用户名: 密码: 验证码:
金属蜂窝夹芯板疲劳和冲击力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属热防护系统具有大尺寸、可重复使用、全寿命周期成本低的突出优势,是可重复使用运载器次高温区大面积防热的首选热防护系统。金属热防护系统主要由三部分组成:金属蜂窝夹芯板、多层反射隔热结构和支架连接结构。作为金属热防护系统的重要组成部分,金属蜂窝夹芯板的性能和结构可靠性关系到金属热防护系统的使用寿命和可重复使用运载器的安全。
     金属蜂窝夹芯板具有质量轻、比刚度大、比强度高、隔热性能优良等优点,因此被广泛地应用于火箭、导弹、飞机、卫星等航空航天领域。蜂窝夹芯板作为可重复使用运载器的主要表面承力部件,不可避免的承受气动力、气动热、交变疲劳载荷、冲击载荷等。由于蜂窝夹芯板是复合结构,各种模拟方法都要以准确的材料参数为基础,而且金属蜂窝夹芯板在使用过程中还会受到疲劳载荷和不同程度的冲击,材料在交变载荷下的疲劳性能和在动态载荷作用下的力学性能并不清楚。另外,面板与蜂窝芯子之间的脱粘缺陷是蜂窝夹芯板最普遍也是危害性最为严重的缺陷之一,缺陷的位置位于结构内部,很难观察和检测,在损坏或断裂之前几乎没有什么先兆,其破坏具有突然性,往往对结构造成致命威胁,形成安全隐患。因此,准确定位面板内部缺陷的位置,并对含脱粘界面的蜂窝夹芯板的强度进行预报,以及分析脱粘界面裂纹的扩展过程对认识金属蜂窝夹芯板的损毁机制有很大的帮助。
     由于金属热防护系统的研究在国内尚处在起步阶段,蜂窝夹芯板的力学特性并不清楚,对蜂窝夹芯板失效过程的表征与评价方法比较有限。本文针对蜂窝夹芯板在使用过程中的力学性能进行了理论、实验以及数值模拟等方面的研究,研究了其在不同温度下的力学性能、疲劳性能、冲击性能,并预报了界面脱粘的强度,研究了脱粘界面裂纹的扩展问题,为蜂窝夹芯板的结构设计与开发等奠定了理论基础,对工程应用具有重要意义。
     在第二章中,利用实验的方法对蜂窝夹芯板的力学性能进行了测试。采用数字散斑相关技术和时间序列散斑检测技术,对蜂窝夹芯板共面拉伸进行了实验研究,测得了共面拉伸的弹性模量,与利用等刚度法计算得到的蜂窝夹芯板的等效弹性模量进行对比,验证了数字散斑相关技术的有效性和实用性。利用不同温度下的异面压缩实验和三点弯曲实验给出了蜂窝夹芯板的力学性能随温度的变化规律。随着温度的升高,异面压缩的弹性模量、平台应力以及三点弯曲强度都不同程度的降低;随着三点弯曲跨距的增大,屈服载荷减小。
     针对脱粘缺陷,进行了基于电子剪切散斑干涉技术的无损检测实验研究,并利用相移技术、灰度提取与二值化处理技术,得到了较为理想的结果。针对蜂窝夹芯板的三点弯曲力学性能,建立了含缺陷蜂窝夹芯板的有限元模型,基于双线性内聚力模型和B-K准则,模拟了含脱粘缺陷的蜂窝夹芯板的力学性能,通过计算表明界面层间脱粘会导致应力集中,这些由脱粘引起的应力集中是导致蜂窝夹芯板在实验过程中力学性能显著下降的根本原因,并进行了验证性实验,证明了上述模型的有效性。在疲劳实验中,发现了蜂窝夹芯板的疲劳寿命由于蜂窝芯子的方向性而不同,且高温的疲劳寿命要高于室温的疲劳寿命。在所承受载荷接近材料服役极限载荷的情况下,材料的疲劳破坏成为蜂窝夹芯板失效的主要控制因素,裂纹在低于材料屈服应力的反复载荷作用下成核,并发生亚临界扩展,当裂纹长度达到临界值,裂纹发生失稳扩展,导致整体破坏。而当材料承受的载荷远小于服役极限载荷的条件下,由于应力水平低于或接近裂纹成核的门槛值,材料的疲劳破坏很难发生,但在蜂窝夹芯板制备的过程中不可避免的存在一些微缺陷(焊缝、胶接处),这些缺陷在疲劳载荷下成为新的裂纹源,裂纹扩展导致结构连接处发生破坏,产生应力集中,从而导致整体失效。
     采用动态压缩实验装置霍普金森压杆和Instron试验机分别研究了蜂窝夹芯板的压缩力学性能,比较了动态载荷与准静态载荷作用下的力学性能。由于蜂窝夹芯板具有较明显的应力不均匀性,采用波形整形技术,将入射波进行平滑处理。通过比较实验结果,选择了尺寸为Φ10mm×1mm的软质材料作为整形器,实现了试件在变形过程中处于常应变率变形状态。通过霍普金森压杆实验得到了蜂窝夹芯板在2500/s-3850/s应变率变化范围内的应力应变曲线。结果表明蜂窝夹芯板是率相关材料,动态最大应力随着应变率的增大而增大。分别测试了20℃、200℃、400℃和800℃下的应力应变曲线,结果发现在800℃以下,在相同的应变率条件下,温度对动态最大应力基本没有影响。
     由于层间脱粘是蜂窝夹芯板力学性能降低的主要因素之一,本文研究了等效蜂窝夹芯层板的界面裂纹扩展过程,针对脱粘分层过程中出现的裂纹扩展建立了断裂动力学模型,以复变函数论为基础,应用自相似函数的方法将所讨论的问题转化为Riemann—Hilbert问题,得到了运动变载荷Pt n /x n、Px n +1 /tn分别作用下Ⅲ型非对称动态界面裂纹扩展的裂纹尖端的应力、位移、动态应力强度因子解析解的一般表达式。
Metal thermal protection system has the outstanding advantages, such as large-size, reusability, low life-cycle cost, and it is the first choice of widespread passive thermal protection system of reusable launch vehicle in sub-high-temperature area. Metal thermal protection system is mainly composed of three parts: metal honeycomb panel, multilayer reflection insulation structure and connecting structure. As the main component of metal thermal protection system, the reliability of performance and structure of metal honeycomb panel structure is related with lifecycle of metal thermal protection system and safety of reusable launch vehicle.
     Metal honeycomb panel is widely used in the rockets, missiles, aircraft, satellites and other aerospace area for its light weight, high specific stiffness, high specific strength, and excellent heat-shielding performance. Honeycomb sandwich panel is the main surface load-bearing component of reusable launch vehicle, it has to bear the aerodynamic force, aerodynamic heat, alternating fatigue load, impact load inevitably. As the honeycomb sandwich panel is a composite structure, and there is a big difference between different forecasting methods, in order to obtain accurate material parameters, it is necessary to operate the mechanical properties test. Moreover, in use process metal honeycomb panel will be attacked in various extents and the mechanical property of materials under fatigue loads and dynamic loads is not clear, therefore, it is necessary to study the fatigue property and the impact property at different temperatures. The debonding defects between panels and honeycomb core are one of the common and most serious defects of honeycomb panel. The defects are in the internal area, so it is hard to observe and detect, there are no sign before the damage or fracture. The suddenness of its destruction often cause lethal threat to the structure and form a security risk. Thus, it is a great help to understand damage mechanism of metal honeycomb panel with the accurate positioning of internal defects and forecast the intensity of metal honeycomb panel with debonding interface, as well as the analysis of crack propagation of debonding interface.
     As the study of metal thermal protection system is still in its developing period, thus the failure mechanism of honeycomb sandwich panel is not clear enough, and there are relative limited characterization and evaluation methods of these failure processes. This paper illustrated the theory, experiment and numerical simulation of mechanical properties in honeycomb sandwich panel’s using process. The problems of mechanical properties, fatigue properties, impact properties, interface debonding strength prediction and crack propagation of debonding interface were illustrated in this paper as well. It provided some theoretical basis for honeycomb sandwich panel design and development, at the same time it was significant to engineering application.
     In chapter two, experimental method was used to test the mechanical properties of honeycomb sandwich panel. Using digital speckle correlation technology and time-series speckle detection technology, flatwise tension of honeycomb sandwich panel was studied and the tensile modulus of in-plane has been got. Compared with the honeycomb sandwich panel efficient elastic modulus calculated with the equivalent stiffness method, the efficiency and practicability of digital speckle correlation technology were verified. Using flatwise compression experiments, three-point bending experiments; it generalized the mechanical performance parameters of honeycomb sandwich panel under different temperature. With increasing temperature, elasticity modulus of flatwise compression, platform stress and three-point bending stress intensity were reduced in various degree; with the increasing span of three-point bending, yield load decreased.
     Aiming at debonding defects, non-destructive testing experiment based on electronic speckle shearing pattern interferometry technology was conducted. In the experiment, phase-shifting technique, gray-scale extraction and binarization processing technology were added, and more satisfactory results were achieved. In view of three-point bending mechanical properties of honeycomb sandwich panel, the finite element model of honeycomb sandwich panel with defects was established. Based on the bilinear cohesive model and B-K criterion, mechanical property of honeycomb sandwich panel with debonding defects was simulated. Through calculations, it is showed that the interface debonding will lead to stress concentration, which is the main reason of significant drop of mechanical properties in the honeycomb sandwich panel test. And this coincides with the experimental results, it verify the validity of the model. In the fatigue experiments, it was found that the fatigue life of honeycomb sandwich panel was different due to the different direction of honeycomb core, and the fatigue life in high temperature was higher than in room temperature. When the bearing load was near to the limit load, fatigue failure of materials was the main control factors for the failure of honeycomb sandwich. The crack became nucleus under the repeat function of loads below material yield stress, and caused subcritical expansion. When the length of crack reached critical value, the crack propagated unstably which led to the overall damage. When the bearing load was smaller than the limit load, the material fatigue damage was difficult to occur because the stress was lower or near to the threshold of crack nucleation. While there were inevitable micro-defects (weld, bonding locations) in the preparation process of honeycomb sandwich panel, these defects would become new source of crack under the fatigue load. The crack propagation would lead some damage in the connecting area, result in stress concentration, and lead to an overall failure.
     Using dynamic compression experimental device Split Hopkinson Pressure Bar and the Instron testing machine to study the compression mechanical properties of honeycomb sandwich panel, and compare the mechanical properties under the effect of the dynamic load and quasi-static load. As the honeycomb sandwich panel with a more pronounced heterogeneity of the stress, using pulse shaper technology and smoothing the incident wave, by comparing the experimental results, selected the size of theΦ10mm×1mm soft materials as pulse shaper, and realize deformation of constant strain rate of the specimen during the deformation process. Using Split Hopkinson Pressure Bar experiment, the stress strain curve of honeycomb sandwich panel within the 2500/s-3850/s strain rate was obtained. The results showed that the honeycomb sandwich panel is rate related material, and strain rate had a significant effect on dynamic maximum stress of honeycomb sandwich panel. Dynamic maximum stress increased with the strain rate. The test was operated under 20℃, 200℃, 400℃and 800℃and examined the stress strain curve, it was found that at 800℃and the same condition of strain rate, the temperature did not affect the dynamic maximum stress.
     Interface debonding is one of the reasons of honeycomb sandwich panel the mechanical properties reduction. This paper studied the crack propagation process of honeycomb sandwich panel interface, and established the crack dynamic model to crack propagation in the process of debonding. Based on complex analysis, using self-similar function, the problem is transformed into Riemann—Hilbert problem, the general expression of the analytical solution of the crack tip stress, displacement and dynamic stress intensity factor of typeⅢasymmetric dynamic interface crack propagation under the effect of movement varying load Pt n /x n、Px n +1 /tn was got.
引文
1 P. L. Moses, V. L. Rausch, L. T. Nguyen and J. R. Hill. NASA hypersonic flight demonstrators—overview, status, and future plans. Acta Astronautica, 2004, 55(3- 4): 619~630
    2 D. C. Freeman, T. A. Talay. R. E. Austin. Reusable Launch Vehicle Technology Program. Acta Astronautica. 1997, 41(11): 777~790
    3 B. Strauss, J. Hulewicz. X-33 Advanced Metallic Thermal Protection System. Advanced Materials & Processes. 1997, 151(5): 55~56
    4 S. A. Bouslog, P. Kukuchek, L. J. Sullivan. X-33 Thermal Protection System. National Aeronautics and Space Administration Technical Report. NASA/CR-2003-212662. 2003
    5史丽萍,赫晓东.可重复使用航天器的热防护系统概述.航空制造技术. 2004, (7):80~83
    6 C. Clay, H. Croop, M. Camden. TPS and Hot Structures for RLV/SOV. Proceedings of the 4th European Workshop on Hot Structures and Thermal Protection Systems for Space Vehicles, Palermo, Italy, 2002:73~77
    7 S. J. Scotti, C. Clay, M. Rezin. Structures and Materials Technologies for Extreme Environments Applied to Reusable Launch Vehicles. AIAA/ICAS International Symposium and Exposition. AIAA. 2003, 2697:1~10
    8 J. T. Dorsey, C. C. Poteet, R. R. Chen, K. E. Wurster. Metallic Thermal Protection System Technology Development: Concepts, Requirements and Assessment Overview. AIAA. 2002, 0502:1~22
    9 M. L. Blosser. Development of Metallic Thermal Protection Systems for the Reusable Launch Vehicle. NASA Technical Memorandum, Hampton, Virginia, 1996, 110296:1~21
    10 M. L. Blosser, R. R. Chen, I. H. Schmidt, J. T. Dorsey, C. C. Poteet, R. K. Bird. Advanced Metallic Thermal Protection System Development. AIAA. 2002, 0504:1~20
    11 M. A. Dornhein. Bonding bugs delay X-33 first fight. Aviation Week & Space Technology, 1999
    12 R. A. Williamson. Entry Vehicle Heating and Thermal Protection Systems: Space Shuttle, Solar Star Probe, Jupiter Galileo Probe. Progress in Astronautics and Aeronautics. 1983, 85(2): 556~568
    13 J. P. Kesselring, W. V. Krill, R. M. Kendall. Design criteria for stationary sourcecatalytic combustors. Western States Section, Combustion Institute. 1977, 1~50
    14 P. A. Cooper, R. R. Heldenfels. Nasa Structures and Materials Research Program for Supersonic Cruise Aircraft. Astronautics and Aeronautics. 1976, 14(5): 26~27
    15 H. Taylor, I. O. Macconochie, L. R. Jackson, J. A. Martin. Structures and Subsystems. Aeronautics & Astronautics. 1983, 21(6): 50~56, 62
    16 S. A. Bouslog, P. Kukuchek, L. J. Sullivan. X-33 Thermal Protection System. National Aeronautics and Space Administration Technical Report. NASA/CR-2003-212662. 2003
    17 A. Tsukahara, H. Yamao. Advanced Thermal Protection Systems for Reusable Launch Vehicles. AIAA 2005-3326. 2005
    18 J. Buursink. Status of the Deflt Aerospace Re-entry Test Vehicle. 52nd International Astronautical Congress. 2001: 14~23
    19 N. Püttmann. A Status Report on RLV Relevant Flight Experimentation in Germany. In: 52nd International Astronautical Congress, Toulouse, France, 2001: 7~12
    20 K. D. Berge, H. Brucker, E. Noack, N. Püttmann. German RLV Activities. 1st AIAA/IAF Symposium on Future Reusable Launch Vehicles. 2002: 13~31
    21杨勇,王小军,唐一华,李东.重复使用运载器发展趋势及特点.导弹与航天运载技术. 2002, (5): 15~19
    22姚草根,吕宏军,贾新潮,张绪虎,王琪.金属热防护系统材料与结构研究进展.宇航材料工艺. 2005, (2): 10~13
    23姜贵庆,马淑雅.防热涂层材料热防护性能预测.空气动力学学报. 2004, 24(1): 24~28
    24赵淑媛,张博明,赫晓东.热防护系统高温纤维隔热毡传热及有效热导率分析.宇航材料工艺. 2006, (1): 23~27
    25闫长海.金属热防护系统隔热材料的隔热机理及隔热效率研究.博士学位论文.哈尔滨:哈尔滨工业大学. 2006
    26解维华,张博明,杜善义.金属热防护系统设计的有限元分析.航空学报, 2006, 27(5): 897~902
    27李东辉,夏新林.金属热防护系统瞬态传热数值模拟方法研究.宇航学报. 2009, 30(3):1195~1200
    28马忠辉.可重复使用运载器热防护系统性能分析研究.博士学位论文.西安:西北工业大学. 2004
    29马玉娥.可重复使用与在其热防护系统热/力耦合数值计算研究.博士学位论文.西安:西北工业大学. 2005
    30熊焕.可重复使用运载器低温储箱防热结构分析.硕士学位论文.长沙:国防科学技术大学. 2004
    31范真祥,程海峰,张长瑞,唐耿平.热防护材料的研究进展.材料导报. 2005, (1): 13~16
    32 K. A. Hinkle, P. R. Staszak, E.T. Watts. Advanced Ceramic Materials Development and Testing, AIAA Paper 96-1426. In: 37th Structures, Structure Dynamics, and Materials Conference, 1996: 957~961
    33关春龙,李垚,赫晓东.可重复使用热防护系统防热结构及材料的研究现状.宇航材料工艺. 2003, (6): 7~11
    34 K. T. Betz. Passive Thermal Protection System. Proceedings-Annual Safe Symposium (Survival and Flight Equipment Association). 1987: 220~223
    35 S. Maruyama, R. Viskanta and T. Aihara. Active Thermal Protection System Against Intense Irradiation. Journal of Thermophysics and Heat Transfer. 1989, 3(4): 389~394
    36 M. L. Blosser. Advanced metallic thermal protection systems for reusable launch vehicles. University of Viriginia, 2000
    37 J. T. Dorsey, C. C. Poteet and R. R. Chen et al. Metallic Thermal Protection System Technology Development: Concepts, Requirements and Assessment Overview. The 40th Areospace Sciences Meeting & Exhibit. Reno, Nevada. 2002:1~22
    38 J. T. Dorsey, C. C. Poteet, K. E. Wurster, R. R. Chen. Metallic Thermal Protection System Requirements, Environments and Integrated Concepts. Journal of Spacecraft and Rockets. 2004, 41(2): 162~172
    39 M. L. Blosser, R. R. Chen, I. H. Schmidt, J. T. Dorsey, C. C. Poteet, R. K. Bird, K. E. Wurster. Development of Advanced Metallic Thermal Protection System Prototype Hardware. Journal of Spacecraft and Rockets. 2004, 41(2): 183~194
    40 E. Reissner. On Bending of Elastic Plates, Quar Appl. Math. 1947, 15(1): 55~58
    41 N. J. Hoff. Bending and Buckling of Rectangular Sandwich Plates. NACA TN, 1950, 2225
    42杜庆华.三合板的一般弹性理论.物理学报. 1954, 10(4): 395~411
    43 A. K. Noor, W. S. Burton. Assessment of Shear Deformation Theories for Multilayered Composite Plates. Applied Mechanics Reviews. 1989, 42(1): 1~12
    44 A. K. Noor, W. S. Burton. Assessment of Computational Models for Multilayered Composite Shells. Applied Mechanics Reviews. 1990, 43(4): 67~97
    45 A. K. Noor, W. S. Burton. Computational Models for Sandwich Panels and Shell. Applied Mechanics Reviews. 1996, 49(3): 155~199
    46 H. R. Meyer-Piening. Remarks on Higher Order Sandwich Stress and DeflectionAnalysis. Sandwich Constructions I. 1989, 107~127
    47徐永峰,张志民,王俊奎.复合材料夹层板面芯二维分层屈曲研究.复合材料学报. 1997, 14(4): 101~107
    48 D. Weissman-Berman, G. L. Petrie, M. H. Wang. Flexural Response of Foam-cored Sandwich Panels. The Society of Naval Architects and Marine Engineers (SNAME). New York. 1998
    49 N. Kamiya, Y. Sawaki, Y. Nakamura. Nonlinear Bending Analyses of Heated Sanwich Plates and Shells by the Boundary Element Method. Res Mechanica. 1983, 8(1): 29~38
    50 S. K. Malhotra, B. J. C. Babu. A Study on Gip Skin/foam Core Sandwich Structures. Composites. 1983, 14(4): 383~386
    51 N. I. Didenko, A. M. Sansonov. Optimization of Elastic Reissner Plates and Three-layer Plates under Complex Loading. International Applied Mechanics. 1988, 24(7): 89~95
    52 F. Gordaninejad, C. W. Bret. Bending of Sandwich Beams with Thick Facings. Advances in Composite Materials and Structures. ASME, NY. 1989, 113~118
    53 Y. Frosting, M. Baruch. High Order Buckling Analysis of Sandwich Beams with Transversely Flexible Core. Journal of Engineering Mechanics. 1993, 119(3): 476~495
    54师俊平,刘协会,陈宜亨.复合材料夹层壳振动分析的高阶剪切变形理论.复合材料学报. 1997, 14(4): 108~113
    55 B. K. Hadi, L. Mattews. Predicting the Buckling Load of Anisotropic Sandwich Panels: an Approach including Shear Deformation of the Faces. Composite Structures. 1998, 42(3): 245~251
    56 A. Muc, P. Zuchara. Buckling and Failure Analysis of FRP Faces Sandwich Plates. Composite Structures, 1999, 48(1-3): 145~150
    57 C. S. Babu, T. Kant. Two Shear Deformable Finite Element Modes for Buckling Analysis of Skew Fibre-reinforced Composite and Sandwich Panels. Composite Structures. 1999, 46(2): 115~124
    58 V. Birman, G. J. Simitses. Theory of Cylindrical Sandwich Shells with Dissimilar Facings Subjected to Thermomechanical Loads. AIAA Journal. 2000, 38(2): 362~367
    59 T. Kant, C. S. Babu. Thermal Buckling Analysis of Skew Fibre-reinforced Composite and Sandwich Plates using Sshear Deformable Finite Element Models. Composite Structures. 2000, 49(1): 77~85
    60 C. C. Chamis, R. A. Aiello, P. L. N. Murthy. Fiber Composite SandwichThermostructural Behavior: Computational Simulation. Journal of Composites Technology & Research. 1988, 10(3): 93~99
    61 A. K. Noor and W. S. Burton. Three-demensional Solutions for Thermomechanical Stresses in Sandwich Panels and Shells, Journal of Engineering Mechanics. 1994, 120(10): 2044~2071
    62 C. C. Chamis, R. A. Aiello, P. L. N. Murthy. Composite Sandwich Thermostructural Behavior: Computational Simulation. Proc 27th Struct. Structural. Dyn. And Mat. Conf. San Antonio TX May 19~21, 1986. Technical Papers, Part 1, 370~381
    63 W. Elspass, M. Flemming. Analysis of Precision Sandwich Structures under Thermal Loading. ICAS, Congress, 17th, Stockholm, Sweden. 1990, 2: 1513~1518
    64 L. J. Gibson, M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge UK: Cambridge University Press. 1997
    65 M. F. Ashby, T. J. Lu. Metal Foams: A Survey. Science in China (B). 2003, 46(6): 521~532
    66 I. G. Masters, K. E. Evans. Models for the Elastic Deformation of Honeycombs. Composite Structures. 1996, 35: 403~422
    67富明慧,尹久仁.蜂窝芯层的等效弹性参数.力学学报, 1999, 31(1): 113~118
    68 A. E. Simone, L. J. Gibson. Effects of Solid Distribution on the Stiffness and Strength of Metallic Foams. Acta Master. 1998, 46(6): 2139~2150
    69 W. Becker. Closed-form Aanalysis of the Thickness Effect of Regular Honeycomb Core Material. Composite Structures. 2000, 48: 67~70
    70 X. E. Guo, T. A. McMahon, T. M. Keaveny, W. C. Hayes and L. J. Gibson. Finite Element Modeling of Damage Accumulation in Trabecular Bone under Cyclic Loading. J. Biomenchanics. 1994, 27: 144~155
    71 S. Kelsey, R. A. Gellatly and B. W. Clark. The Shear Modulus of Foil Honeycomb Core. Aircraft Engineering. 1958, 30: 294~302
    72 F. Meraghni, F. Desrumaux, M. L. Benzeggagh. Mechanical Behabiour of Cellular Core for Structural Sandwich Panels. Composites. Part A, Applied Science and Manufacturing. 1999, 30: 767~779
    73 M. Grediac. A Finite Element Study of the Transverse Shear in Honeycomb Cores. Int. J. Solids Structure. 1993, 30(13): 1777~1788
    74 H. G. Allen. Analysis and Design of Structural Sandwich Ppanels. Pergamon Press, Oxford. 1969
    75 Y. Kaneko, K. Takeuchi. Design and Construction of a Seawater Survey ShipBuilt using Aluminum Honeycomb Panels. Proceedings of the Second International Conference on Fast Sea Transportation. 1993, 1:449~460
    76徐胜今,孔宪仁,王本利,马兴瑞,张晓超.正交异性蜂窝夹层板的动、静力学问题的等效分析方法.复合材料学报. 2000, 17(3): 92~95
    77 I. M. Daniel, J. L. Abot. Fabrication Testing and Analysis of Composite Sandwich Beams. Composites Science and Technology. 2000, 60: 2455~2463
    78 S. D. Papka and Kyriakides. In-plane Compressive Response and Crushing of Honeycomb. J. Mech. Phys. Solid. 1994, 42: 1499~1532
    79 M. J. Silva and L. J. Gibson. The Effects of Non-periodic Microstructure and Defects on the Compressive Strength of Two-dimensional Cellular Solids. International Journal of Mechanical Sciences. 1997, 39(5): 549~563
    80 J. Zhang, M. F. Ashby. The out-of–plane Properties of Honeycombs. International Journal of Mechanical Science. 1992, 34(6): 475~489
    81 H. S. Lee, S. H. Hong, J. R. Lee, Y. K. Kim. Mechanical Behavior and Failure Process during Compressive and Shear Deformation of Honeycomb Composite at Elevated Temperatures. Journal of Materials Science. 2002, 37(6): 1265~1272
    82 C. A. Steeves, N. A. Fleck. Collapse Mechanisms of Sandwich Beams with Composite Faces and a Foam Core, Loaded in Three-point Bending. Part I: Analytical Models and Minimum Weight Design. International Journal of Mechanical Sciences. 2004, 46: 561~583
    83 E. E. Gdoutos, I. M. Daniel, K. A. Wang. Compression Facing Wrinkling of Composite Sandwich Structures. Mechanics of Materials. 2003, 35: 511~522
    84 J. K. Paik, A. K. Thayamballi, G. S. Kim. The Strength Characteristics of Aluminum Honeycomb Sandwich Panels. Thin-Walled Structures. 1999, 35: 205~231
    85 A. Petras, M. P. F. Sutcliffe. Failure Mode Maps for Honeycomb Ssandwich Panels. Composite Structures. 1999, 44: 237~252
    86孙亚平.纸蜂窝板面外承载能力的研究.硕士学位论文.无锡:江南大学, 2003.
    87张安宁等.不同速率下蜂窝纸板静态压缩特性的试验研究.包装工程. 2004, 25(3): 19~21
    88 M. G. Toribio, S. M. Spearing. Compressive Response of Notched Glass-fiber Epoxy Honeycomb Sandwich Panels. Composites: Part A. 2001, 32: 859~870
    89 J. M. Mirazo, S. M. Spearing. Damage Modeling of Notched Graphite/expoxy Sandwich Panels in Compression. Applied Composite Materials. 2001, 8: 191~216
    90程小全,寇长河,郦正能.复合材料蜂窝夹芯板低速冲击损伤研究.复合材料学报. 1998, 15(3): 124~128
    91寇长河,程小全,郦正能.低速冲击后复合材料蜂窝夹芯板的拉伸特性.复合材料学报. 1998, 15(4): 69~73
    92程小全,寇长河,郦正能.复合材料蜂窝夹芯板低速冲击后的压缩.北京航空航天大学学报. 1998, 24(5): 551~554
    93程小全,寇长河,郦正能.低速冲击后复合材料蜂窝夹芯板的疲劳特性.航空学报. 1998, 19(6): 740~743
    94程小全,寇长河,郦正能.复合材料蜂窝夹芯板低速后弯曲及横向静压特性.复合材料学报. 2000, 17(2): 114~118
    95卢文浩,鲍荣浩.动态冲击下峰窝材料的力学行为.振动与冲击. 2005, 24(1): 49~52
    96 C. L. Wu, C. A. Weeks, and C. T. Sun. Improving Honeycomb-core Sandwich Structures of Resistance. Journal of Advanced Materials. 1995, 264(4): 41~47.
    97 E. Wu and W. S. Jiang. Axial Crush of Metallic Honeycombs. International Journal of Impact Engineering. 1997, 19(5-6): 439~556.
    98 G. H. Liaghat and A. Alavinia. A Comment on the Axial Cursh of Metallic Honeycombs by Wu and Jiang. International Journal of Impact Engineering. 2003, 28(10): 1143~1146.
    99 H. Zhao and G. Gary. Behaviour Characterizations of Sheet Metals, Metallic Honeycombs and Foams at High and Medium Strain Rates. Key Engineering Materials. 2000, 177-180: 225~230.
    100 H. Zhao, I. Elnasri, Y. Girard. Perforation of Aluminium Foam Core Sandwich Panels under Impact Loading—An Experimental Study. International Journal of Impact Engineering. 2007, 34(7): 1246~1257
    101 M. A. Hazizan and W. J. Cantwell. The Low Velocity Impact Response of an Aluminum Honeycomb Sandwich Structure. Composites part B: Engineering, 2003, 34(8): 679~687.
    102 U. K. Vaidya, M. V. Hosur, D. Earl and S. Jeelani. Impact Response of Integrated Hollow Core Sandwich Composite Panels. Composites: Part A. 2000, 31(8): 761~772
    103 U. K. Vaidya, S. Nelson, B. Sinn and B. Mathew. Processing and High Strain Rate Impact Response of Multi-functional Sandwich Composites. Composite Structures. 2001, 52(3-4): 429~440.
    104 M. Meo, R. Vignjevic, G. Marengo. The Response of Honeycomb Sandwich Panels under Low-velocity Impact Loading. International Journal of MechanicalSciences. 2005, 47(9): 1301~1325
    105 K. P. Dharmasena, H. N.G. Wadley, Z.Y. Xue, J. W. Hutchinson. Mechanical response of Metallic Honeycomb Sandwich Panel Structures to High-intensity Dynamic Loading. International Journal of Impact Engineering, 2008, 35(9): 1063~1074
    106 G. N. Nurick, G. S. Langdon, Y. Chi, N. Jacob. Behaviour of Sandwich Panels Subjected to Intense Air Blast– Part 1: Experiments. Composite Structures. doi:10.1016/j.compstruct. 2009.04.009
    107 C. C. Foo, G. B. Chai, L. K. Seah. A Model to Predict Low-velocity Impact Response and Damage in Sandwich Composites. Composites Science and Technology. 2008, 68(6): 1348~1356
    108 U. Icardi, L. Ferrero. Impact Analysis of Sandwich Composites Based on a Refined Plate Element with Strain Energy Updating. Composite Structures. 2009, 89(1): 35~51
    109 L. F. Coffin. A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal. Transactions of the American Society of Mechanical Engineers. 1954, 76: 931~950
    110 S. S. Manson. Behaviour of Materials under Condition of Thermal Stress. NACA TN-2933, 1954
    111 K. Tanaka, T. Mura. A Dislocation Model for Fatigue Crack Initiation. Journal of Applied Mechanics. 1981, 48: 97~102
    112 R. G. Tryon, T. A. Cruse. A Reliability-based Model to Predict Scatter in Fatigue Crack Nucleation Life. Fatigue Fracture Engineering Materials and Structures. 1998, 21(3): 257~267
    113 P. B. Shrikant, E. F. Morris. Fatigue Crack Nucleation in Iron and a High Strength Low Alloy Steel. Materials Science and Engineering A. 2001, 314(1-2): 90~96
    114 W. W. Gerberich, et al. Low and High Cycle Fatigue—a Continuum Supported by AFM Observations. Acta Materialia. 1998, 46(14): 5007~5021
    115 P. C. Paris, F. Erdogan. A Critical Analysis of Crack Propagation Laws. Journal of Basic Engineering. 1963, 85: 528~534
    116 G. R. Forman, V. E. Kearney, R. M. Engle. Numerical Analysis of Crack Propagation in Cyclic-Loaded Structure. Journal of Basic Engineering. 1967, 89(3): 459~464.
    117 G. Belingardi, P. Martella, L. Peroni. Fatigue Analysis of Honeycomb-composite Sandwich Beams.Composites: Part A. 2007, 38(4): 1183~1191
    118 Y. M. Jen, L. Y. Chang. Evaluating Bending Fatigue Strength of AluminumHoneycomb Sandwich Beams using Local Parameters. International Journal of Fatigue. 2008, 30(6): 1103~1114
    119 Y. M. Jen, L. Y. Chang. Effect of Thickness of Face sheet on the Bending Fatigue Strength of Aluminum Honeycomb Sandwich Beams. Engineering Failure Analysis. 2009, 16(4): 1282~1293
    120 Y. M. Jen, C. W. Ko, H. B. Lin. Effect of the Amount of Adhesive on the Bending Fatigue Strength of Adhesively Bonded Aluminum Honeycomb Sandwich Beams. International Journal of Fatigue. 2009, 31(3): 455~462
    121 S. Belouettar, A. Abbadi, Z. Azari, R. Belouettar, P. Freres. Experimental Investigation of Static and Fatigue Behaviour of Composites Honeycomb Materials using Four Point Bending Tests. Composite Structures. 2009, 87(3): 265~273
    122 S. M. Soni, R. F. Gibson, E. O. Ayorinde. The Influence of Subzero Temperatures on Fatigue Behavior of Composite Sandwich Structures. Composites Science and Technology, 2009, 69(6): 829~838
    123 A. Ural, A. T. Zehnder, A. R. Ingraffea. Fracture Mechanics Approach to Facesheet Delamination in Honeycomb: Measurement of Energy Release Rate of th Adhesive Bond. Eng. Fract. Mech. 2000, 70: 93~103
    124 V. Vadakke, L. A. Carlsson. Experimental Investigation of Compression Failure of Sandwich Specimens with Face/core Delamination. Composites: Part B, 2004, 35: 583~590
    125邱克鹏,张卫红,孙士平.蜂窝夹层结构等效弹性常数的多步三维均匀化数值计算分析.西北工业大学学报. 2006, 4: 514~518
    126鲍荣浩,卢文. ABAQUS前处理程序二次开发在蜂窝材料中的应用.工程设计学报. 2003, 6: 330~333
    127陈金龙,孙晨光,秦玉文,等.复合材料(结构)粘接质量检测的错位散斑技术.宇航学报, 2004, 25 (3): 323~326
    128 R. H. Thomas, W. Lou, L. R. Joseph. Rapid Inspection of Composite Skin - honeycomb Core Structures with Ultrasonic Guided Waves. Journal of Composite Materials, 2003, 37(10): 929~939
    129 R. Kazys, A. Demcenko, E. Zukauskas, et al. Air-coupled Ultrasonic Investigation of Multi-layered Composite Materials. Ultrasonics, 2006, 44: 819~822
    130 C. Cosenza, C. Donatella, D. B. Boro. Non-contact Ultrasonic Inspection of Skin/core Bond in Honeycomb with Lamb Waves.. IEEE Ultrasonics Symposium. Piscataway: IEEE Press, 2002: 749~752
    131 W. Lestari, P. Z. Qiao. Damage Detection of Fiber-reinforced PolymerHoneycomb Sandwich Beams. Composite Structures, 2005, 67: 365~373
    132 B. H. Liu, Y. W. Qin, R. Qu. Non-destructive Test of Multiply Plywood using ESSPI with Wide Audio Frequency Driving Vibration. Optical Technology and Image Processing for Fluids and Solids Diagnostics, 2002, 50 (58): 307~311
    133胡绍海.碳纤维复合材料X射线照相检测.无损检测, 2002, 24(8): 364~366
    134 G. H. Li, L. X. Wu, M. Wu. Current Status and Applications of Infrared Thermography. Infrared and Laser Engineering. 2004, 33(3): 227~230
    135 F. C. Zhang, J. Yang. Target Enhancement and Defection for IR Image Sequences. Infrared and Laser Engineering. 2004, 33(4): 380~384
    136 Y. H. Li, W. P. Jin, D. G. Yang. Thermal Wave Non-destructive Testing of Honeycomb Structure. Infrared and Laser Engineering. 2006, 35(1): 45~48
    137郭广平,刘永斌,王珏等.蜂窝结构的错位散斑无损检测技术.无损检测, 2004, 26 (12): 605~608
    138付刚强,张庆荣等.激光电子剪切散斑干涉成像技术在复合材料检测中的应用.无损检测. 2005, 27(9): 466~468
    139张伟伟,贺玲凤,顾学甫.电子剪切散斑在检测材料缺陷中的应用.实验力学. 2006, 21(6): 753~757
    140 R. Y. Kim, S. R. Soni. Experimental and Analytical Studies on the Onset of Delamination in Laminated Composites. Journal of Composite Materials. 1984, 18: 70~80
    141 D. Bruno, F. Greco, P. Lonetti. A 3D Delamination Modeling Technique Based on Plate and Interface Theories for Laminated Structures. European Journal of Mechanics A/Solids. 2005, 24: 127~149
    142 A. Corigliano, S. Mariani, A. Pandolfi. Numerical Modeling of Rate-Dependent Debonding Processes in Composites. Composite Structures. 2003, 61: 39~50
    143 D. S. Dugdale. Yielding of Steel Sheets Containing Slits. J. Mech. Phys. Solids. 1960, 8: 100~104
    144 G. Barenblatt. The Mathematical Theory of Equilibrium Cracks in Brittle Fracture. Advances in Applied Mechanics. 1962, 7: 55~129
    145 A. Needleman. A Continuum Model for Void Nucleation by Inclusion Debonding. J. Appl. Mech. 1987, 54: 525~531
    146 Y. Mi, M. A. Crisfield, G. A. O. Davies. Progressive Delamination Using Interface Elements. Journal of Composite Materials. 1998, 32: 1246~1272
    147 A. F. Johnson, M. Holzapfel. Influence of Delamination on Impact Damage in Composite Structures. Composites Science and Technology. 2006: 807-815
    148 M. F. S. F. de Moura, J. A. G. Chousal. Cohesive and Continuum Damage ModelsApplied to Fracture Characterization of Bonded Joints. International Journal of Mechanical Sciences. 2006, 48: 493~503
    149 V. Tvergaard, J. W. Hutchinson. The Relation between Crack Growth Resistance and Fracture Process Parameters in Elastic-Plastic Solids. Journal of Mechanics and Physics of Solids. 1992, 40: 1377~1397
    150 W. Cui, M. R. Wisnom. A Combined Stress-based and Fracture-Mechanics-based Model for Predicting Delamination in Composites. Composites. 1993, 24: 467~474
    151 C. G. Davila. Analysis of the Effects of Residual Strains and Defects on Skin/Stiffener Debonding using Decohension Elements. SDM Conference, Norfolk, VA. 2003
    152 O. Allix, A. Corigliano. Modeling and Simulation of Crack Propagation in Mixed-modes Interlaminar Fracture Specimens. International Journal of Fracture. 1996, 77: 111~140
    153庄茁,张帆,岑松. ABAQUS非线性有限元分析与实例.科学出版社. 2004
    154 M. L. Benzeggagh, M. Kenane. Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites with Mixed-Mode Bending Apparatus. Composites Science and Technology. 1996, 56(4): 439~449
    155 M. Hassan, I. Syful, C. Leif, K. George, J. Shaik. Buckling Reponse of Sandwich Composites: Effect of Core Density and Implanted Interface Crcak. 13th International Conference on Composite Materials. Scientific and Technical Documents Publishing House. 2001, 1452: 407~408
    156 M. A. Kouchakzadeh, H. Sekine. Compressive Buckling Analysis of Rectangular Composite Laminates Containing Multiple Delaminations. Composite Structures. 2000, 50: 249~255
    157 J. Lindemann, W. Becker. The Tendency for Free-edge Delamination in Laminates and its Minimization. Composites Science and Technology. 2002; 62: 233~242
    158 J. J. C. Remmers, R. de Borst. Delamination Bcukling of Fibre-metal Laminates. Composites Science and Technology. 2001, 61: 2207~2213
    159 R. Krueger, T. K. Brien. A Shell/3D modeling Technique for the Analysis of Delaminated Composite Laminates. Composites: Part A. 2001, 32: 25~44
    160 B. Hao, C. Cho, S. W. Lee. Buckling and Postbuckling of Soft-core Sandwich Plates with Composite Facesheets. Computational Mechanics. 2000, 25: 421~429
    161 S. E. Sayed, S. Sridharan. Cohesive Layer Models for Predicting Delamination Growth and Crack Kinking in Sandwich Structures. Int. J. Fract. 2002, 117: 63~84
    162 T. S. Han, A. Ural, C. S. Chen, A. T. Zehnder, A. R. Ingreffea and S. L. Billington.Delamination Buckling and Propagation Analysis of Honeycomb Panels using a Cohesive Element Approach. International Journal of Fracture. 2002, 115: 101~123
    163 S. Q. Nusier, , G. Newaz. Crack Initiation in Thermal Barrier Coatings due to Interface Asperity. In: G. M. Newaz, R. F. Gibson, (Eds.). Proceedings of the 8th Japan-US Conference on Composite Materials, 1998: 417~426
    164 T. C. Chiu. Buckling of Graded Coatings––a Continuum Model. Ph.D. Dissertation, Lehigh University, Bethlehem, Pennsylvania. 2000
    165 F. Erdogan, T. C. Chiu. Debonding of Graded Coatings under In-plane Compression. International Journal of Solids and Structures. 2003, 40(25): 7155~7179
    166 C. Atkinson. The Propagation of Brittle Crack in Anisotropic Materials. International Journal of Engineering and Science. 1965, 3(2): 77~91
    167程靳.不同正交异性材料界面上的扩展裂纹问题.固体力学学报. 1987, 1(2): 108~115
    168程靳.冲击下两种正交异性材料界面上的扩展裂纹问题.爆炸与冲击. 1990, 10(4): 318~325
    169 N. C. Lü, J. Cheng and Y. H. Cheng. Self-similar Solutions of Fracture Dynamics Problems on Axially Symmetry. Journal of Applied Mathematics and Mechanics. 2001, 22(12): 1429~1435
    170吕念春,唐立强,程云虹.正交异性复合材料界面上反平面动态自相似扩展裂纹问题的解.力学季刊. 2003, 24, (1): 108~112
    171 N. C. Lü, Y. H. Cheng, X. B. Tian, J. Cheng. Dynamic Propagation Problem on Dugdale Model of ModeⅢInterface Crack. Journal of Applied Mathematics and Mechanics. 2005, 26,(9): 1212~1221.
    172 N. C. Lü, Y. H. Cheng. J. Cheng. Mode I Crack Tips Propagating at Different Speeds under Differential Surface Tractions. Theoretical and Applied Fracture Mechanics. 2006, 46(3): 262 ~275.
    173 N. C. Lü, Y. H. Cheng. H. L. Si, J. Cheng, Dynamics of Asymmetrical Crack Propagation in Composite Materials. Theoretical and Applied Fracture Mechanics. 2007, 47(3):260 ~273.
    174胥红敏,吕念春,程靳.Ⅰ型动态裂纹二个扩展问题的位错分布函数.辽宁工程技术大学学报(自然科学版), 2008, 27(1): 39~41
    175张如一,陆耀桢.实验应力分析.北京:机械工业出版社. 1981.9
    176陈俊达.数字散斑相关方法理论和应用研究.博士学位论文. 2007.4
    177 M. A. Sutton, S. R. McNeill, J. D. Helm, Y. J. Chao. Advances in Two-dimensional and Three-dimensional Computer Vision. In: Rastogi P K, ed. Topics in Applied Physics. Springer Verlag, 2002, 77:323~372
    178 D. C.Williams. Optical Methods in Engineering Metrology. Division of Mechanical and Optical Metrology. UK National Physical Laboratory
    179山口进吾.蜂窝状焊接构件的设计制造.国外机车车辆工艺. 1994, (5): 11~17
    180张敏,于九明.金属夹芯复合板及其制备技术的发展.焊接技术. 2003, 32(6): 21~24
    181陈铮,周飞,王国凡.材料连接原理.黑龙江哈尔滨:哈尔滨工业大学出版社, 1998: 147~242
    182马国威.两种检测铝蜂窝胶接结构应用新技术.无损探伤. 2000, 6: 1~4
    183曲文卿,张彦华. TLP连接技术研究进展.焊接技术. 2002, 31(3): 4~5
    184张广平,戴干策.复合材料蜂窝夹芯板及其应用.纤维复合材料. 2000, 2: 25~28
    185王正忠.轻质蜂窝夹层结构复合隔声材料.噪声与振动控制. 1993, 6(3): 23~25
    186 P. C. Hung A. S. Voloshin, In-plane Strain Measurement by Digital Image Correlation. J. of the Braz. Soc. of Mech. Sci & Eng. 2003 Vol. XXV, No.3: 215~245
    187 Y. H. Huang, C. Quan. Shape Measurement by the Use of Digital Image Correlation. Optics Engineering. 2005, 44: 087011-7
    188王仲生,万小朋.无损检测诊断现场实用技术.北京:机械工业出版社, 2002
    189 A. Ural, A. T. Zehnder, A. R. Ingraffea. Fracture mechanics approach to facesheet delamination in honeycomb: Measurement of Energy Release Rate of the Adhesive Bond. Eng. Fract. Mesh. 2003, 70: 93~103
    190 V. Goyal-Singhal, E. Johnson, C. G. Davila. Irreversible Constitutive Law for Modeling the Delamination Process Using Interfacial Surface Discontinuities. Composite Struvtures. 2004, 64: 91~105
    191赵金森.铝蜂窝夹层板的力学性能等效模型研究.硕士学位论文.南京:南京航空航天大学. 2006
    192 S. Nemat-Nasser. Introduction to high strain rate testing. ASM Handbook.eds. H.Kuhn, D.Medlin. 2000, 8: 427~428
    193 U. Zencker, R. Clos.Limiting conditions for compression testing of flat specimens in the split Hopkinson pressure bar.Experimental mechanics.1999, 39(4): 343~348
    194邓志方.高温SHPB实验中的界面热传导特性及其影响.博士学位论文.绵阳:中国工程物理研究院. 2006
    195 D. J. Frew, M. J. Forrestal, W. Chen. Pulse Shaving Techniques for Testing BrittleMaterials with a Split Hopkinson Pressure Bar. Experimental Mechanics,2002,42:93~106.
    196宋博.霍普金森压杆实验中的脉冲整形技术.第二届全国SHPB实验技术会议,黄山, 2004,合肥, 7~10.
    197 B. Song, W. Chen, D. J. Frew. Split Hopkinson Bar Testing of an Aluminum with Pulse Shaping. JSMEIASME International Conference on Materials and Proeessing,Hawaii,2002.10, 15~18.
    198赵习金,卢芳云,王悟.入射波整形技术的实验和理论研究.高压物理学报. 2004, 18(3): 231~236.
    199 C. Atkinson. On the Dynamic Stress and Displacement Field Associated with a Crack Propagating across the Interface Between Two Media. Int. J. Eng. Sci. 1974, (14): 491~506
    200 G. P. Charepanov, E. F. Afanasov. Some Dynamic Problems of the Theory of Elasticity-a Review. Int. J. Eng. Sci. 1974, (12): 665~690
    201吕念春,程云虹,李新刚,程靳.Ⅲ型界面裂纹面受变载荷Px m t n作用下的自相似解.力学学报. 2006, 38(2): 192~198

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700