用户名: 密码: 验证码:
编织复合材料力学性能及热物理性能预报研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
编织复合材料以纤维束相互交织为主要结构特征,材料的整体性能更加优异,能够从根本上克服传统层合复合材料层间强度低、易分层的缺点,这种材料具有更均匀的力学性能和更好的可设计性,可以很好地满足航空航天领域对材料结构减重和高承载性能的要求,应用前景十分广阔。而复合材料所应用航空航天的领域,多为高温或冷热交替的恶劣环境,同样需要对材料的热学性能进行设计,因此对编织复合材料力学和热物理性能研究及相关的系统软件预测平台研究具有重要的研究意义。
     本文首先参考材料试验有关规定,确定了三维四向编织复合材料试样尺寸、试样的夹持方式及应变的测量方法,联合材料试验机和数据测量系统对三维四向编织复合材料的纵向模量和强度进行测量,利用显微镜对断口进行观察与分析,为后续模拟分析提供了验证依据。同时基于Tcl语言与ANSYS计算平台实现了编织复合材料预测系统中数据存储模块开发,为后续开发预测系统软件平台提供了试验数据和相应的存储模块。
     基于区域叠合思想,针对复合材料复杂细观实体的网格生成问题,提出了直接网格建模而后切割的参数化单胞网格建立方案,根据原始单元与切割面的相对位置关系,分别给出了六面体单元14种,三棱柱单元19种和四面体单元3种再分形式。通过ANSYS代码数据库接口实现Fortran程序与ANSYS软件间高效的数据传递。通过该方法提高了复合材料中复杂实体网格建模效率,为复合材料力学和热学性能分析及性能预测系统软件平台建立奠定了基础。
     基于区域叠合方法,给出了增强相单元与基体单元间力学和热学自由度间协调关系和叠合区域材料性能匹配方案。分别给出了便于在ANSYS和ABAQUS有限元软件中施加的力学和热学周期性边界条件的数学形式。提出结果映射方法处理基体单元场变量结果显示问题。基于区域叠合参数化单胞网格模型建立方案,构建了编织复合材料性能预测系统的程序框架。
     针对二维三轴编织复合材料细观参数化单胞建立问题,推导了二维三轴编织复合材料单胞模型细观尺寸关系。引入周期性要求推导了空间三次周期样条的求解方法,给出了周期三次样条曲线段内任意一点处单元材料主方向的求解算法。同时该模型中的编织纤维束考虑了不同位置处纤维束截面的扭转,得出了用于二维三轴编织复合材料力学和热物理性能预测的更为精细的参数化单胞模型。分别根据力学以及热学有限元理论,给出弹性常数、传热系数和热膨胀系数的计算方法。基于该方法给出了二维三轴编织复合材料刚度和热物理性能规律。
     针对编织复合材料渐进损伤分析问题,基于Murakami损伤理论建立了正交各向异性损伤本构模型,通过三维Hashin与Mises准则判断增强相和基体的初始损伤,通过等价位移控制损伤变量的演变。进行损伤分析时,联合应用了ANSYS与ABAQUS软件,利用APDL语言编写了参数化模型向ABAQUS关键词模型的转换程序,在二维三轴编织复合材料单胞模型中引入了界面单元,利用UMAT用户子程序接口开发了材料子程序,分析了典型大小编织角二维三轴编织复合材料横向和轴向拉伸强度和损伤演变规律。
     建立了三维四向编织复合材料参数化单胞模型,基于ANSYS有限元软件,分析了三维四向编织复合材料刚度和热物理性能随编织角和纤维体积含量的变化规律。联合应用了ANSYS与ABAQUS软件,引入界面单元分析了典型大小编织角三维四向编织复合材料纵向拉伸强度和渐进损伤演变过程,所预测结果与试验结果吻合较好,验证了上述方法的正确性。
Braided composite is composed by interlock fibers and matrix, its overall materialperformance is more excellent to overcome easier layering and lower intensity of thetraditional laminated composite material. Braided composite has more uniformmechanical properties which can be easy to be designed. It can satisfy high weight andhigh load carrying requirements for aerospace structural material. Because environment inaerospace is extreme hot and cold, predication for thermal properties of materials is alsorequired. Therefore it is very significant to predicate the mechanical and thermo-physicalproperties of braided composites and design associated prediction system softwareplatform.
     Firstly, the methods such as specimen dimension, clamping method and strainmeasurement of three-dimensional braided composite tensile test specimen are determinedrefer to the relational standard of other material tensile test specimen. The intensity andelastic modulus are obtained by combination material testing machine and datameasurement system. Microscope photos of fracture surface are obtained as reference forsubsequent simulation analysis. Using Tcl language based on ANSYS computing platformto achieve a braided composite property predication system, the experimental data isstored in the corresponding storage module which is developed for braided compositepredication system.
     Based on domain superimposed thinking, a direct meshing method is put forward forthe problem of meshing complicated entities composing of the reinforcement and matrix.The parametric cell meshed by hexahedral element is built with cutting method. In cuttingalgorithm, thirty-six conditions are included based on relative position between unit cellboundaries and elements, in which cutting conditions for hexahedral are fourteen, cuttingconditions for prism are nineteen, cutting conditions for tetrahedral are three. The code ofelement extracting algorithm is written in fortran language. The datas are transferred fromself-written code to ANSYS database efficiently. It is the foundation for developingcomposite mechanical and thermal prediction system software.
     Based on domain superimposed method, the relationships between degree of freedomof elements from reinforcement and matrix are given and the matching methods ofsuperimposed region mechanics and thermal properties are determined. In order to applyperiodic boundary condition in ANSYS and ABAQUS software, new mechanical andthermal periodic boundary conditions are given. The results mapping method is putforward for postprocess the results from gobal elements. The framework of predicationsystem software of braided composite is determinted based on parametric unit cell createdby domain superimposed method.
     The relationship between structural parameters of the unit-cell model are given,which are the basis to establish parameterized unit-cell model of triaxial braidedcomposites. The expression of cubic periodic spline can be obtained for introducingperiodic condition, and the calculation method of material principle directions at any pointwithin a given period cubic spline curve are described. The cross section torsional atdifferent positions are considered, so a more sophisticated parameterized unit-cell modelwhich are used to predict the mechanical and thermal physics properties of triaxial braidedcomposites can be established. The methods of calculating macroscopic elastic constants,thermal conductivities and thermal expansions are obtained basised on mechanical andthermal finite element theory. The laws of elastics and thermal physics of triaxial braidedcomposites are obtained.
     In order to investigate the progressive damage and failure process of composites, thedamage mode based on Murakami damage theory is established.3D Hashin damagecriterion with various damage modes and Mises criterion are considered for predictingdamage initiation of tows and matrix, respectively. The damage progression of tows andmatrix are controlled by equivalent displacements. ANSYS and ABAQUS software arecombined to analysis damage process through conversion process written by APDLlanguage can used to translate APDL model into ABAQUS keywords model. Interfaceelements are introduced in unit-cell model of triaxial braided composites. Theprogressive damage and failure strength of composites under different tensile loadingsare obtained by material subroutine which is developed by UMAT material subroutineinterface.
     The parameterized unit-cell model of3D four-direction braided composites isestablished by ANSYS software. The laws of elastic and thermal physics of3Dfour-direction braided composites are obtained. The progressive damage and failurestrength of composites with typical small angle and typical large angle under tensileloading are obtained by combination of ANSYS software and ABAQUS software. Theexperimental results are compared to verify the correctness of the method.
引文
[1] Montesano J, Fawaz Z, Behdinan K, et al. Fatigue Damage Characterization and Modeling of aTriaxially Braided Polymer Matrix Composite at Elevated Temperatures[J]. Composite Structures,2013,101:129-137.
    [2] Dong J, Feng M. Asymptotic Expansion Homogenization for Simulating Progressive Damage of3D Braided Composites[J]. Composite Structures,2010,92(4):873-882.
    [3] Lu Z, Xia B, Yang Z. Investigation on the Tensile Properties of Three-Dimensional FullFive-Directional Braided Composites[J]. Computational Materials Science,2013,77:445-455.
    [4] Zhang C, Binienda W K, Goldberg R K, et al. Meso-scale failure Modeling of Single LayerTriaxial Braided Composite Using Finite Element Method[J]. Composites Part A: AppliedScience and Manufacturing,2014,58:36-46.
    [5] Lu Z, Wang C, Xia B, et al. Effect of Interfacial Properties on the Uniaxial Tensile Behavior ofThree-Dimensional Braided Composites[J]. Computational Materials Science,2013,79:547-557.
    [6] Ayranci C, Carey J.2D Braided Composites: A Review for Stiffness Critical Applications[J].Composite Structures,2008,85(1):43-58.
    [7] Coppola A M, Thakre P R, Sottos N R, et al. Tensile Properties and Damage Evolution inVascular3D Woven Glass/Epoxy Composites[J]. Composites Part A: Applied Science andManufacturing,2014,59:9-17.
    [8] Lee S P, Jin J W, Kang K W. Probabilistic Analysis for Mechanical Properties of Glass/EpoxyComposites Using Homogenization Method and Monte Carlo Simulation[J]. Renewable Energy,2013.
    [9] Martín-Santos E, Maimí P, González E V, et al. A Continuum Constitutive Model for theSimulation of Fabric-Reinforced Composites[J]. Composite Structures,2014,111:122-129.
    [10] Jacques S, De Baere I, Van Paepegem W. Application of Periodic Boundary Conditions onMultiple Part Finite Element Meshes for the Meso-Scale Homogenization of Textile FabricComposites[J]. Composites Science and Technology,2014,92:41-54.
    [11] Jiang L, Xu G, Cheng S, et al. Predicting the Thermal Conductivity and Temperature Distributionin3D Braided Composites[J]. Composite Structures,2014,108:578-583.
    [12] Nasution M R E, Watanabe N, Kondo A, et al. Thermomechanical Properties and Stress Analysisof3-D Textile Composites by Asymptotic Expansion Homogenization Method[J]. CompositesPart B: Engineering,2014.
    [13]梁军,杜善义,韩杰才,等.含缺陷三维编织复合材料热膨胀系数计算[J].宇航学报,1998,19(1):90-93.
    [14]聂荣华,矫桂琼,王波.二维编织C/SiC复合材料的热膨胀系数预测[J].复合材料学报,2008,25(2):109-114.
    [15] Eckel A J, Bradt R C. Thermal Expansion of Laminated Woven Continuous CeramicFiber/Chemical Vapor Infiltrated Silicon Carbide Matrix Composites[J]. Journal of the AmericanCeramic Society,1990,73(5):1334-1338.
    [16]程伟,赵寿根,刘振国,等.三维四向编织复合材料等效热特性数值分析和试验研究[J].航空学报,2002,23(2):102-105.
    [17]姚学锋,杨桂,姚振汉,等.编织结构复合材料热膨胀特性的实验研究[J].复合材料学报,2000,17(4):20-25.
    [18] Benzley S E, Perry E, Merkley K, et al. A comparison of All Hexagonal and All Tetrahedral FiniteElement Meshes for Elastic and Elasto-Plastic Analysis[C]//Proceedings,4th InternationalMeshing Roundtable.1995,17:179-191.
    [19]张红梅.三维六面体网格自适应生成方法研究及其应用[D].济南:山东大学,2007:1-10.
    [20]关振群,宋超.有限元网格生成方法研究的新进展[J].计算机辅助设计与图形学学报,2003,15(1):1-14.
    [21] Kim H J, Swan C C. Voxel-Based Meshing and Unit-Cell Analysis of Textile Composites[J].International Journal for Numerical Methods in Engineering,2003,56(7):977-1006.
    [22] Littell J D, Binienda W K, Roberts G D, et al. Characterization of Damage in Triaxial BraidedComposites under Tensile Loading [J]. Journal of Aerospace Engineering,2009,22(3):270-279.
    [23] Falzon P J, Herszberg I. Mechanical Performance of2-D Braided Carbon/Epoxy Composites[J].Composites Science and Technology,1998,58(2):253-265.
    [24] Quek S C, Waas A M, Shahwan K W, et al. Compressive Response and Failure of Braided TextileComposites: Part1-Experiments[J]. International Journal of Non-Linear Mechanics,2004,39(4):635-648.
    [25] Quek S C, Waas A, Shahwan K W, et al. Compressive Response and Failure of Braided TextileComposites: Part2-Computations[J]. International Journal of Non-Linear Mechanics,2004,39(4):649-663.
    [26] Ivanov D S, Baudry F, Van Den Broucke B, et al. Failure Analysis of Triaxially BraidedComposites [J]. Composites Science and Technology,2009,69(9):1372-1380.
    [27] Ko F K. Tensile Strength and Modulus of a Three-Dimensional Braid Composite[C]//CompositeMaterials: Testing and Design. ASTM Special Technical Publication.1986,893:392-403.
    [28] Macander A B, Crane R M, Camponeschi E T. Fabrication and Mechanical Properties ofMultidimensionally (Xd) Braided Composite Materials[J]. ASTM Special Technical Publication,1986(893):422-443.
    [29] Gause L W, Alper J. Structual Properties of Braided Graphite/Epoxy Composites[J]. ASTMJournal of Composites Technology Research,1987,9(4):141-150.
    [30] Yau S S, Chou T W, Ko F K. Flexural and Axial Compressive Failures of Three DimensionallyBraided Composite I-Beams[J]. Composites,1986,17(3):227-232.
    [31] Shivakumar K N, Emehel T C, Avva V S, et al. Compression Strength and Failure Mechanisms of3D Textile Composites[J]. AIAA-1995-1159, New York: AIAA,1995.
    [32] Kalidindi S R, Abusafieh A. Longitudinal and Transverse Moduli and Strengths of Low Angle3-D Braided Composites[J]. Journal of Composite Materials,1996,30(8):885-905.
    [33]庞宝君,杜善义,韩杰才,等.三维四向编织碳/环氧复合材料实验研究[J].复合材料学报,1999,16(4):136-141.
    [34]卢子兴,冯志海,寇长河,等.编织复合材料拉伸力学性能的研究[J].复合材料学报,1999,16(3):129-134.
    [35]郑锡涛.三维编织复合材料细观结构及力学性能分析[D].西安:西北工业大学,2003:1-30.
    [36]卢子兴,胡奇.三维编织复合材料压缩力学性能的实验研究[J].复合材料学报,2003,20(6):67-72.
    [37]严实,孙雨果,吴林志,等.板状三维四向编织复合材料压缩细观破坏机理的实验研究[J].复合材料学报,2007,24(4):133-139.
    [38]李仲平,卢子兴,冯志海,等.三维五向炭纤维/酚醛编织复合材料的拉伸性能及破坏机制[J].航空学报,2007,28(4):869-873.
    [39]李典森,刘子仙,卢子兴,等.三维五向炭纤维/酚醛编织复合材料的压缩性能及破坏机制[J].复合材料学报,2008,25(1):133-139.
    [40]徐焜,许希武.三维六向编织复合材料力学性能的实验研究[J].复合材料学报,2005,22(6):144-149.
    [41]郭颖,吴林志,杨银环,等.三维六向编织复合材料拉伸性能的实验研究[J].宇航学报,2012,33(5):669-674.
    [42]孙慧玉.三维编织复合材料拉伸性能研究[J].南京航空航天大学学报,1995,27(6):721-725.
    [43] Li J L, Jiao Y N, Sun Y, et al. Experimental Investigation of Cut-Edge Effect on MechanicalProperties of Three-Dimensional Braided Composites[J]. Materials and Design,2007,28(9):2417-2424.
    [44]陈利,梁子青,马振杰,等.三维五向编织复合材料纵向性能的实验研究[J].材料工程,2005,8:3-6.
    [45] Gong J C, Sankar B V. Impact Properties of Three-Dimensional Braided Graphite/EpoxyComposites[J]. Journal of Composite Materials,1991,25(6):715-731.
    [46] Fukuta K. Three-Dimensional Braided Composite Material[J]. Journal of the Japan Society forComposites Materials,1995,21(2):51-60.
    [47] Flanagan M P, Zikry M A, Wall J W, et al. An Experimental Investigation of High Velocity Impactand Penetration Failure Modes in Textile Composites[J]. Journal of Composite Materials,1999,33(12):1080–1103.
    [48]田静.缝合复合材料层板低速冲击损伤研究[D].南京:南京航空航天大学,2009:1-20.
    [49]李小刚.编织复合材料成型工艺与性能研究[D].北京:北京航空材料研究院,2002:1-30.
    [50] Lomov S V, Parnas R S, Ghosh S B, et al. Experimental and Theoretical Characterization of theGeometry of Two-Dimensional Braided Fabrics [J]. Textile Research Journal.2002,72(8):706-712.
    [51]杰·勃兰德,弗·杰·阿恩兹,柯·德莱斯勒,等.采用新型二维和三维编织技术改善复合材料的性能[J].材料工程,1989,(3):10-16.
    [52] Naik R A, Ifju P G, Masters J E. Effect of Fiber Architecture Parameters on Deformation Fieldsand Elastic Moduli of2-D Braided Composites [J]. Journal of Composite Materials,1994,28(7):656-681.
    [53] Potluri P, Manan A, Francke M, et al. Flexural and Torsional Behaviour of Biaxial and TriaxialBraided Composite Structures[J]. Composite Structures,2006,75(1):377-386.
    [54] Dadkhah M S, Flintoff J G, Kniveton T, et al. Simple Models for Triaxially BraidedComposites[J]. Composites,1995,26(8):561-577.
    [55] Byun J H. The Analytical Characterization of2-D Braided Textile Composites[J]. CompositesScience and Technology.2000,60(5):705-716.
    [56] Shokrieh M M, Mazloomi M S. An Analytical Method for Calculating Stiffness ofTwo-Dimensional Tri-Axial Braided Composites[J]. Composite Structures,2010,92(12):2901-2905.
    [57] Hoa S V, Sheng S Z, Ouellette P. Determination of Elastic Properties of Triax CompositeMaterials[J]. Composites Science and Technology,2003,63(3):437-443.
    [58] Quek S C, Waas A M, Shahwan K W, et al. Analysis of2D Triaxial Flat Braided TextileComposites[J]. International Journal of Mechanical Sciences,2003,45(6):1077-1096.
    [59] Yong Y, Song V H. Energy Model for Prediction of Mechanical Behavior of2-D TriaxiallyBraided Composites, Part1: Model Development[J]. Journal of Composite Materians,2002,36(8):963-981.
    [60]王立朋,燕瑛.编织复合材料弹性性能的细观分析及试验研究[J].复合材料学报,2004,21(4):152-156.
    [61]张平,桂良进,范子杰.三向编织复合材料弹性性能研究[J].工程力学,2009,26(1):31-36.
    [62] Tsai K H, Hwan C L, Chen W L, et al. A Parallelogram Spring Model for Predicting the EffectiveElastic Properties of2D Braided Composites[J]. Composite Structures,2008,83(3):273-283.
    [63] Miravete A, Bielsa J M, Chiminelli A, et al.3D Mesomechanical Analysis of Three-Axial BraidedComposite Materials[J]. Composites Science and Technology,2006,66(15):2954-2964.
    [64] Masters J E, Foye R L, Pastore C M, et al. Mechanical Properties of Triaxially BraidedComposites: Experimental and Analytical Results [J]. Journal of Composites Technology andResearch,1993,15(2):112-122.
    [65] Goyal D, Tang X, Whitcomb J D. Effect of Various Parameters on Effective EngineeringProperties of2×2Braided Composites[J]. Mechanics of Advanced Materials and Structures,2005,12(2):113-128.
    [66] Deepak G, John D W. Effect of Fiber Properties on Plastic Behavior of2×2Biaxial BriadedComposites[J]. Composites Science and Technology,2008,68(3):969-977.
    [67]张超,许希武.二维二轴编织复合材料几何模型及弹性性能预测[J].复合材料学报,2010,27(5):129-135.
    [68] Yang J M, Ma C L, Chou TW. Fiber Inclination Model of Three Dimensional Textile StructuralComposites[J]. Journal of Composite Materials,1986,20(5):472-484.
    [69] Zhou G M, Wang X W, Qian X. Inclined Laminal Combination Model of3D BraidedComposites[J]. Transactions of Nanjing University of Aeronautics and Astronautics,1995,12(1):8-14.
    [70] Sun H Y, Qiao X. Prediction of Mechanical Properties of Three-Dimensionally BraidedComposites[J]. Composites Science and Technology,1997,57(6):623-629.
    [71] Gu B H, Xu J Y. Finite Element Calculation of4-Step3-Dimensional Braided Composite underBallistic Perforation[J]. Composites: Part B,2004,35(4):291–297.
    [72] Chen Z R, Zhu D H, Lu M, et al. A Homogenisation Scheme and Its Application to Evaluation ofElastic Properties of Three-Dimensional Braided Composites[J]. Composites: Part B,2001,32(1):67-86.
    [73] Kregers A, Melbardis F, Yu G. Determination of the Deformability of Three-DimensionallyReinforce Composites by the Stiffness Averaging Method[J]. Polymer Mechanics,1978,14(1):3-8.
    [74]卢子兴,刘子仙.三维五向编织复合材料的弹性性能[J].北京航空航天大学学报,2006,32(4):455-460.
    [75] Shokrieh M, Mazloomi M. A New Analytical Model for Calculation of Stiffness of ThreeDimensional Four Directional Braided Composites[J]. Composite Structure,2012,94(3):1005–1015.
    [76]严实,吴林志,孙雨果,等.三维四向编织复合材料有效性能的预报[J].复合材料学报,2007,24(1):158-166.
    [77]邵将.三维编织陶瓷基复合材料刚度模型及刚度性能分析研究[D].南京:南京航空航天大学,2008:1-50.
    [78] Lei C, Cai Y J, Ko F. Finite Element Analysis of3-D Braided Composites[J]. Advances inEngineering Software,1992,14(3):187-194.
    [79] Mohajerjasbi S. Structure and Properties of Three-Dimentional Braided Composite IncludingAxial Yarns[J]. AIAA journal,1996,34(1):209-211.
    [80] Chen L, Tao X M, Choy C L. Mechanical Analysis of3-D Braided Composites by the FiniteMultiphase Element Method[J]. Composites Science and Technology,1999,59(16):2383-2391.
    [81]刘振国,卢子兴,陆萌,等.三维四向编织复合材料剪切性能的数值预报[J].复合材料学报,2000,17(2):66-69.
    [82] Sun H Y, Di S L, Zhang N, et al. Micromechanics of Braided Composites via MultivariableFEM[J]. Composites and Structure,2003,81(20):2021-2027.
    [83] Zeng T, Wu L Z, Guo L C. A Finite Element Model for Failure Analysis of3D BraidedComposites[J]. Materials Science and Engineering A,2004,366(1):144–151.
    [84]蔺晓明,刘振国,卢子兴.三维编织复合材料弹性性能的表面胞体效应[J].复合材料学报,2006,23(6):168-173.
    [85] Yu X G, Cui J Z. The Prediction on Mechanical Properties of4-Step Braided Composites viaTwo-Scale Method[J]. Composites Science and Technology,2007,67(3):471-480.
    [86]杨振宇,卢子兴,刘振国,等.三维四向编织复合材料力学性能的有限元分析[J].复合材料学报,2005,22(5):155-161.
    [87]田金梅,邢誉峰.一种新的三维四步编织复合材料几何模型及其在宏观弹性性能预测中的应用[J].航空学报,2007,28(1):130-134.
    [88] Li D S, Fang D N, Lu Z X, et al. Finite Element Analysis of Mechanical Properties of3D FourDirectional Rectangular Braided Composites Part2: Validation of3D Finite Element Model[J].Applied Composite Materials,2010,17(4):389-404.
    [89] Fang G D, Liang J, Wang Y, et al. The Effect of Yarn Distortion on the Mechanical Properties of3D Four-Directional Braided Composites[J]. Composites: Part A,2009,40(4):343-350.
    [90] Turner P S. Thermal Expansion Stresses in Reinforced Plastics[J]. Journal of Research of theNational Institute of Standards and Technology Articles.1946,37:239-250.
    [91] Schapery R A. Thermal Expansion Coefficients of Composite Materials Basedon EnergyPrinciples[J]. Journal of Composite Materials.1968,2(3):380-404.
    [92] Rosen B W, Hashin Z. Effective Thermal Expansion Coefficients and SpecificHeats of CompositeMaterials[J]. International Journal Engineering Science.1970,8(2):157-173.
    [93] Levin V M. Thermal Expansion Coefficients of Heterogeneous Materials[J]. Mechanics of Solids.1967,2:58-61.
    [94] Hashin Z. Analysis of Properties of Fiber Composites with Anisotropic Constitutents[J]. JournalApplied Mechanics.1979,46:542-550.
    [95] Chamis C C. Simplified Composite Micromechanics Equations for Hygral Thermal andMechanical Properties[J]. Sampe Quarterly.1984,15(3):14-23.
    [96] Bowles D E, Tompkins S S. Prediction of Coefficients of Thermal Expansion for UnidirectionalComposites[J]. Journal of Composite Materials.1989,23(4):270-388.
    [97] Hermans J J. The Elastic Properties of Fiber Reinforced Materials When the Fibers AreAligned[C]. Proceedings of the Koninklijke Nederlandse Akademie vanWetenschappen-Series B.1967,70(1):1-9.
    [98] Whitney J M. Elastic Moduli of Unidirectional Composites with Anisotropic Filaments[J].Journal of Composite Materials.1967,1(2):188-193.
    [99] Takao Y, Taya M. Thermal Expansion Coefficients and Thermal Stresses in an Aligned ShortFiber Composite with Application to a Short Carbon Fiber/Aluminum[J]. Journal of AppliedMechanics.1985,52(4):806-810.
    [100]梁军,杜善义,许兴利.含缺陷单向纤维增强复合材料的热膨胀系数预报[J],哈工大学报.1997,29(3):236-238.
    [101]程伟,赵寿根,刘振国,等.三维四向编织复合材料等效热特性数值分析和试验研究[J].航空学报,2002,23(2):102-105.
    [102]Liu Z, Zhang H, Lu Z, et al. Investigation on the Thermal Conductivity of3-Dimensional and4-Directional Braided Composites[J]. Chinese Journal of Aeronautics,2007,20(4):327-331.
    [103]Soheil M. Predictions for Coefficients of Thermal Expansion of Three-Dimensional BraidedComposites[J]. AIAA Journal,1997,35(1):141-144.
    [104]夏彪,卢子兴.三维编织复合材料热物理性能的有限元分析[J].航空学报,2011,32(6):1040-1049.
    [105]卢子兴,王成禹,夏彪.三维全五向编织复合材料弹性性能及热物理性能的有限元分析[J].复合材料学报,2013,30(3):160-167.
    [106]Potluri P, Manan A. Mechanics of Non-Orthogonally Interlaced Textile Composites [J].Composites Part A,2007,38(4):1216-1226.
    [107]Aggarwal A, Mmakrishna S. Predicting the In-Plane Elastic Constants of Diamond BraidedComposites [J]. Journal of Composite Materials,2001,35(8):665-687.
    [108]Jarvis A S. Meso-scale and Multicontinuum Modeling of a Triaxial Braided Textile Composites
    [D]. Laramie: University of Wyoming,2009.
    [109]Song Shunjun, Waas A M, Shanwan K W, et al. Compression response of2D Braided TextileComposite: Single Cell and Multiple Cell Micromechanics Based Strength Predictions [J].Journal of Composite Materials,2008,42(23):2461-2482.
    [110]Song S J, Waas A M, Shahwan K W, et al. Braided Textile Composites under Compressive Loads:Modeling the Response, Strength And Degradation [J]. Composites Science and Technology,2007,67(15-16):3059-3070.
    [111]Song S J, Waas A M, Shahwan K W, et al. Compression Response of2D Braided TextileComposites: Single Cell and Multiple Cell Micromechanics Based Strength Predictions [J].Journal of Composite Materials,2008,42(3):2461-2482.
    [112]Song S J, Waas A M, Shahwan K W, et al. Compression Response Strength and Post-PeakResponse of an Axial Fiber Reinforced Tow[J]. International Journal Mechanical Science,2009,51(7):491-499.
    [113]Song S J, Waas A M, Shahwan K W, et al. Effects of Matrix Microcracking on the Response of2D Braided Textile Composites Subjected to Compression Loads[J]. Journal of CompositeMaterials,2010,44(2):221-240.
    [114]古兴瑾.复合材料层板高速冲击损伤研究[D].南京:南京航空航天大学,2011.
    [115]Hashin Z. Failure Criteria for Unidirectional Fiber Composites. Journal of Applied Mechanics,1980,47(2):329–334.
    [116]Puck A, Schurmann H. Failure Analysis of Frp Laminates by Means of Physically BasedPhenomenological Models. Composites Science and Technology,1998,58(7):1045-1067.
    [117]Chang F K, Chang K Y. A Progressive Damage Model for Laminated Composites ContainingStress Concentrations[J]. Journal of Composite Materials,1987,21(9):834-855.
    [118]Tsai S W, Wu E M. A General Theory of Strength for Anisotropic Materials[J]. Journal ofComposite Materials,1971,5(1):58-80.
    [119]Hoffman O. The Brittle Strength of Orthotropic Materials. Journal of Composite Materials[J].Journal of Composite Materials,1971,1(2):200-206.
    [120]Hill R. A Theory of the Yielding and Plastic Flow of Anisotropic Metals[J]. Proceedings of theRoyal Society of London, Series A, Mathematical and Physical Sciences,1948,193:281-297.
    [121]Sun H Y, Qiao X. Prediction of the Mechanical Properties of Three-Dimensionally BraidedComposites[J]. Composites Science and Technology,1997,57(6):623-629.
    [122]Gu B H. Prediction of the Uniaxial Tensile Curve of4-Step3-Dimensional Braided Preform[J].Composite Structures,2004,64(2):235-241.
    [123]Zuo W W, Xiao L Y, Liao D X. Statistical Strength Analyses of the3-D Braided Composites[J].Composites Science and Technology,2007,67(10):2095-2102.
    [124]Miravete A, Bielsa J M, Chiminelli A, et al.3D Mesomechanical Analysis of Three-Axial BraidedComposite Materials[J]. Composites Science and Technology,2006,66(15):2954-2964.
    [125]徐焜,许希武.小编织角三维编织复合材料拉伸强度模型[J].航空学报,2007,28(2):294-300.
    [126]Jiang L L, Zeng T, Yan S, et al. Theoretical Prediction on the Mechanical Properties of3DBraided Composites Using a Helix Geometry Model[J]. Composite Structure,2013,100:511-516.
    [127]Li D S, Lu Z X, Chen L, et al. Microstructure Mechanical Properties of Three Dimensional FiveDirectional Braided Composites[J]. International Journal of Solids and Structures,2009,46(17-18):3422-3432.
    [128]卢子兴,刘振国,麦汉超,等.三维编织复合材料强度的数值预报[J].北京航空航天大学学报,2002,28(5):563-565.
    [129]庞宝君,杜善义,韩杰才,等.三维多向编织复合材料非线性本构行为的细观数值模拟[J].复合材料学报,2000,17(1):98-102.
    [130]Fang G D, Liang J, Wang B L. Progressive Damage and Nonlinear Analysis of3DFour-Directional Braided Composites under Unidirectional Tension[J]. Composite Structures,2009,89:126-133.
    [131]徐焜.三维多向编织复合材料力学性能及渐进损伤研究[D].南京:南京航空航天大学,2008:1-30.
    [132]Dong J W, Feng M L. Asymptotic Expansion Homogenization for Simulating ProgressiveDamage of3D Braided Composites[J]. Composite Structures,2010,92:873-882.
    [133]Kim J H, Ryou H S, Lee M G, et al. Micromechanical Modeling of Fiber Reinforced CompositesBased on Elastoplasticity and Its Application for3D Braided Glass/Kevlar Composites[J].Polymer Composites,2007,28(6):722-732.
    [134]卢子兴,夏彪,王成禹.三维六向编织复合材料渐进损伤模拟及强度预测[J].复合材料学报,2013(5):166-173.
    [135]Fang G D, Liang J, Lu Q, et al. Investigation on the Compressive Properties of the ThreeDimensional Four Directional Braided Composites[J]. Composite Structures,2011,93(2),392-405.
    [136]Fang G D, Liang J, Lu Q, et al. Effect of Interface Properties on Mechanical Behavior of3D FourDirectional Braided Composites with Large Braided Angle Subjected to Uniaxial Tension[J].Applied Composite Materials,2011,18(5):449-465.
    [137]Jiang W G. A Computer and a Method of Modelling a Woven Composite Material: InternationalPatent, PCT/GB2008/000713[P].2008-10-16.
    [138]Jiang W G, Hallett S R, Wisnom M R. Development of Domain Superposition Technique forWoven Composites [M]//Camanho P P, Davila C G, Pinho S T, Remmers J J C. MechanicalResponse of Composites. Berlin: Springer,2008:281-291.
    [139]Jiang W G. Implementation of Domain Superposition Technique for the Nonlinear Analysis ofComposite Materials[J]. Journal of Composite Materials,2013,47(2):243-249.
    [140]Aubard X, Cluzel C, Guitard L, et al. Modelling of the Mechanical Behaviour of4D CarbonCarbon Composite Materials[J]. Composites Science and Technology,1998,58(5):701-708.
    [141]段志东,张克华. ANSYS图形用户界面二次开发[J].兰州铁道学院学报(自然科学版),2002,21(1):44-46.
    [142]Welch B B著,崔凯译. Tcl/Tk编程权威指南[M].北京:中国电力出版社,2002:1-50.
    [143]Xia Z H, Zhang Y F, Ellyin F. A Unified Periodical Boundary Conditions for RepresentativeVolume Elements of Composites and Applications[J]. International Journal of Solids andStructures,2003,40(8):1907-1921.
    [144]Jiang W G, Yan L J. Implementation of Stress Loading Repetitive Unit Cell Finite ElementModel[C]//Proceeding of the3rd International Conference on Heterogeneous MaterialMechanics, Shanghai:2011:816-819.
    [145]李典森,卢子兴,刘振国,等.三维五向编织复合材料导热性能的有限元分析[J].航空动力学报,2008,23(8):1455-1460.
    [146]Bowles D E, Tompkins S S. Prediction of Coefficients of Thermal Expansion for UnidirectionalComposites[J]. Journal of Composite Materials,1989,23(4):370-388.
    [147]Chamis C C. Mechanics of Composites Materials: Past, Present and Future[J]. Journal ofComposites Technology and Research,1989,11(1):3-14.
    [148]Chamis C C. Simplified Composite Micromechanics Equations for Strength, Fracture Toughness,Impact Resistance and Environmental Effects, TM-83696[R]. Washington: NASA,1984.
    [149]Lapczyk I, Hurtado J A. Progressive Damage Modeling in Fiber-Reinforced Materials[J].Composites Part A: Applied Science and Manufacturing,2007,38(11):2333-2341.
    [150]Ba ant Z P, OH B H. Crack Band Theory for Fracture of Concrete[J]. Materials and Structures,1983,16(3):155-177.
    [151]Duvaut G, Lions JL. Inequalities in Mechanics and Physics. Berlin: Springer;1976.
    [152]李嘉禄,刘谦.三维编织复合材料中纤维束横截面形状的研究[J].复合材料学报,2001,18(2):9-13.
    [153]徐焜,许希武.三维编织复合材料渐进损伤的非线性数值分析[J].力学学报,2007,23(3):398-407.
    [154]修英姝.四步法三维编织复合材料力学性能的有限元分析[D].天津:天津工业大学,2001:40-70

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700