用户名: 密码: 验证码:
自组装合成介孔氧化硅材料的形貌研究及其光伏应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自组装介孔二氧化硅材料具有特殊的结构优势,包括高比表面,有序的孔道结构和在纳米尺度上精确可控的介观构象和结构参数等。这类材料有望在太阳能电池、光催化、传感器等领域取得广泛的应用。本论文在极稀表面活性剂体系下,通过调节反应物浓度,共溶剂种类等,对合成的介孔氧化硅的微观形貌和结构进行了系统研究。在形貌研究的基础上,将控制合成的单分散纳米介孔氧化硅和双连续相介孔氧化硅作为液态电解质的无机胶凝材料成功的应用到染料敏化太阳能电池领域。主要内容和成果是:
     在极稀表面活性剂体系中,利用自组装方法合成了小尺寸纳米介孔氧化硅,通过调节反应物浓度,能够在较大范围内控制产物的尺寸(10~100nm)和形貌(单分散小球或连续结构),同时产物具有比表面积高,热稳定性良好等特点。指出纳米尺度介孔氧化硅颗粒的形成与单体硅酸根低聚物和表面活性剂的自组装作用相关。
     在水-油双相体系下,系统研究了自组装合成的介孔氧化硅材料的形貌特点和结构分类。分别对水-乙醚,水-乙醇体系下合成的氧化硅形貌和反应物条件之间的关系进行了讨论,提出形貌生成的机理。指出表面活性剂堆积因子g的变化以及油水两相在剧烈搅拌过程中产生的非平衡态界面是导致产物的形貌和结构具有多样性的原因。
     在水-乙醚体系中,利用嵌段共聚物F127作为表面活性剂,合成出新型具有分级结构的双连续相介孔氧化硅材料。材料具有多级孔道结构,将利用该材料制备的复合凝胶电解质分别应用于染料敏化太阳能电池和锂离子电池中,结果显示,准固态电解质具有10-3S·cm-1数量级的离子电导率,同时具有良好的机械强度。
     将小尺寸介孔氧化硅颗粒作为无机添加剂应用到染料敏化太阳能电池凝胶电解质中,探讨了其颗粒尺寸和形貌对电解质电化学性能的影响。对掺杂氧化硅的聚合物凝胶电解质的导电增强机制进行了简单模拟。利用这种颗粒得到的准固态DSSC的光电转化效率比没有使用介孔氧化硅颗粒固化的电解质的效率提高44%。
The advantageous structure characteristics of self-assembled mesoporous SiO2, such as high BET surface area, ordered pore channels, and controllable mesophases and structural parameters in the nanometer range, has provided potential applications in a wide range of field e.g., solar cell, photocatalyst, chemical sensor, etc.
     The research in this thesis presented a novel approach of synthesizing mesoporous silica particles in a very dilute surfactant system where the micro-morphology and micro-structure of silica particles can be tuned by adjusting the concentration of the reactants and adding various types of co-solvent components. Furthermore the mono-dispersed nano-sized mesoporous silica particles and bicontinuous hierarchical mesoporous silica (BCMS) obtained was added into liquid electrolytes as gelator to form composite gel electrolytes for the application in the dye-sensitized solar cells and lithium battery. The main content and results are presented below.
     In a very dilute surfactant system, mono-dispersed nano-sized (10~100nm) mesoporous silica particles were synthesized via self-assembly approach. By regulating the reagent concentration, the sizes and morphology (monodisperse particles or the network structure) of the synthesized particles can be controlled over a relatively wide range. The synthesized particles have high surface area and thermal stability. The formation of the nano-sized mesoporous silica particles was proposed to be correlated with the self-assembly reaction between silicate oligomers and surfactant.
     In the water/oil two-phase system, the morphology and structure of silica particles were classified and investigated systematically, which facilitated the understanding of silica morphosynthesis in the applied system. The relationship between the morphogenesis and reaction conditions was discussed in both water/diethyl ether and water/ethanol systems. A mechanism of morphology formation was proposed. It was suggested that an intrinsic uncertainty factor occurs in the OWTP system. The results indicate that, the evolution of critical packing parameter g and the non-equilibrium interfaces formed by fluid rheological distortions and reconstructive reaction fields played a crucial role in the morph-synthesis process.
     In the water/diethyl ether system, novel bicontinuous hierarchical mesoporous silica was synthesized with the block copolymer F127 as surfactant. Compared with the traditional nanoparticles or mesoporous silica, BCMS had a unique hierarchical pore structure. It was incorporated into composited gel electrolytes for dye-sensitized solar cells and lithium battery application. The results showed that the quasi-solid state electrolyte has conductivity as 10-3S·cm-1 and good mechanical stability.
     As inorganic gelators, the nano-sized silica particles were added into the electrolyte of dye-sensitized solar cells. The effects of the size and structure of the particles added were discussed with respect to the electrochemical properties of the electrolyte. A simplified simulation was processed in explaining the improved conductivity. After the introduction of the mesoporous silica particles, the I—3 ion diffusion coefficients and the exchange current density I0 were promoted along with the increase of the photocurrent density and reduction in the dark reaction. Compared to those without mesoporous silica particles, the photo-conversion efficiency of the quasi-solid state DSSC processed in the presented approach was enhanced by 44%.
引文
[1] Whitesides G M and Grzybowski B. Self-assembly at all scales. Science, 2002, 295:2418-2421.
    [2] Van Bommel K J C, Friggeri A, and Shinkai S. Organic templates for the generation of inorganic materials. Angewandte Chemie-International Edition, 2003, 42:980-999.
    [3] Sing K S W, Everett D H, and Mouscou H L. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity Pure and Applied Chemistry, 1985, 57:603.
    [4] Soler-illia G J D, Sanchez C, Lebeau B, et al. Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chemical Reviews, 2002, 102:4093-4138.
    [5] II RK. The Chemistry of Silica. New York: Wiley, 1971.
    [6] Yanagisawa T, Shimizu T, Kuroda K, et al. The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials. Bulletin of the Chemical Society of Japan, 1990, 63:988-992.
    [7] Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359:710-712.
    [8] Kresge C T, Vartuli J C, Roth W J, et al. M41S: A new family of mesoporous molecular sieves prepared with liquid crystal templates. Science and Technology in Catalysis, 1994 1995, 92:11-19.
    [9] Huo Q, Margolese D I, Ciesla U, et al. Organization of organic-molecules with inorganic molecular-species into nanocomposite biphase arrays. Chemistry of Materials, 1994, 6:1176-1191.
    [10] Chen CY, Burkette SL, HX L, et al. Studies on mesoporous materials.Ⅱ. Synthesis mechanism of MCM-41. Microporous Materials, 1993, 2:27-34.
    [11] Chen CY, Burkette SL, HX L, et al. Studies on mesoporous materials.Ⅰ. Synthesis and characterization of MCM-41. Microporous Materials, 1993, 2:17-26.
    [12] Stucky G D, Huo Q S, Firouzi A, et al. Directed synthesis of organic/inorganic composite structures. Progress in Zeolite and Microporous Materials, Pts a-C, 1997, 105:3-28.
    [13] Huo Q S, Margolese D I, Ciesla U, et al. Generalized synthesis of periodic surfactant inorganic composite-materials. Nature, 1994, 368:317-321.
    [14] Soler-Illia G J D A, Crepaldi E L, Grosso D, et al. Block copolymer-templated mesoporous oxides. Current Opinion in Colloid & Interface Science, 2003, 8:109-126.
    [15] Israelanchvili J. Intermolecular & Surface Forces. London: Academic Press 1991.
    [16] Anderson M T, Martin J E, Odinek J G, et al. Surfactant-templated silica mesophases formed in water : Cosolvent mixtures. Chemistry of Materials, 1998, 10:311-321.
    [17] Fan J, Yu C Z, Gao T, et al. Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties. Angewandte Chemie-International Edition, 2003, 42:3146-3150.
    [18]徐如人,庞文琴,于吉红等.分子筛与多孔材料化学.北京:科学出版社,2004.
    [19] Che S, Sakamoto Y, Terasaki O, et al. Control of crystal morphology of SBA-1 mesoporous silica. Chemistry of Materials, 2001, 13:2237-2239.
    [20] Chen B C, Chao M C, Lin H P, et al. Faceted single crystals of mesoporous silica sba-16 from a ternary surfactant system: Surface roughening model. Microporous and Mesoporous Materials, 2005, 81:241-249.
    [21] Zhang F Q, Gu D, Yu T, et al. Mesoporous carbon single-crystals from organic-organic self-assembly. Journal of the American Chemical Society, 2007, 129:7746-7747.
    [22] Cai Q, Lin W Y, Xiao F S, et al. The preparation of highly ordered MCM-41 with extremely low surfactant concentration. Microporous and Mesoporous Materials, 1999, 32:1-15.
    [23] Kim J M, Kim S K, and Ryoo R. Synthesis of MCM-48 single crystals. Chemical Communications, 1998:259-260.
    [24] Kaneda M, Tsubakiyama T, Carlsson A, et al. Structural study of mesoporous MCM-48 and carbon networks synthesized in the spaces of MCM-48 by electron crystallography. Journal of Physical Chemistry, 2002, 106:1256-1266.
    [25] Kong L D, Liu S, Yan X W, et al. Synthesis of MCM-48 single crystals with cube morphology. Chemistry Letters, 2005, 34:568-569.
    [26] Yu C Z, Tian B Z, Fan J, et al. Nonionic block copolymer synthesis of large-pore cubic mesoporous single crystals by use of inorganic salts. Journal of the American Chemical Society, 2002, 124:4556-4557.
    [27] Zhang F Q, Gu D, Yu T, et al. Mesoporous carbon single-crystals from organic-organic self-assembly. Journal of the American Chemical Society, 2007, 129:7746-7747.
    [28] Yang H, Coombs N, and Ozin G A. Morphogenesis of shapes and surface patterns in mesoporous silica. Nature, 1997, 386:692-695.
    [29] Wang L Z, Shi J L, Tang F Q, et al. Rapid synthesis of mesoporous silica with micrometer sized hexagonal prism structure. Journal of Materials Chemistry, 1999, 9:643-645.
    [30] Yang S M, Yang H, Coombs N, et al. Morphokinetics: Growth of mesoporous silica curved shapes. Advanced Materials, 1999, 11:52-55.
    [31] Yang S M, Sokolov I, Coombs N, et al. Formation of hollow helicoids in mesoporous silica: Supramolecular origami. Advanced Materials, 1999, 11:1427-1431.
    [32] Kim S S, Zhang W Z, and Pinnavaia T J. Ultrastable mesostructured silica vesicles. Science, 1998, 282:1302-1305.
    [33] Zhao D Y, Sun J Y, Li Q Z, et al. Morphological control of highly ordered mesoporous silica sba-15. Chemistry of Materials, 2000, 12:275-279.
    [34] Gratzel M. Photoelectrochemical cells. Nature, 2001, 414:338-344.
    [35] Gratzel M. Photovoltaic and photoelectrochemical conversion of solar energy. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 2007, 365:993-1005.
    [36] Chapin D, Fuller C, and Pearson G. A new silicon pn junction photocell for converting solar radiation into electrical power. Journal of Applied Physics, 1954, 25:676.
    [37] Rensmo H, Westermark K, Sodergren S, et al. XPS studies of Ru-polypyridine complexes for solar cell applications. Journal of Chemical Physics, 1999, 111:2744-2750.
    [38] Olea A, Ponce G, and Sebastian P J. Electron transfer via organic dyes for solar conversion. Solar Energy Materials and Solar Cells, 1999:137-143.
    [39] O'Regan B and M G. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353:737-740.
    [40] Barbe C J, Arendse F, Comte P, et al. Nanocrystalline titanium oxide electrodes for photovoltaic applications. Journal of the American Chemical Society, 1997, 80:3157-3171.
    [41] Kohle O, Gratzel M, Meyer A F, et al. The photovoltaic stability of bis(isothiocyanato)ruthenium(Ⅱ)-bis-2,2'-bipyridine-4,4'-dicarboxylic acid and related sensitizers. Advanced Materials 1997, 9:904-906.
    [42] Halme J. Dye-sensitized nanostructured and organic photovoltaic cells: Technical review and preliminary tests [Master's thesis], Helsinki University of Technology, 2002.
    [43] Smestad G, Bignozzi C, and Argazzi R. Testing of dye-sensitized TiO2 solar-cells .1. Experimental photocurrent output and conversion efficiencies. Solar Energy Materials and Solar Cells, 1994, 32:259-272.
    [44] Smestad G. Testing of dye-sensitized TiO2 solar-cells. 2. Theoretical voltage output and photoluminescence efficiencies. Solar Energy Materials and Solar Cells 1994, 32:273-288.
    [45] Hagfeldt A and Gratzel M. Light-induced redox reactions in nanocrystalline systems. Chemical Reviews, 1995, 95:49-68.
    [46] Hulstrom R B R and C R. Spectral solar irradiance data sets for selected terrestrial conditions. Solar Cells, 1985, 15:365-391.
    [47] Green M A. Multiple band and impurity photovoltaic solar cells: General theory and comparison to tandem cells. Progress in Photovoltaics, 2001, 9:137-144.
    [48] Tachibana Y, Moser J E, Gratzel M, et al. Subpicosecond interfacial charge separation in dye-sensitized nanocrystalline titanium dioxide films. Journal of Physical Chemistry, 1996, 100:20056-20062.
    [49] Hannappel T, Burfeindt B, Storck W, et al. Measurement of ultrafast photoinduced electron transfer from chemically anchored Ru-dye molecules into empty electronic states in a colloidal anatase TiO2 film. Journal of Physical Chemistry B 1997, 101:6799-6802.
    [50] Kalyanasundaram K and Gratzel M. Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coordination Chemistry Reviews, 1998, 177:347-414.
    [51] Huber R, Sporlein S, Moser J E, et al. The role of surface states in the ultrafast photoinduced electron transfer from sensitizing dye molecules to semiconductor colloids. Journal of Physical Chemistry B, 2000, 104:8995-9003.
    [52] Trachibana Y, Haque S A, Mercer I P, et al. Electron injection and recombination in dye sensitized nanocrystalline titanium dioxide films: A comparison of ruthenium bipyridyl and porphyrin sensitizer dyes. Journal of Physical Chemistry B, 2000, 104:1198-1205.
    [53] Hagfeldt A and Gratzel M. Molecular photovoltaics. Accounts of Chemical Research, 2000, 33:269-277.
    [54] Cao F, Oskam G, Meyer G J, et al. Electron transport in porous nanocrystalline TiO2 photoelectrochemical cells. Journal of Physical Chemistry, 1996, 100:17021-17027.
    [55] Ito S, Liska P, Comte P, et al. Control of dark current in photoelectrochemical (TiO2/I--I3_) and dye-sensitized solar cells. Chemical Communications 2005:4351-4353.
    [56] Hara K, Horiguchi T, Kinoshita T, et al. Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrystalline TiO2 solar cells. Solar Energy Materials and Solar Cells 2001, 70:151-161.
    [57] Kavan L and Gratzel M. Highly efficient semiconducting TiO2 photoelectrodes prepared by aerosol pyrolysis. Electrochimica Acta, 1995, 40:643-652.
    [58] Gomez M M, Beermann N, Lu J, et al. Dye-sensitized sputtered titanium oxide films for photovoltaic applications: Influence of the O2/Ar gas flow ratio during the deposition. Solar Energy Materials and Solar Cells 2003, 76:37-56.
    [59] Morrison P W, Raghavan R, Timpone A J, et al. In situ Fourier transform infrared characterization of the effect of electrical fields on the flame synthesis of TiO2 particles. Chemistry of Materials, 1997, 9:2702-2708.
    [60] Chen Q W, Qian Y T, Chen Z Y, et al. Preparation of TiO2 powders with different morphologies by an oxidation hydrothermal combination method. Materials Letters, 1995, 22:77-80.
    [61] M. K. Nazeeruddin, E. Miiller, P. Liska, et al. Conversion of light to electricity by cis-X2bis(2,2’-bipyridyl- 4,4’-dicarboxylate) ruthenium(Ⅱ) charge-transfer sensitizers (x=Cl?, Br?, I?, CN? and SCN?) on nanocrystalline TiO2 electrodes. Journal of the American Chemical Society, 1993, 115:6382.
    [62] Barbe C J, Arendse F, Comte P, et al. Nanocrystalline titanium oxide electrodes for photovoltaic applications. Journal of the American Chemical Society, 1997, 80:3157-3171.
    [63] Yanagida S, Kitamura T, and Kohmoto M. Electron transport in nano-structured TiO2 electrodes for improvement of dye-sensitized solar cells. Electrochemistry, 2002, 70:399-401.
    [64] Cameron P J and Peter L M. Characterization of titanium dioxide blocking layers in dye-sensitized nanocrystalline solar cells. Journal of Physical Chemistry B, 2003, 107:14394-14400.
    [65] Bach U, Lupo D, Comte P, et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 1998, 395:583-585.
    [66] Hore S, Vetter C, Kern R, et al. Influence of scattering layers on efficiency of dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2006, 90:1176-1188.
    [67] O'Regan B C, Scully S, Mayer A C, et al. The effect of Al2O3 barrier layers in TiO2/Dye/CuSCN photovoltaic cells explored by recombination and DOS characterization using transient photovoltage measurements. Journal of Physical Chemistry B, 2005, 109:4616-4623.
    [68] Bandaranayake K M P, Senevirathna M K I, Weligamuwa P, et al. Dye-sensitized solar cells made from nanocrystalline TiO2 films coated with outer layers of different oxide materials. Coordination Chemistry Reviews, 2004, 248:1277-1281.
    [69] Wang P, Wang L D, Ma B B, et al. TiO2 Surface modification and characterization with nanosized PbS in dye-sensitized solar cells. Journal of Physical Chemistry B, 2006, 110:14406-14409.
    [70] Wang P, Wang L D, Li B, et al. Improved voltage and fill factor by using zinc oxide thin film as a barrier layer in dye-sensitized solar cells. Chinese Physics Letters, 2005, 22:2708-2710.
    [71] Wu S J, Han H W, Tai Q D, et al. Improvement in dye-sensitized solar cells with a ZnO-coated TiO2 electrode by rf magnetron sputtering. Applied Physics Letters, 2008, 92:122106.
    [72] Wang Z S, Yanagida M, Sayama K, et al. Electronic-insulating coating of CaCO3 on TiO2 electrode in dye-sensitized solar cells: Improvement of electron lifetime and efficiency. Chemistry of Materials 2006, 18:2912-2916.
    [73] Lee S, Kim J Y, Hong K S, et al. Enhancement of the photoelectric performance of dye-sensitized solar cells by using a CaCO3-coated TiO2 nanoparticle film as an electrode. Solar Energy Materials and Solar Cells, 2006:2405-2412.
    [74] Wu S, Han H W, Tai Q D, et al. Enhancement in dye-sensitized solar cells based on MgO-coated TiO2 electrodes by reactive DC magnetron sputtering. Nanotechnology, 2008, 19:215704.
    [75] Adachi M, Murata Y, Takao J, et al. Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the "Oriented attachment" Mechanism. Journal of the American Chemical Society, 2004, 126:14943-14949.
    [76] Law M, Greene L E, Johnson J C, et al. Nanowire dye-sensitized solar cells. Nature Materials, 2005, 4:455-459.
    [77] Daibin Kuang, Jeremie Brillet, Peter Chen, et al. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells ACS Nano, 2008, 2:1113-1116.
    [78] Chen W, Geng Y, Sun X D, et al. Achievement of thick mesoporous TiO2 crystalline films by one-step dip-coating approach. Microporous and Mesoporous Materials 2008, 111:219-227.
    [79] Ferrere S, Zaban A, and Gregg B A. Dye sensitization of nanocrystalline tin oxide by perylene derivatives. Journal of Physical Chemistry B, 1997, 101:4490-4493.
    [80] Bjorksten U, Moser J, and Gratzel M. Photoelectrochemical studies on nanocrystalline hematite films. Chemistry of Materials, 1994, 6:858-863.
    [81] Rao T N and Bahadur L. Photoelectrochemical studies on dye-sensitized particulate ZnO thin-film photoelectrodes in nonaqueous media. Journal of the Electrochemical Society 1997, 144:179-185.
    [82] Yang S M, Huang C H, Zhai J, et al. High photostability and quantum yield of nanoporous TiO2 thin film electrodes co-sensitized with capped sulfides. Journal of Materials Chemistry, 2002, 12:1459-1464.
    [83]孔凡太,戴松元.染料敏化太阳电池研究进展.化学进展,2006, 18:1409-1424.
    [84] Nazeeruddin M K, Amirnasr M, Comte P, et al. Adsorption studies of counterions carried by the sensitizer cis-dithiocyanato(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium(Ⅱ) on nanocrystaline TiO2 films. Langmuir 2000, 16:8525-8528.
    [85] Robertson N. Optimizing dyes for dye-sensitized solar cells. Angewandte Chemie-International Edition, 2006, 45:2338-2345.
    [86] Gao F, Wang Y, Shi D, et al. Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. Journal of the American Chemical Society, 2008, 130:10720-10728.
    [87] Kuang D B, Ito S, Wenger B, et al. High molar extinction coefficient heteroleptic ruthenium complexes for thin film dye-sensitized solar cells. Journal of the American Chemical Society, 2006, 128:4146-4154.
    [88] Zukalova M, Zukal A, Kavan L, et al. Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells. Nano Letters, 2005, 5:1789-1792.
    [89] Tennakone K, Kumara G, Kottegoda I R M, et al. An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc. Chemical Communications, 1999:15-16.
    [90] Nakade S, Kambe S, Kitamura T, et al. Effects of lithium ion density on electron transport in nanoporous TiO2 electrodes. Journal of Physical Chemistry, B 2001, 105:9150-9152.
    [91] Liu Y, Hagfeldt A, Xiao X R, et al. Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell. Solar Energy Materials and Solar Cells, 1998, 55:267-281.
    [92] Lindstrom H, Rensmo H, Sodergren S, et al. Electron transport properties in dye-sensitized nanoporous-nanocrystalline TiO2 films. Journal of Physical Chemistry, 1996, 100:3084-3088.
    [93] Konno A, Kitagawa T, Kida H, et al. The effect of particle size and conductivity of CuI layer on the performance of solid-state dye-sensitized photovoltaic cells. Current Applied Physics, 2003:149-151.
    [94] Taguchi T, Zhang X T, Sutanto I, et al. Improving the performance of solid-state dye-sensitized solar cell using MgO-coated TiO2 nanoporous film. Chemical Communications, 2003:2480-2481.
    [95] Perera V P S, Senevirathna M K I, Pitigala P, et al. Doping CuSCN films for enhancement of conductivity: Application in dye-sensitized solid-state solar cells. Solar Energy Materials and Solar Cells, 2005, 86:443-450.
    [96] O'Regan B C and Lenzmann F. Charge transport and recombination in a nanoscale interpenetrating network of n-type and p-type semiconductors: Transient photocurrent and photovoltage studies of TiO2/Dye/CuSCN photovoltaic cells. Journal of Physical Chemistry B, 2004, 108:4342-4350.
    [97] He J J, Lindstrom H, Hagfeldt A, et al. Dye-sensitized nanostructured p-type nickel oxide film as a photocathode for a solar cell. Journal of Physical Chemistry B, 1999, 103:8940-8943.
    [98] Kruger J, Plass R, Gratzel M, et al. Improvement of the photovoltaic performance of solid-state dye-sensitized device by silver complexation of the sensitizer cis-bis(4,4'-dicarboxy-2,2'bipyridine)-bis(isothiocyanato) ruthenium(Ⅱ). Applied Physics Letters, 2002, 81:367-369.
    [99] Schmidt-Mende L, Bach U, Humphry-Baker R, et al. Organic dye for highly efficient solid-state dye-sensitized solar cells. Advanced Materials, 2005, 17:813-815.
    [100] Schmidt-Mende L, Zakeeruddin S M, and Gratzel M. Efficiency improvement in solid-state-dye-sensitized photovoltaics with an amphiphilic ruthenium-dye. Applied Physics Letters, 2005, 86:013504.
    [101] Fang X M, Ma T L, Guan G Q, et al. Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell. Journal of Electroanalytical Chemistry, 2004, 570:257-263.
    [102] Imoto K, Suzuki M, Takahashi K, et al. Activated carbon counter electrode for dye-sensitized solar cell. Electrochemistry, 2003, 71:944-946.
    [103] Murakami T N, Ito S, Wang Q, et al. Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. Journal of the Electrochemical Society, 2006, 153:A2255-A2261.
    [104] O'regan B, M G, and Fitzmaurice D. Optical electrochemistry. I, steady-state spectroscopy of conduction-band electrons in a metal oxide semiconductor electrode. Chemical physics letters, 1991, 183:89-93.
    [105] G Redmond, A O'Keeffe, C Burgess, et al. Spectroscopic determination of the flatband potential of transparent nanocrystalline zinc oxide films. Journal of Physical Chemistry, 1993, 97:11081-11086.
    [106] G Redmond and Fitzmaurice D. Spectroscopic determination of flatband potentials for polycrystalline titania electrodes in nonaqueous solvents. Journal of Physical Chemistry, 1993, 97:1426-1430.
    [107] G Rothenberger, D Fitzmaurice, and Gratzel M. Spectroscopy of conduction band electrons in transparent metal oxide semiconductor films: Optical determination of the flatband potential of colloidal titanium dioxide films. Journal of Physical Chemistry, 1992, 96:5983-5986.
    [108]潘旭,戴松元,王孔嘉等.染料敏化纳米薄膜太阳电池中离子液体基电解质的研究进展.物理化学学报2005, 21:697-702.
    [109] Wang P, Zakeeruddin S M, Comte P, et al. Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. Journal of the American Chemical Society, 2003, 125:1166-1167.
    [110] Wang P, Zakeeruddin S M, Humphry-Baker R, et al. A binary ionic liquid electrolyte to achieve >= 7% power conversion efficiencies in dye-sensitized solar cells. Chemistry Of Materials, 2004, 16:2694-2696.
    [111] Bai Y, Cao Y M, Zhang J, et al. High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts. Nature Materials. 2008, 7:626-630.
    [112] Cahen D, Hodes G, Gratzel M, et al. Nature of photovoltaic action in dye-sensitized solar cells. Journal of Physical Chemistry B, 2000, 104:2053-2059.
    [113] Wang Z S, Sayama K, and Sugihara H. Efficient eosin Y dye-sensitized solar cell containing Br-/Br3_electrolyte. Journal of Physical Chemistry B, 2005, 109:22449-22455.
    [114] Bergeron B V, Marton A, Oskam G, et al. Dye-sensitized SnO2 electrodes with iodide and pseudohalide redox mediators. Journal of Physical Chemistry, B 2005, 109:937-943.
    [115] Oskam G, Bergeron B V, Meyer G J, et al. Pseudohalogens for dye-sensitized TiO2 photoelectrochemical cells. Journal of Physical Chemistry, B 2001, 105:6867-6873.
    [116] Shi C W, Dai S Y, Wang K J, et al. Influence of various cations on redox behavior of I- and I 3_and comparison between KI complex with 18-crown-6 and L1, 2-dimethyl-3-propylimidazolium iodide in dye-sensitized solar cells. Electrochimica Acta, 2005, 50:2597-2602.
    [117] Kambe S, Nakade S, Kitamura T, et al. Influence of the electrolytes on electron transport in mesoporous TiO2-electrolyte systems. Journal of Physical Chemistry B, 2002, 106:2967-2972.
    [118] Kusama H and Arakawa H. Influence of benzimidazole additives in electrolytic solution on dye-sensitized solar cell performance. Journal of Photochemistry and Photobiology a-Chemistry, 2004, 162:441-448.
    [119] Kusama H and Arakawa H. Influence of pyrimidine additives in electrolytic solution on dye-sensitized solar cell performance. Journal of Photochemistry and Photobiology a-Chemistry 2003, 160:171-179.
    [120] Mohmeyer N, Wang P, Schmidt H W, et al. Quasi-solid-state dye sensitized solar cells with 1,3:2,4-di-o-benzylidene-d-sorbitol derivatives as low molecular weight organic gelators. Journal of Materials Chemistry, 2004, 14:1905-1909.
    [121] Sakaguchi S, Ueki H, Kato T, et al. Quasi-solid dye sensitized solar cells solidified with chemically cross-linked gelators-control of TiO2/gel electrolytes and counter Pt/gel electrolytes interfaces. Journal of Photochemistry and Photobiology A-Chemistry Volume, 2004, 164:117-122.
    [122] Kubo W, Kambe S, Nakade S, et al. Photocurrent-determining processes in quasi-solid-state dye-sensitized solar cells using ionic gel electrolytes. Journal of Physical Chemistry B, 2003, 107:4374-4381.
    [123] Kubo W, Kitamura T, Hanabusa K, et al. Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator. Chemical Communications, 2002:374-375.
    [124]侯仲科,陈立功,宋健等.有机低分子凝胶因子.化学通报,2005, 9:643-649.
    [125] Kubo W, Murakoshi K, Kitamura T, et al. Quasi-solid-state dye-sensitized TiO2 solar cells: Effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodine. Journal of Physical Chemistry B, 2001, 105:12809-12815.
    [126] Kubo W, Murakoshi K, Kitamura T, et al. Fabrication of quasi-solid-state dye-sensitized TiO2 solar cells using low molecular weight gelators. Chemistry Letters, 1998:1241-1242.
    [127]李景虹.先进电池材料.北京:化学工业出版社, 2004.
    [128] Kang J, Li W, Wang X, et al. Polymer electrolytes from PEO and novel quaternary ammonium iodides for dye-sensitized solar cells. Electrochimica Acta, 2003, 48:2487-2491.
    [129] Wang L, Fang S B, Lin Y, et al. A 7.72% efficient dye sensitized solar cell based on novel necklace-like polymer gel electrolyte containing latent chemically cross-linked gel electrolyte precursors. Chemical Communications, 2005:5687-5689.
    [130] Murai S, Mikoshiba S, Sumino H, et al. Quasi-solid dye sensitised solar cells filled with phase-separated chemically cross-linked ionic gels. Chemical Communications, 2003:1534-1535.
    [131] Ileperuma O A, Dissanayake M, and Somasundaram S. Dye-sensitised photoelectrochemical solar cells with polyacrylonitrile based solid polymer electrolytes. Electrochimica Acta, 2002, 47:2801-2807.
    [132]魏月琳,黄昀昉,吴季怀等.聚丙烯酸电解质准固态染料敏化TiO2太阳能电池.人工晶体学报,2005, 34:412-416.
    [133] Asano T, Kubo T, and Nishikitani Y. Electrochemical properties of dye-sensitized solar cells fabricated with PVDF-type polymeric solid electrolytes. Journal of Photochemistry and Photobiology A-Chemistry, 2004, 164:111-115.
    [134] Wang P, Zakeeruddin S M, Exnar I, et al. High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte. Chemical Communications, 2002:2972-2973.
    [135]郭力,戴松元,王孔嘉等. P(VDF-HFP)基凝胶电解质染料敏化纳米TiO2薄膜太阳电池.高等学校化学学报,2005, 26:1934-1937.
    [136] Komiya R, Han L Y, Yamanaka R, et al. Highly efficient quasi-solid state dye-sensitized solar cell with ion conducting polymer electrolyte. Journal of Photochemistry and Photobiology A-Chemistry, 123-127.
    [137] Weston J E and Steele B C H. Effects of inert fillers on the mechanical and electrochemical properties of lithium salt poly (ethylene-oxide) polymer electrolytes. Solid State Ionics, 1982, 7:75-79.
    [138] Weston J E and Steele B C H. Effects of preparation method on properties of lithium salt poly(ethylene oxide) polymer electrolytes. Solid State Ionics, 1982, 7:81-88.
    [139] Wieczorek W, Such K, Wycislik H, et al. Modifications of crystalline-structure of peo polymer electrolytes with ceramic additives. Solid State Ionics, 1989, 36:255-257.
    [140] Croce F, Appetecchi G B, Persi L, et al. Nanocomposite polymer electrolytes for lithium batteries. Nature, 1998, 394:456-458.
    [141] Wang P, Zakeeruddin S M, and Gratzel M. Solidifying liquid electrolytes with fluorine polymer and silica nanoparticles for quasi-solid dye-sensitized solar cells. Journal Of Fluorine Chemistry, 2004, 125:1241-1245.
    [142] Stathatos E, Lianos R, Zakeeruddin S M, et al. A quasi-solid-state dye-sensitized solar cell based on a sol-gel nanocomposite electrolyte containing ionic liquid. Chemistry of Materials, 2003, 15:1825-1829.
    [143] Yang H, Cheng Y F, Li F Y, et al. Quasi-solid-state dye-sensitized solar cells based on mesoporous silica SBA-15 framework materials. Chinese Physics Letters, 2005, 22:2116-2118.
    [144] Kato T, Kado T, Tanaka S, et al. Quasi-solid dye-sensitized solar cells containing nanoparticles modified with ionic liquid-type molecules. Journal of the Electrochemical Society, 2006, 153:A626-A630.
    [145] Wu C G and Bein T. Microwave synthesis of molecular sieve MCM-41. Chemical Communications, 1996:925-926.
    [146] Lin W Y, Chen J S, Sun Y, et al. Bimodal mesopore distribution in a silica prepared by calcining a wet surfactant-containing silicate gel. Journal of the Chemical Society-Chemical Communications, 1995:2367-2368.
    [147] Biz S and Occelli M L. Synthesis and characterization of mesostructured materials. Catalysis Reviews-Science and Engineering, 1998, 40:329-407.
    [148] Chatterjee M, Iwasaki T, Hayashi H, et al. Room-temperature formation of thermally stable aluminium-rich mesoporous MCM-41. Catalysis Letters, 1998, 52:21-23.
    [149] Hoppe R, Ortlam A, Rathousky J, et al. Synthesis of titanium-containing MCM-41 mesoporous molecular sieves in the presence of zinc phthalocyanine and rhodamine B. Microporous Materials, 1997, 8:267-273.
    [150] Munoz B, Ramila A, Perez-Pariente J, et al. MCM-41 organic modification as drug delivery rate regulator. Chemistry of Materials, 2003, 15:500-503.
    [151] Grun M, Kurganov A A, Schacht S, et al. Comparison of an ordered mesoporous aluminosilicate, silica, alumina, titania and zirconia in normal-phase high-performance liquid chromatography. Journal of Chromatography A, 1996, 740:1-9.
    [152] Burkett S L, Sims S D, and Mann S. Synthesis of hybrid inorganic-organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors. Chemical Communications, 1996:1367-1368.
    [153] Walcarius A and Delacote C. Rate of access to the binding sites in organically modified silicates. 3. Effect of structure and density of functional groups in mesoporous solids obtained by the co-condensation route. Chemistry of Materials, 2003, 15:4181-4192.
    [154] Davis S A, Breulmann M, Rhodes K H, et al. Template-directed assembly using nanoparticle building blocks: A nanotectonic approach to organized materials. Chemistry of Materials, 2001, 13:3218-3226.
    [155] Lin H P and Mou C Y. ''tubules-within-a-tubule'' hierarchical order of mesoporous molecular sieves in MCM-41. Science, 1996, 273:765-768.
    [156] Lin H X, Cui K, Yao Y W, et al. A simple route for preparing radiolarian-like mesoporous silica from water-diethyl ether binary solvent system. Chemistry Letters, 2005, 34:918-919.
    [157] Ryoo R and Kim J M. Structural order in MCM-41 controlled by shifting silicate polymerization equilibrium. Journal of the Chemical Society-Chemical Communications, 1995:711-712.
    [158] Liu Y and Pinnavaia T J. Assembly of hydrothermally stable aluminosilicate foams and large-pore hexagonal mesostructures from zeolite seeds under strongly acidic conditions. Chemistry of Materials, 2002, 14:3-5.
    [159] Mann S. Biomineralization: Principles and concepts in bioinorganic materials chemistry. Oxford University Press, 2001.
    [160] Stephen H and Stephen T. Solubilities of inorganic and organic compounds, First ed. Pergamon Press, Oxford. 1963.
    [161] Jeon H S, Nakatani A I, Hobbie E K, et al. Phase inversion of polybutadiene/polyisoprene blends under quiescent and shear conditions. Langmuir, 2001, 17:3087-3095.
    [162] Prigogine I. Non-eauilibrium statistical mechanics. Interscience Publishers, New York, 1962.
    [163] Hubert D H W, Jung M, Frederik P M, et al. Vesicle-directed growth of silica. Advanced Materials 2000, 12:1286-1290.
    [164] Tanev P T, Liang Y, and Pinnavaia T J. Assembly of mesoporous lamellar silicas with hierarchical particle architectures. Journal of the American Chemical Society, 1997, 119:8616-8624.
    [165] Cai Q, Luo Z S, Pang W Q, et al. Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium. Chemistry of Materials, 2001, 13:258-263.
    [166] Huo Q S, Margolese D I, and Stucky G D. Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chemistry of Materials, 1996, 8:1147-1160.
    [167] Jonsson B, Lindaman B, Holmberg K, et al. Surfactants and polymers in aqueous solution. Wiley, New York. 1998.
    [168] Xia Y, Goldmints I, Johnson P W, et al. Temporal evolution of microstructures in aqueous CTAB/SOS and CTAB/HDBS solutions. Langmuir, 2002, 18:3822-3828.
    [169] Tacke R. Milestones in the biochemistry of silicon: From basic research to biotechnological applications. Angewandte Chemie-International Edition 1999, 38:3015-3018.
    [170] Huynh W U, Dittmer J J, and Alivisatos A P. Hybrid nanorod-polymer solar cells. Science 2002, 295:2425-2427.
    [171] Volkmer D, Tugulu S, Fricke M, et al. Morphosynthesis of star-shaped titania-silica shells. Angewandte Chemie-International Edition, 2003, 42:58-61.
    [172] Sun Q Y, Kooyman P J, Grossmann J G, et al. The formation of well-derined hollow silica spheres with multilamellar shell structure. Advanced Materials, 2003, 15:1097-1100.
    [173] Muthusamy E, Walsh D, and Mann S. Morphosynthesis of organoclay microspheres with sponge-like or hollow interiors. Advanced Materials, 2002, 14:969-972.
    [174] Sun Q, Magusin P C M M, Mezari B, et al. The formation of gigantic hollow silica spheres from an EO76-PO29EO76/Butanol/Bthanol/H2O quaternary system. Journal of Materials Chemistry, 2005, 15:256-259.
    [175] Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 1992, 114:10834-10843.
    [176] Alfredsson V and Anderson M W. Structure of MCM-48 revealed by transmission electron microscopy. Chemistry of Materials, 1996, 8:1141-1146.
    [177] Nakamura T, Mizutani M, Nozaki H, et al. Formation mechanism for monodispersed mesoporous silica spheres and its application to the synthesis of core/shell particles. Journal of Physical Chemistry C, 2007, 111:1093-1100.
    [178] Liu S Q, Cool P, Collart O, et al. The influence of the alcohol concentration on the structural ordering of mesoporous silica: Cosurfactant versus cosolvent. Journal of Physical Chemistry B, 2003, 107:10405-10411.
    [179] Tan B and Rankin S E. Interfacial alignment mechanism of forming spherical silica with radially oriented nanopores. Journal of Physical Chemistry B, 2004, 108:20122-20129.
    [180] Yang C M, Kim H S, Na B K, et al. Gel-type polymer electrolytes with different types of ceramic fillers and lithium salts for lithium-ion polymer batteries. Journal of Power Sources, 2006, 156:574-580.
    [181] Nogueira A F, Longo C, and De Paoli M A. Polymers in dye sensitized solar cells: Overview and perspectives. Coordination Chemistry Reviews, 2004, 248:1455-1468.
    [182] Tarascon J M and Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414:359-367.
    [183] Wang H X, Li H, Xue B F, et al. Solid-state composite electrolyte LiI/3-hydroxypropionitrile/SiO2 for dye-sensitized solar cells. Journal of the American Chemical Society, 2005, 127:6394-6401.
    [184] Jayathilaka P, Dissanayake M, Albinsson I, et al. Effect of nano-porous Al2O3 on thermal, dielectric and transport properties of the (PEO)(9)LiTFSI polymer electrolyte system. Electrochimica Acta, 2002, 47:3257-3268.
    [185] Liu Y, Lee J Y, and Hong L. Morphology, crystallinity, and electrochemical properties of in situ formed poly(ethylene oxide)/TiO2 nanocomposite polymer electrolytes. Journal of Applied Polymer Science, 2003, 89:2815-2822.
    [186] Tjong S C and Liang G D. Electrical properties of low-density polyethylene/zno nanocomposites. Materials Chemistry and Physics, 2006, 100:1-5.
    [187] Fan L Z and Maier J. Composite effects in poly(ethylene oxide)-succinonitrile based all-solid electrolytes. Electrochemical Communication, 2006, 8:1753-1756.
    [188] Xi J Y and Tang X Z. Investigations on the enhancement mechanism of inorganic filler on ionic conductivity of peo-based composite polymer electrolyte: The case of molecular sieves. Electrochimica Acta, 2006, 51:4765-4770.
    [189] Gentili V, Panero S, Reale P, et al. Composite gel-type polymer electrolytes for advanced, rechargeable lithium batteries. Journal of Power Sources, 2007, 170:185-190.
    [190] Li Y X and Fedkiw P S. Rate capabilities of composite gel electrolytes containing fumed silica nanoparticles. Journal of the Electrochemical Society, 2006, 153:A2126-A2132.
    [191] Hou J and Baker G L. Preparation and characterization of cross-linked composite polymer electrolytes. Chemistry of Materials, 1998, 10:3311-3318.
    [192] Yang L M, Wang Y J, Luo G S, et al. A new 'ph-induced rapid colloid aggregation' method to prepare micrometer-sized spheres of mesostructured silica in water-in-oil emulsion. Microporous and Mesoporous Materials, 2006, 94:269-276.
    [193] Cai Q, Geng Y, Zhao X, et al. Morphological classification of mesoporous silicas synthesized in a binary water-ether solvent system. Microporous and Mesoporous Materials, 2008, 108:123-135.
    [194] Huang Z H, Kang F Y, Huang W L, et al. Pore structure and fractal characteristics of activated carbon fibers characterized by using HRTEM. Journal of Colloid and Interface Science, 2002, 249:453-457.
    [195] Cui K, Cai Q, Chen X H, et al. Mophologies of vesicular silica templated by cationic surfactant with the auxiliary of diethyl ether. Microporous and Mesoporous Materials, 2004, 68:61-64.
    [196] Rouquerol J, Avnir D, Fairbridge C W, et al. Recommendations for the characterization of porous solids. Pure and Applied Chemistry, 1994, 66:1739-1758.
    [197] Groen J C, Brouwer S, Peffer L A A, et al. Application of mercury intrusion porosimetry for characterization of combined micro- and mesoporous zeolites. Particle & Particle Systems Characterization, 2006, 23:101-106.
    [198] Bagshaw S A. Morphosynthesis of macrocellular mesoporous silicate foams. Chemical Communications, 1999, 9:767-768.
    [199] Siekierski M, Wieczorek W, and Przyluski J. Ac conductivity studies of composite polymeric electrolytes. Electrochimica Acta, 1998, 43:1339-1342.
    [200] Nan C W, Fan L Z, Lin Y H, et al. Enhanced ionic conductivity of polymer electrolytes containing nanocomposite SiO2 particles. Physical Review Letters, 2003, 91:266104.
    [201] Oregan B and Gratzel M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353:737-740.
    [202] Snaith H J and Schmidt-Mende L. Advances in liquid-electrolyte and solid-state dye-sensitized solar cells. Advanced Materials, 2007, 19:3187-3200.
    [203] Gratzel M. Solar energy conversion by dye-sensitized photovoltaic cells. inorganic chemistry, 2005, 44:6841-6851.
    [204] Wang N, Lin H, Li J B, et al. Improved quasi-solid dye-sensitized solar cells by composite ionic liquid electrolyte including layered alpha-zirconium phosphate. Applied Physics Letters, 2006, 89:194104.
    [205] Huo Z P, Dai S Y, Wang K J, et al. Nanocomposite gel electrolyte with large enhanced charge transport properties of an I3—/I- redox couple for quasi-solid-state dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2007, 91:1959-1965.
    [206] Usui H, Matsui H, Tanabe N, et al. Improved dye-sensitized solar cells using ionic nanocomposite gel electrolytes. Journal of Photochemistry and Photobiology a-Chemistry, 2004, 164:97-101.
    [207] Tominaga Y, Asai S, Sumita M, et al. Fast ionic conduction in PEO-based composite electrolyte filled with ionic liquid-modified mesoporous silica. Electrochemical and Solid-State Letters, 2005, 8:A22-A25.
    [208] Yang H, Cheng Y F, Zhou Z G, et al. Ionic liquid based electrolyte with mesoporous silica SBA-15 as framework for quasi-solid-state dye-sensitized solar cells. Chinese Journal of Chemistry, 2006, 24:1737-1740.
    [209] Cotter J L, wright W W, and Knight G J. Thermal degradation of some perfluoroalkylene-linked polymers. British Polymer Journal, 1975, 7:389-396.
    [210] Jacob M M E, Hackett E, and Giannelis E P. From nanocomposite to nanogel polymer electrolytes. Journal of Materials Chemistry, 2003, 13:1-5.
    [211] Croce F, Sacchetti S, and Scrosati B. Advanced, lithium batteries based on high-performance composite polymer electrolytes. Journal of Power Sources, 2006, 162:685-689.
    [212] Snyder J F, Ratner M A, and Shriver D F. Ion conductivity of comb polysiloxane polyelectrolytes containing oligoether and perfluoroether sidechains. Journal of the Electrochemical Society, 2003, 150:A1090-A1094.
    [213] Snyder J F, Ratner M A, and Shriver D F. Polymer electrolytes and polyelectrolytes: Monte carlo simulations of thermal effects on conduction. Solid State Ionics, 2001:249-257.
    [214] Mclachlan D S. Measurement and analysis of a model dual-conductivity medium using a generalised effective-medium theory. Solid State Physics 1988, 21:1521-1532.
    [215] Nitzan A and Ratner M A. Conduction in polymers-dynamic disorder transport. Journal of Physical Chemistry, 1994, 98:1765-1775.
    [216] Hackett E, Manias E, and Giannelis E P. Computer simulation studies of peo/layer silicate nanocomposites. Chemistry of Materials, 2000, 12:2161-2167.
    [217]张祖训.超微电极电化学.北京:科学出版社1998.
    [218] Hoshikawa T, Yamada M, Kikuchi R, et al. Impedance analysis for dye-sensitized solar cells with a three-electrode system. Journal of Electroanalytical Chemistry, 2005, 577:339-348.
    [219] Hoshikawa T, Yamada M, Kikuchi R, et al. Impedance analysis of internal resistance affecting the photoelectrochemical performance of dye-sensitized solar cells. Journal of the Electrochemical Society, 2005, 152:E68-E73.
    [220] Haque S A, Tachibana Y, Willis R L, et al. Parameters influencing charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films. Journal of Physical Chemistry, B, 2000, 104:538-547.
    [221] Koide N, Islam A, Chiba Y, et al. Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit. Journal of Photochemistry and Photobiology a-Chemistry, 2006, 182:296-305.
    [222] Hoshikawa T, Ikebe T, Kikuchi R, et al. Effects of electrolyte in dye-sensitized solar cells and evaluation by impedance spectroscopy. Electrochimica Acta, 2006, 51:5286-5294.
    [223] Hoshikawa T, Kikuchi R, and Eguchi K. Impedance analysis for dye-sensitized solar cells with a reference electrode. Journal of Electroanalytical Chemistry,. 2006, 588:59-67.
    [224] Wang N, Lin H, Li X, et al. Enhanced exchange current density and diffusion coefficient of iodide-based liquid electrolyte by layered alpha-zirconium phosphate. Electrochemistry Communications, 2006, 8:946-950.
    [225] Monnier A, Schuth F, Huo Q, et al. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science, 1993, 261:1299-1303.
    [226] Zhao W and Li Q Z. Synthesis of nanosize MCM-48 with high thermal stability. Chemistry of Materials, 2003, 15:4160-4162.
    [227] Quinn B M, Ding Z F, Moulton R, et al. Novel electrochemical studies of ionic liquids. Langmuir, 2002, 18:1734-1742.
    [228] Yanagida S. Recent research progress of dye-sensitized solar cells in japan. Comptes Rendus Chimie, 2006, 9:597-604.
    [229]徐如人,庞文琴,于吉红等.分子筛与多孔材料化学.北京:科学出版社2004.
    [230] Arakawa H and Hara K. Dye-sensitized solar cells. Chichester: John Wiley&Sons Ltd 2003.
    [231] Kumar A, Santangelo P G, and Lewis N S. Electrolysis of water at strontium titanate (srtio3) photoelectrodes: Distinguishing between the statistical and stochastic formalisms for electron-transfer processes in fuel-forming photoelectrochemical systems. Journal of Physical Chemistry, 1992, 96:834-842.
    [232] Wang Q, Moser J E, and Gratzel M. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. Journal of Physical Chemistry B, 2005, 109:14945-14953.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700