京:电子工业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700