用户名: 密码: 验证码:
渤海浮游植物生态动力学模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近二十年来生态系统动力学模型已在各个海域得到了广泛应用它们以不同时空分辨率量化海洋生态系中各过程的相互作用机制建立了包含不同复杂程度生物物理过程的生态模型本文首先综述了各种海洋生态模型的发展特点分析了生态系统动力学模型的一般结构总结了模型中的典型生物过程的函数表达以及环流/混合温度透明度太阳辐射等环境因子对海洋生态系的影响
    利用历史资料分析了渤海浮游生态系基本特征分析了叶绿素初级生产力的季节变化和水平分布规律讨论了营养盐的分布特征分析了影响营养盐循环生物生长的物理过程变化特征在资料分析基础上建立一个基于氮磷营养盐循环并与一个成熟的三维斜压水动力模型耦合的三维渤海初级生产模型
    分析讨论了模型中参数取值对模拟结果的影响讨论了参数敏感性和不同过程对海洋生态系的影响模型对于浮游植物最大生长率浮游植物基础呼吸率浮游植物死亡率浮游动物捕食率水底碎屑矿化率等参数变化比较敏感渤海浮游植物生产限制因子比较复杂生物生产处于光和氮磷营养盐的交替控制下若是光照条件和营养盐水平的变化不改变各限制性因子的相对限制关系时对系统的影响不大反之若是显著改变了限制关系则会导致系统比较大的波动这种情况下仅仅考虑一种营养盐是不适宜的模型当中至少应该同时包括氮磷营养盐循环过程浮游植物生物量年循环规律表现为生物量峰值出现时间和峰值的相对大小计算结果表明生物过程参数既能影响峰值出现时间又能影响峰值的大小而径流输入变化和水平对流物理过程只影响该峰值的相对大小而不改变峰值出现的时间可见系统中水温辐射垂直对流/混合及生物过程影响物质的局地变化而水平对流输运过程则将局地的变化向其邻近的水域传播从而影响物质的水平分布
    在此基础上模拟了1982 年渤海营养盐叶绿素和初级生产力的季节变化和水平分布规律并且用1982 资料校验了模拟结果讨论了渤海碳和氮磷营养盐循环和收支规律
    渤海叶绿素和营养盐季节变化反相营养盐是浮游植物生长的基础渤海营养盐经历了夏季的减少和秋季回升冬季积累浮游植物生物量变化对应于营养盐变化在春季随着温度升高不断增加到夏季出现浮游植物的高峰此后开始下降至12 月到达一年的最低值
    渤海各个区域的初级生产力的升降趋势基本一致最高峰发生在夏季7-8月冬季12-1 月为一年的最低期莱州湾初级生产力呈双峰结构其余三个海湾为单峰结构温度对于渤海初级生产力春季峰值出现与否有很大影响初级生产力的水平分布不均匀四个海区中以莱州湾生产力最高中央海区和辽东湾次之渤海湾生产力远低于其他海域透明度低是造成渤海湾生产力低于其他海区的主要原因可见透明度和温度等物理因素的变化对渤海初级生产力的变化和分布有重要的作用
    营养盐水平分布的季节变化特点是渤海中部变化相对比较平稳而其他三个湾变化波动则比较大尤其是在莱州湾冬季最高春秋水华后则最低磷酸盐冬
Great progress has been made in the research of ecosystem dynamic models during the last two decades. Physical-biological models of various levels of sophistication have been developed for different regions of the ocean. Firstly the features of different marine ecosystem models are summarized and discussed in this paper. Different functions of the representative biological process and the effect of circulation, water temperature, transparence and solar radiation on the ecosystem are described and analyzed.
    Based on the historical data, this paper demonstrates the variation and distribution of chlorophyll-a, primary production and nutrient in the Bohai Sea and analyses the features of the physical process. According to the analysis of the historical data, a three-dimensional ecosystem model based on the cycles of phosphate and nitrate is developed for the Bohai Sea, which is coupled with a three-dimensional physical transport model.
    Sensitivity analysis indicates that the variation of the phytoplankton biomass is sensitive to phytoplankton maximum growth rate, phytoplankton mortality rate, zooplankton grazing rate and remineralization rate of benthic detritus. Light, temperature and nutrient can all affect the production of phytoplankton. If their variations do not change the relation of the limitation, then the variations have little effect on the ecosystem; otherwise they can change the system greatly. The biological process and transparence can both affect the occurrence of the phytoplankton biomass peak and its amplitude. While the variation of the river discharge and the physical transport process can only change the relative amplitude of the peak, but have no effect on its occurrence. It can be concluded that transparence, solar radiation, biological process and the vertical mixing affect the local variation of the ecosystem, while the horizontal advection can spread the local variation of the system to adjacent field and thus affect the distribution of the phytoplankton and nutrient.
    The model is then used to simulate the variation and distribution of chlorophyll-a, primary production and nutrient in 1982 and the simulation is validated by the data in 1982/1983. The concentration of both DIN and phosphate decreases from spring to summer and increases from autumn to winter in all the areas. The variation is a response to the consumption of the phytoplankton. In spring, the phytoplankton biomass increases as the temperature increasing and reaches the highest peak in summer. The concentration of nutrient drops to the lowest level during the same period. After the phytoplankton bloom of summer the dissolved inorganic nutrients increase gradually as the input of river increase and the decay of the thermocline.
    The variations of the primary production are same in different regions of the Bohai Sea. The high value of primary production appears in July and August and the lowest value appears in December and January. The primary production in the
    Laizhou Bay has two peaks and has one in the other part of the Bohai Sea in 1982. Water temperature has great influence on whether the peak of the primary production will appear in spring. Among the four parts of the Bohai Sea, the primary production is the highest in the Laizhou Bay and the lowest in Bohai Bay. The low transparence in the Bohai Bay is the main cause of the lowest primary production in it. So physical factors, such as temperature and transparence have a great effect on the variation and distribution of the primary production. The variation of the nutrient in the Central Bohai Sea is relatively stable while the variation is strong in coastal area of the Bohai Sea. The high concentration locates in the Bohai Bay in winter. The phosphate concentration in the northwest part of Liaodong Bay maintains a high level in the whole year. The value of phytoplankton biomass of the whole Bohai Sea is low in winter and the high value of the biomass first appears in the coastal area in spring. The high value expands from Laizhou Bay and Bohai Bay to the Central Bohai Sea in summer and the concentration of chlorophyll-a is about 1 mg/m3 in the Central Bohai Sea. The isoline of 1 mg/m3 moves to the coastal area again in autumn. The Huanghe river has great influence on the distribution of nitrate and phytoplankton concentration in the Laizhou Bay. The vertical distribution of nutrients is homogeneous in the whole year, except in the summer the concentration at the bottom layer is greater than that in the surface. This is due to the occurrence of thermocline in the Bohai Sea. The stratification does not decrease the concentration of chlorophyll-a in summer but has an effect on the vertical distribution of chlorophyll-a. The stability of water with enough supply of nutrient is propitious to the production of phytoplankton. Production and respiration are the most important sink and source of nutrients. The remineralization of the detritus pool is an important source of nutrient regeneration. It can compensate 23 percent of the consumption of nutrient from the production process. The net nutrient budget is -3.05 kilotons of P and 31.6 kilotons of N on the whole. The net carbon budget is 110 kilotons and the Bohai Sea is a weak sink of CO2 of the atmosphere. 13.7% of the gross primary production transfers to high trophic level. Remineralization at the bottom is the mechanism of transferring the nutrient from organic form to inorganic form. Finally a biological model, coupled with a three-dimensional physical transport model is described. Simulated distributions of plankton and nutrient are obtained from this model with nitrate input from a river. The simulations are then resampled and the data are used in numerical experiments to assess the ability of using an adjoint data assimilation approach for estimation the poorly known parameters of this ecosystem model. The spatial resolution and temporal resolution of the data are complementary in the assimilative model, thus the improvement of either of them can result in better recoveries of the model parameters. The assimilation of phytoplankton data is essential to recover the model parameters. Observational data collected during a Sino-German cooperation are taken as an example. Twin experiments, using simulated data of the same type and spatial and temporal distribution as that of the investigation, demonstrate the feasibility to estimating the model parameters with the
    in situ observations. Some advice is given about the designing of sampling strategies for making measurements in a project like ours.
引文
[1] 白雪娥庄志猛. 渤海浮游动物生物量及其主要种类数量变动的研究海洋水产研究1991 12 71-92
    [2] 崔毅宋云力. 渤海海域营养现状研究海洋水产研究1996 17(1) 57-62
    [3] 窦振兴等. 渤海潮流及潮余流的数值计算海洋学报1981 3 355-369
    [4] 费尊乐. 渤海海水透明度与水色的研究黄渤海海洋1986 4(1) 33-40
    [5] 费尊乐毛兴华朱明远. 海洋生产力研究I: 叶绿素a 的分布特征与季节变化海洋学报1988 10(1) 99-106
    [6] 费尊乐毛兴华朱明远. 海洋生产力研究II: 初级生产力及潜在渔获量的估算海洋学报1988 10(4) 481-489
    [7] 费尊乐毛兴华朱明远. 海洋生产力研究: 叶绿素a 初级生产力及渔业资源开发潜力海洋水产研究1991 12 55-69
    [8] 方国洪杨景飞. 渤海潮运动的一个2D 数值模型海洋与湖沼1985 15(5) 337-346
    [9] 冯士筰. 浅海环流物理及数值模拟物理海洋数值计算冯士筰孙文心主编河南科技出版社
    [10] 黄祖珂. 渤海潮流系统及其变迁青岛海洋大学学报1991 12(2) 1-12.
    [11] 高会旺. 海洋浮游生态系统分析及模型研究. 青岛海洋大学博士后研究工作报告. 1998 pp54
    [12] 高会旺冯士筰管玉平. 海洋浮游生态系统动力学模式的研究. 海洋与湖沼. 200031(3):341-347
    [13] 黄大吉渤海正压和斜压动力过程的数值研究青岛海洋大学博士论文1995
    [14] 胡敦欣杨作升等. 东海海洋通量关键过程. 海洋出版社北京2001 pp204.
    [15] 焦念志王荣李超伦. 东海春季初级生产力与新生产力的研究海洋与湖沼199829(2) 135-140
    [16] 康元德. 渤海浮游植物的数量分布和季节变化海洋水产研究1991 12 31-54
    [17] 吕培项费尊乐毛兴华. 渤海水域叶绿素a 的分布及初级生产力的估算. 海洋学报1984 6(1) 90-98.
    [18] 吕瑞华, 夏滨, 李宝华, 费尊乐. 渤海水域初级生产力10 年间的变化. 黄渤海海洋, 1999, 17(3):80~86.
    [19] 林庆礼宋云利杨琴芳. 渤海增值水化学环境. 海洋水产研究1991 12 11-29.
    [20] 刘哲魏皓2000 渤海水温要素的季节变化已投青岛海洋大学学报
    [21] 马有哲, 刘小宁. 中国太阳辐射数据集及其质量检验分析. 气象科技, 1998, 2:53-56.
    [22] 宁修仁刘子琳胡钦贤. 浙江沿岸上升流区叶绿素a 和初级生产力的分布特征. 海洋学报1985 7(16): 751-762.
    [23] 邱道立. 渤海水团分析海洋水产研究1991 12 1-10
    [24] 苏纪兰. 黑潮调查研究论文集(一) 国家海洋局科技司海洋出版社北京1990
    [25] 苏纪兰. 黑潮调查研究论文集(二) 国家海洋局科技司海洋出版社北京1990
    [26] 苏纪兰. 黑潮调查研究论文集(三) 国家海洋局科技司海洋出版社北京1991
    [27] 苏纪兰. 黑潮调查研究论文集(四) 国家海洋局科技司海洋出版社北京1992
    [28] 苏纪兰. 黑潮调查研究论文集(五) 国家海洋局科技司海洋出版社北京1993
    [29] 孙文心等渤海三维潮余流的数值计算山东海洋学院学报1988 18 2(II)
    [30] 孙文心奚盘根宋丽娜. 渤海三围潮余流的数值计算英文山东海洋学院学 报1989 19(2) 27-36
    [31] 沈国英施并章. 海洋生态学. 厦门大学出版社1999
    [32] 唐启升苏纪兰等. 中国海洋生态系统动力学研究I 关键科学问题于研究发展战略. 科学出版社北京2000 pp252
    [33] 渤海生态环境和生物资源分布图集. 唐启升孟田湘主编. 青岛出版社青岛1997pp242
    [34] 田家怡王民. 黄河断流对三角洲附近海域生态环境影响的研究海洋环境科学1997 16(3):59-64
    [35] 国家海洋局科学技术司. 中国海洋学文集(12) 西北太平洋副热带环流(二) 海洋出版社北京2000 pp60.
    [36] 王辉等渤海三维风生热盐潮致Lagrange 余流数值计算海洋学报199315(1).
    [37] 万振文袁业立海域浮游生态系统连续介质动力学模型的建立.海洋与湖沼199930(6) 663-670
    [38] 万振文袁业立朱明远等长江口海域赤潮生态动力学模型及赤潮控制因子研究海洋与湖沼2000 31(1) 93-100
    [39] 万振文袁业立乔方利海洋赤潮生态模型参数优化研究海洋与湖沼200031(2) 205-209
    [40] 王衍明. 大气物理学. 青岛:青岛海洋大学出版社, 1993.
    [41] 王曙光. 中国海洋环境质量公报国家海洋局北京. 2001 年4 月, pp16
    [42] 王曙光. 中国海洋灾害公报国家海洋局北京. 2001 年4 月, pp13
    [43] 王化桐有限元法的计算结果及分析山东海洋学院学报vol, 1988 18 2(II)49-50
    [44] 魏皓. 浅海环流物理的理论与数值研究. 青岛海洋大学博士论文1999.
    [45] 魏皓赵亮. 渤海初级生产年循环的三维数值模拟. 海洋学报待刊2002
    [46] 魏皓冯士筰等. 湍流局地平衡假设的新推论齐次湍流动能输运方程封闭模型与应用. [J] 青岛海洋大学学报2000 30(4) 557~562
    [47] 魏皓赵亮孙军冯士笮. 渤海浮游植物动力学的分析与模型研究-I 观测与分析海洋学报待刊
    [48] 吴增茂俞光耀张志南等. 胶州湾北部水层生态动力学模型与模拟II 水层生态动力学的模拟研究青岛海洋大学学报, 1999, 29 3 429-435.
    [49] 徐永福. 模拟浮游生物的季节变化. 生态学报. 1995, 15(3):245-250
    [50] 于克俊张法高渤海潮波运动的三维数值计算海洋与湖沼1987 18(3) 227-236
    [51] 于志刚米铁柱谢宝东. 二十年来渤海生态环境参数的演化和相互关系海洋环境科学2000 19(1) 15-19
    [52] 俞光耀吴增茂张志南. 胶州湾北部水层生态动力学模型与模拟. 青岛海洋大学学报1999,29(3):421-428
    [53] 中国主要河口的生物地球化学研究化学物质的迁移与环境张经主编海洋出版社1996 年北京
    [54] 张新玲郭心顺吴增茂. 渤海海面太阳辐照度的观测分析与计算方法研究海洋学报2001 23(2) 46-51
    [55] 张武昌王荣. 渤海微型浮游动物及其对浮游植物的摄食压力海洋与湖沼200031(3) 252-258
    [56] 赵亮魏皓. 渤海氮磷营养盐循环和收支研究. 环境科学2002 23(1) 78-81
    [57] 郑连远三维潮致拉格朗日余流的数值计算及其在渤海中的应用青岛海洋大学学报1992 22(1).
    [58] 翟雪梅. 渤海增殖水文环境及其年代变异特点. 海洋水产研究1997 18(2) 86-100
    [59] 周诗赉陈聚法马绍赛. 渤海增值水文环境及年代变异特点海洋水产研究199718(2) 96-100
    [60] 朱兰部赵保仁. 渤黄东海透明度的分布与变化. 海洋湖沼通报1991 3: 1-10
    [61] 朱明远孙明华. 黄海海区的叶绿素和初级生产力[J]. 黄渤海海洋1993.11(3):38-51
    [62] 邹立. 胶州湾生态系统中浮游体系氮循环模型的研究. 青岛海洋大学博士论文1999 pp128
    [63] Aksnes D L, Lie U. A coupled physical-biological pelagic model of a shallow sill Fjord. Esturine, Coastal and Shelf Science. 1990, 31:459-486.
    [64] Backhaus J O., Harms I H and Krause M. An hypothesis concerning the spacet-ime succession of Calanus finmarchicus in the northern North Sea. ICES J. MAR. Sci., 1994, 51:169-180.
    [65] Backhaus, J.O., 1985. A three-dimensional model for the simulation of shelf sea dynamics. Deutsche Hydrographische Zeitschrift. 38:165-178.
    [66] Backhaus, J.O. and D. Hainbucher, 1987. A finite difference general circulation model for shelf seas and its application to low frequency variability on the North European shelf. In: Three-dimensional Models of Marine and Estuarine Dynamics, J.C.C., Nihoul and B.M., Jamart eds. Elsevier Science Publishing B. V., Amsterdam, 211-244
    [67] Bacher C, Rallard O and Menesguen. Coupling models of the phytobenthos, phytoplankton primary production and oyster growth in the Marennes-Oleron Bay. 1996, (personal communication).
    [68] Beale. E.M., 1972. A derivation of conjugate-gradients. In: Numerical methods for non-linear optimization. F.A., Lootsma, Ed., Academic press, 39-43
    [69] Brockmann U H, Laane R W P M and Postma H. Cycling of nutrients in the North Sea. Neth. J. Sea Res., 1990, 26:239-264.
    [70] Cerco F C, Cole T. Three-dimensional Eutrophication model of Chesapeake Bay[J]. J Envir Engin, 1993, 119(6) 1006-1025.
    [71] Cerco F C. Simulation of Long-term Trends in Chespeake Bay Eutrophication[J]. J Envir Engin, 1995, 121(4) 298-310.
    [72] Chen C S. Influences of tidal mixing on Georges Bank: A coupled biological and physical model. 1998, (personal communication)
    [73] Chen C, Ji R and Zheng L. Influences of physical processes on the ecosystem in Jiaozhou Bay: A coupled physical and biological model experiment[J]. 1999,104(C12):29925-29949
    [74] Chen C S, Wiesenburg D A, Xie L. Influences of river discharge on biological production in the inner shelf: A coupled biological and physical model of the Louisiana_texas Shelf. J. mar. Res., 1997, 55:293-320
    [75] Chen C T A and Wang S L. Carbon and nutrient budget on the East China Sea continental shelf. In: Biological process in the north pacific. Shizuo Tsunogai (ed.). Tokyo: Japan marine science foundation, 1997, 169-186.
    [76] Christian M A, Verschell R and Murtugudde A J. Biogeochemical modelling of the tropical Pacific Ocean. I: Seasonal and interannual variability. Deep-Sea Research Part II, 2002, 49:509-543
    [77] Chung C S, Hong G H, Kim S H. Shore based observation on wet deposition of inorganic nutrients in the Korea-an Yellow coast. The Tellow Sea. 1998,4:30-39
    [78] Cui M C, Wnag R and Hu D X. Simple ecosystem model of the central part of the East China Sea in Spring. Chin. J. Oceanol. Liminol. 1997, 15(1):80-87
    [79] Das, S.K., and R.W., Lardner, 1992. Variational parameter estimation for a two-dimensional numerical tidal model. International Journal for Numerical Method in Fluids. 15:313-327
    [80] Dobson, F.W., and S.D., Smith 1988, Bulk models of solar radiation at sea. Quarterly Journal of the Royal Meteorological Society. 114: 165-182.
    [81] Dubois D M, Adam Y. Spatial structuration of diffusive prey-predator biological populations: simulation of the horizontal distribution of plankton in the North Sea[A]. Vansteenkiste G C eds.: System simulation in water resoutces[C],Netherlands, North-Holland Publishing Company,1976. 343-356.
    [82] Eppley, R.W., Reid, F.M.H. and Strickland, J.D.H., 1970. Estimates of phytoplankton crop size, growth rate and primary production. In: Strickland, J. D. H. [ed.], The ecology of the plankton off La Jolla, California, in the period April Through September 1967, Bull. Scripps Inst. Oceanogr. 17:33-42.
    [83] Evans G T, Parslow J S. A model of annual plankton cycles[J]. Biol Oceanogr, 1985, 3:327-347
    [84] Eigenheer A, Kuhn W and Radach G. On the sensitivity of ecosystem box model simulations on mixed-layer depth estimates. Deep Sea Res., 1996, 43(7): 1011-1027
    [85] European Regioonal Seas Ecosystem Model-I.eds:Beukema,J. And Baratta-Bekker, J. Neth J Sea Res, Netherlands, Casparie, Heerhugowaard,1995, 33(3/4).
    [86] Evans G T, Steele J H, Kullenberg G E B. A preliminary model of shear diffusion and plankton populations[C]. Scottish fish. Res. Reprot9, 1977. 20pp.
    [87] Fasham M, Holligan P, Pugh P R. The spatial and temporal development of the spring phytoplankton bloom in the Celtic Sea, April 1979[J]. Prog Oceanogr, 1983, 12:87-145.
    [88] Fasham, M. J. R., Ducklow, H. W. and McKelvie, S. M., A nitrogen-based model of plankton dynamics in the oceanic mixed layer, J. Mar. Res.,1990, 48(3): 591-639
    [89] Fransz H G, Verhagen H G. Modelling research on the production cycle of phytoplankton in the Southern Bight of the North Sea in relation to riverborne nutrient load[J]. NJSR, 1985, 19 241-250.
    [90] Fransz H G, Mommaerts J P, Radach G. Ecological modeling of the North Sea. Netherlands Journal of Sea Research, 1991, 28(1/2) 67-140.
    [91] Feng S Z.Circulation in the Bohai Sea-A dynamics numerical study, in Computational Mechanics, Cheung, Lee & Leung(eds), 1991, Balkema, Rotterdam.
    [92] Franks P J S, Wroblewski J S and Flierl G R. Behavior of a simple plankton model with flood level accumulation byherbivores. Mar. Biol., 1986, 96:121-129.
    [93] Franks P.J.S. and C., Chen, 1996. Plankton production in tidal fronts: A model of Georges Bank in summer. J. Mar. Res., 54:631-651
    [94] Frost B W. A modeling study of process regulating plankton standing stock and production in the open subarctic Pacific Ocean. Prog. Oceanog., 1993, 32:17-56
    [95] Gao H, Feng S and Guan Y. Modelling annual cycles of primary production in different regions of the Bohai Sea. Fish. Oceanogr., 1998,7(3/4):258-264
    [96] Guo X Y. Ecological modeling in the east China Sea. 1997 (personal communication)
    [97] Hoffman, R.N., 1986. A four dimensional analysis exactly satisfying equations of motion. Mon. Weather Rev., 114:388-397
    [98] Hofmann E E, Ambler J W. Plankton dynamic on the outer southerstern U.S. continental shelf. Part II: A time-dependent biological model. Journal of Marine Research, 1988, 46 883-917.
    [99] Horwood J W. Algal production in the west-central North Sea[J]. J Plankton Res, 1982, 4(1) 103-124.
    [100] Hong G H, Kim S H, Chung C S. Nutrients &Biogeochemical provinces in the Yellow Sea. Proceedings of the 1994 Sapporo IGBP symposium, 14-17 Nov. Hokkaido University, Sapporo Hokkaido, Japan. 1994,114-128
    [101] Hong G H, Kim S H, Chung C S. The role of the anthropogenic nutrient input in the carbon fixdation of the coastal ocean Yellow Sea: A preliminary study. Handa N & Ohsumi T (eds.), Direction Ocean Disposal of Carbon Dioxide. Terra Scientific Publishing Company (TERRAPUB). 1995,13-22
    [102] Jassby A D and Platt T. Mathematic formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr., 1976, 21:540-547
    [103] Jones R, Henderson W W. Population regulation and implications for the recruitment process in fish[C]. ICES 1985, 1980. G21.
    [104] Kiefer D A, Kremer E W. Origins of vertical patterns of phytoplankton and nutrients in the temperate, open ocean: a straitgraphic hypothesis[C]. DSR, 1981, 28A 1087-1105
    [105] Klein P, Coste B. Effects of wind-stress variability on nutrient transport into the mixed layer[J]. Deep-Sea Res, 1984, 31 21-37.
    [106] Klein P and Steele J H. Some physical factors affecting ecosystems. J. Mar. Res., 1985, 43:337-350.
    [107] Klepper O. Modelling the oceanic food web using a quasi steady-state approach. Ecological modeling. 1995, 77:33-41.
    [108] Kremer P, Nixon S W. A coastal marine ecosystem. Simulation and analysis[M]. Berlin-Heidelberg-New York, Spring-Verlag,1978. 217pp.
    [109] Kuhn W and Radach G. A one-dimensional physical-biological model study of the pelagic nitrogen cycling during the spring bloom in the North Sea(FLE’76). J. Mar. Res., 1997, 55:687-734.
    [110] Lassen H Nielsen B. Simple mathematical model for the primary production ad a function of the phosphate concentration and incoming solar energy applied to the North Sea[C]. ICES, C M 1972 /L 6, Plankton Comm.
    [111] Lawson L M, hofmann E E and Spitz Y H. Time series sampling and data assimilation in a simple marine ecosystem model. Deep-Sea Research, Part II, 1996,43(2-3), 625-651.
    [112] Landry, M. R. and Hassett, R. P., 1982. Estimating the grazing impact of marine micro-zooplankton. Mar. Biol., 67:283-288.
    [113] Lenhart ,H., Radach, G., Ruardij,P. The effects of river input on the ecosystem dynamics in the continental coastal zone of the North Sea using ERSEM[J]. Neth J Sea Res, 1997, 38,249-274.
    [114] Le Dimet, F.X. and O. Talagrand, 1986. Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus, 38A, 97-110
    [115] Liu S M, Chen H T, Wu Q M, Chen S Z. N, P &Si components in the South Yellow Sea. Biogeochemical Process in the Bohai & Yellow Sea1. Hong G H, Zhang J & Chung C S (eds.), the Dongjin Publication Association, Soul. 1999,21-40
    [116] Long R B, and Thacker W C. Data assimilation into a numerical equatorial ocean model, Part I and Part II Dyn. Atmos. Oceans, 1989, 13(3-4):377-440
    [117] Loukos H, Frost B and Harrison D E. An ecosystem model with iron limitation of primary production in the equatorial Pacific 140S, 1997. (personal communication)
    [118] Martin J H, Knauer G A and Kart D M. Carbo cycling in the northeastern Pacific. Deep-Sea Res., 1987, 34:267-285
    [119] Matear, R.J., 1995. Parameter optimization and analysis of ecosystem models using simulated annealing: A case study at Station P. Journal of Marine Research, 53:571-607
    [120] McCreary J P, Kevin J and Kohler E. A four-component ecosystem model of biological activity in the Arabian Sea. Prog. Oceanog., 1996, 37:193-240.
    [121] McGillicuddy D J Jr, Robinson A R and Mccarthy JJ. Coupled physical and biology modelling of the spring bloom in the North Atlantic(II): three dimensional bloom and postbloom processes. Deep Sea Res. I, 1995, 42(8):1359-1398.
    [122] McGillicuddy, JR, D.J., D.R., Lynch, A.M., Moore, W.C., Gentleman, C.S. Davis, and C.J., Meise, 1998. An adjoint data assimilation approach to diagnosis of physical and biological control on Pseudocalanus Spp. in the Gulf of Maine-Georges Bank region. Fish. Oceanogr., 7(3/4):205-218
    [123] Mellor G L and P A Durbin. A hierarchy of turbulence closure models for planetary boundary layers. [J] Journal of Physical Oceanography, 1975, 5: 718~728
    [124] Moll A and G Radach. Application of Dobson and Smith’s solar radiation model to German Bight data. Q.J.R. Meteorol. Soc., 1991, 117:845-851.
    [125] (moll1998) Moll A. Regional distribution of primary production in the North Sea simulated by a three-dimensional model[J]. Journal of Marine Systems, 1998, 16(1~2) 151-170
    [126] Moisan J R, Hofmann EE and Haidvogel D B. Modeling nutrient and plankton processes in the California coastal transition zone. 2. A three-dimensional physical-bio-optical model. J. Geophys. Res., 1996, 101:22677-22691
    [127] Norberg J and Deangelis D. Temporetureeffects on stocks and stability of a phytoplankton-zooplankton model and the dependence on light and nutrients. Ecological modelling, 1997, 95:75-86
    [128] Navon, I.M. and D.M. Legler, 1987. Conjugate-gradient method for large-Scale minimization in meteorology. Mon. Weather Rev., 115:1479-1502
    [129] Navon, I.M., 1997. Practical and theoretical aspect of adjoint parameter estimation and identifiability in meteorology and oceanography. Dynamic of Atmospheres and Oceans. 27:55-79
    [130] Olseth J A and A Skartveit. Characteristics of hourly global irradiance modeled from cloud data. Solar Energy, 1993, 51(3):197-204.
    [131] Oguz T , Ducklow H and Malanotte-Rizzoli P. Simulation of annual plankton productivity cycle in the Black Sea by a one-dimensional physical-biological model. J. Geophys. Res., 1996, 101(c7):16585-16599
    [132] OSPAR. Report of the ASMO modelling[C]. Workshop on Eutrophication Issues 5-8 November 1996, The Hague, Netherlands, 1998
    [133] Paetsch J, Radach G. Long-term of Simulation of the Eutrophication of the North Sea: Temporal development of nutrients, chlorophyll and primary production in comparison to observations[J]. J Sea Research, 1997, 38 275-310
    [134] Parsons T, Takahashi M and Hargrave B. Biological oceanographic processes[M]. U K: Pergamon Press, 1984,330pp.
    [135] Parsons T R Kessler T A. Computer model analysis of pelagic ecosystem in estuarine waters. NATA ASI Series, 1986, G7 161-181.
    [136] Parsons T R Kessler T A. An ecosystem model for the assessment of plankton production in relation to the survival of young fish [J]. J. Plankt. Res., 1987, 9(1)125-137.
    [137] Payne R E. Albedo of the sea surface. Journal of the Atmospheric Science, 1972, 29:959-970
    [138] Peter J S and Chen C. Plankton production in tidal fronts: A model of Georges Bank insummer. J. mar. Res., 1996, 54:631-651.
    [139] Prunet P, Minster J F and Ruiz-pino D. Assimilation of surface data in one-dimensional physical-biogeochemical model of the surface ocean: 1. method and preliminary results. Global Biogeochem. Cycles, 1996, 10(1):111-138.
    [140] Pohlmann T. Calculating the annual cycle of the vertical eddy viscosity in the North Sea with a three-dimensional baroclinic shelf sea circulation model. [J] Continental Shelf Research, 1996, 16(2): 147~161
    [141] Pichot G, Runfola Y. Mathematical model of the nitrogen cycle in the Southern Bight of the North Sea[C]. 10th European Symposium on Marine Biology, Ostende, Belgium, 1975, 2 467-476.
    [142] Powell, M.J.D., 1977. Restart procedures for the conjugate-gradient method. Math. Program. 12:241-254
    [143] Radach G. Simulations of phytoplankton dynamics and their interactions with other system components during FLES’76[A]. In: Suendermann J, Lenz W ed. North Sea Dynamics[C]. Berlin Heidelberg: Spring-Verlag, 1983. 584-610.
    [144] Radach G and Lenhart H. Nutrient dynamics in the North Sea: fluxes and budgets in the water column derived from ERSEM. Neth. J. Sea Res., 1995, 33(3/4):301-335.
    [145] Radach G, Maier-Reunerm E. The vertical structure of phytoplankton growth dynamics. A mathematical model[J]. Mem So R Sco Kiege, 1975, 6(7) 113-146.
    [146] Radach G. Dynamic interactions between the lower trophic levels of the marine food web in relation to the physical environment during the Fladen Ground experiment[J]. Neth J Sea Res, 1982, 16:231-246.
    [147] Radach G Moll A. State of the art in algal bloom modeling[R]. Water Pollution Research Report 12. Brussels, 1990. 116-149.
    [148] Radach G, Moll A. Estimation of the variability of production by simulating annual cycles of phytoplankton in the central North Sea[J]. Prog Oceanog, 1993, 31 339-419.
    [149] Radach G. Preliminary simulations of the phytoplankton and phosphate dynamics during FLEX’76 with a simple two-component model[C]. “Meteor”Forsch. Ergebnisse, 1980, A/22:151-163.
    [150] Riley G A, Stommel H, Bumpus D F. Quantitative ecology of the plankton of the Western North Atlantic[J]. Bull Bingham Oceanogr Coll, 1949, 12 1-169.
    [151] Report of the NSTF Modelling Workshop[R]. eds:De Vries I. Rijkswaterstaat, Tidal Waters Division, The Hague. Report DGW-92.045. 1992
    [152] Sarmiento J L, Slater R D and Fasham M J R. A seasonal three-dimensional ecosystem model of nitrogen cycling in the north Atlantic euphotic zone, Global Biogeochem. Cycles, 1993, 7(2) 417-450.
    [153] Sasaki, Y., 1970. Some basic formations in numerical variational analysis. Mon. Wea. Rev., 98:875-883
    [154] Skogen M D. Modeling the primary production in the North Sea using a coupled three-dimensional physical-chemical-biological ocean model[J]. Estuarine, coastal and shelf science, 1995, 41 545-565.
    [155] Skogen M D, Aure J, Danielssen D and Svendsen E. Natural fertilization of the marine environment-modelling of the glomma flood 1995.. Sarsia, 1998, 83:361-372.
    [156] Skogen M D, Soiland H. A user’s guide to NORWECOM V2.0 (The Norwegian Ecological Model Statem). Institute of marine research. Bergen. 1998, pp42
    [157] Skogen M D. A biophysical model applied to the benguela upwelling system.S. Afr. J. Mar. Sci., 1999, 21:235-249.
    [158] Skartveit A, J A Olseth and M E Tuft. An hourly diffuse fraction model with correction for variability and surface albedo. Solar Energy. 1998, 63(3):173-183.
    [159] Smedstad, O.M., and J.J., O’Brien, 1991. Variational data assimilation and parameter estimation in an equatorial Pacific Ocean model. Prog. Oceanog., 26:179-241
    [160] Sun, J., Liu, D.Y. and Qian, S.B., 2000 Estamating biomass of phytoplankton in the Jiaozhou Bay. Acta Oceanologica Sinica, 19:19-31.
    [161] Scavia D. An ecological model of Lake Ontario[J]. Ecol Mod, 1980, 8 49-78.
    [162] Sjoeberg S, Wilmot W. Systems analysis of a spring phytoplankton bloom in the Baltic[C]. Contr Askoe Lab 1977, 20pp.
    [163] Spitz Y H, Moisan J R and Abbott M R. Configuring an ecosystem model using data from the Bermuda Atlantic Time Series(BATS). Deep-Sea Research Part II, 2001, 48:1733-1768
    [164] Spitz, Y.H., J.R., Mosian, M.R., Abbott and J.G., Richman, 1998. Data assimilation and a pelagic ecosystem model: parameterization using time series observations. J. Mar. Sys., 16:51-68
    [165] Steele J H, Henderson E W. Simulation of vertical structure in a planktonic ecosystem[C]. Scottish Fish Res Report, 1976, 5:27.
    [166] Steele J H. Plant production on the Fladen, Ground [J]. J Mar Biol Ass U K, 1956, 351-33
    [167] Steele J H. Environmental control pf photosynthesis in the sea. Limnology and Oceanography. 1962,7:137-150
    [168] Stigebrandt A, Wulff F. A model for the dynamics of nutrients and oxygen in the Baltic Proper[J]. J Mar Res, 1988, 45 729-759.
    [169] Taylor A H, Harbour D S and Harris R P. Seasonal succession in the pelagic ecosystem of the North Atlantic and the utilization of nitrogen. J. Plank. Res., 1993, 15(8):875-891.
    [170] Tett P, Edwards A, Kones K, A model for the growth of shelf-sea phytoplankton in summer[J]. Estuar Coast Shelf Sci, 1986, 23(5):641-672.
    [171] Thacker W C. Fitting models to inadequate data by enforcing spatial and temporal smoothness. 1988, J. Geophys. Res., 93:10655-10665
    [172] Ullman D.S and R.E., Wilson, 1998. Model parameter estimation from data assimilation modeling: Temporal and spatial variability of the bottom drag coefficient. Journal of Geophysical Research. Vol. 103(C3):5531-5549
    [173] Vallino, J.J., 2000. Improving marine ecosystem models: Use of data assimilation and mesocosm experiments. Journal of Marine Research, 58:117-164
    [174] Varela R A, Cruzado A and Gabaldon J E. Modelling the deep-chlorophyll maximum: A coupled physical-biological approach. J. Mar. Res., 1992, 50:441-463
    [175] Varela R A, Cruzado A, Gabaldon J E. Modelling primary production in the North Sea using the European Regional Seas Ecosystem Model[J]. Netherlands Journal of Sea Research, 1995, 33(3/4):337-361.
    [176] Vollenweider R A. Calculation models of photosynthesis depth curves and some implications regarding days rate estimates in primary production measurements. Mem. Lst. Ltal. Ldrobio., 1965, 18 suppl.,: 425-457
    [177] Wei, H., Hainbucher, D. Technical report on the investigation of the Bohai Sea ecosystem for autumn cruise. Ocean University of Qingdao, Qingdao, 1998, pp54.
    [178] Woods J D, Onken R. Diurnal variation and primary production in the ocean—preliminary results of a Lagrangian ensemble model[J]. J Plankton Res, 1982, 4:735-756.
    [179] Winter D F, Banse K, Anderson G C. The dynamics of phytoplankton blooms in Puget Sound, a fjord in the northwestern United States[J]. Mar Biol, 1975, 29:139-176.
    [180] Wroblewski, J., 1977. A model of phytoplankton plume formulation during variable Oregon upwelling. Journal of Marine Research. 35:357-394
    [181] Wroblewski J S, Richman J G. The non-linear response of plankton to wind mixing events—implications for survival of larval northern anchovy[J]. J Plankton Res, 1987, 9:103-123.
    [182] Yanagi T Montani K. Ecological modeling as a tool for coastal zone management in Dokai Bay, Japan[C]. J Mar Sys, 1997, 13:123-136.
    [183] Yu, L. and J.J., O’Brien, 1991. Variational estimation of the wind stress drag coefficient and the oceanic eddy viscosity profile. J. Phys. Oceanogr., 21:709-719
    [184] Zhang J. Atmosphereric wet deposition of nutrient element: correlation with harmful biological blooms in North Pacific coastal zones. AMBIO. 1994,23(8):446-460
    [185] Zhang, J, Huang, W., and Liu, M. Geochemistry of major Chinese river-estuary systems. In: Oceanology of China Sea. Zhou, D., Liang, Y., And Tseng, C. (ed.), Netherlands: Kluwer Academic Publishers, 1994, pp179-188.
    [186] Zhang J, Yu Z G, Liu S M. Dynamics of nutrient elements in three estuaries of North China: the Luanhe, Shuangtaizihe & yalujiang. Estuaries, 1997, 20(1):110-123
    [187] Zhang J, Yu Z G, Chen Z G. Process affecting nutrients dynamics in the Yalujiang & its estuary (1994-1996), North Chian. G H Hong, J Zhang &B K Park (eds.), Health of the Yellow Sea, The Earth Love Publication Association, Soul. 1998, 149-189
    [188] Zhang J, Chen S Z and Yu Z G. Factors influencing changes in rainwater composition from urban versusremote regions of the Yellow Sea. Journal of Geophysical Research. 1999, 104(D1):1631-1644
    [189] Zou X, Navon I and Le Dimet F. An optimal nudging data assimilation scheme using parameter estimation. Q.J.R. Meteorol. Soc., 1992, 118:1163-1186

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700