用户名: 密码: 验证码:
高活性寡糖筛选及其促进植物生长的生理机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
施用外源物质调控植物生长发育是农业生产中的一项重要措施。生物活性寡糖作为外源激发子对植物生长及防御反应具有一定的调节功能,但目前研究多关注表观生物效应,对其在植物中信号传导过程及引发的系列生物学效应机制并不十分清楚。另外,不同种类寡糖的化学结构和生理功能也存在有差异,目前作为植物生长调节剂应用开发的并不是很多。鉴于此,本课题采用我国丰富的海藻酸钠及其寡糖、寡聚半乳糖醛酸和壳寡糖为材料,利用现代生物学和化学技术,筛选出高活性寡糖,确定其最佳施用方式;并采用水培试验,研究该寡糖对菜心光合作用、碳氮代谢、养分吸收和信号传导的影响,从而探讨其对植物的促生长生理机制。主要获得以下结论:
     1.采用土培和水培试验,研究了4种寡糖类物质在菜心上的生物学效应
     1.1产量和品质:4种寡糖叶片喷施均能一定程度促进菜心增产,改善其品质,其中壳寡糖20 mg/L和海藻酸钠寡糖40 mg/L浓度施用效果最好。海藻酸钠及其寡糖根部处理能提高菜心产量,改善其品质,且在一定浓度范围内(0-50 mg/L),产量和施用浓度间呈二次多项式变化规律;寡聚半乳糖醛酸和壳寡糖根部处理对菜心增产作用不大,高浓度时还有明显的抑制作用。
     1.2养分吸收:在本试验浓度范围内(0-100 mg/L),海藻酸钠及其寡糖和寡聚半乳糖醛酸低浓度处理均能显著促进菜心对N、P、Ca、Mg、B、Mn、Zn的吸收;低浓度时寡聚半乳糖醛酸对K的吸收也有一定的促进作用;壳寡糖低浓度处理能促进菜心对N、Mg、B、Cu、Zn的吸收,高浓度引起Cu的大量吸收,同时抑制N、P、K、Mg、Mn的吸收及Ca向地上部的转运。
     1.3根系特性:海藻酸钠及其寡糖处理对菜心根系形态及生理特性均有显著的改善效果;寡聚半乳糖醛酸10 mg/L处理对菜心根系生长也有一定的促进作用;壳寡糖10-200 mg/L处理对菜心根系形态及生理特性则有明显的抑制作用。
     1.4综合而言,4种寡糖类物质中,海藻酸钠寡糖对菜心生长发育具有相对最佳的促进作用,且以根部施用效果较好。
     2.采用水培试验,研究了海藻酸钠寡糖对植物光合碳代谢的调节及其作用机制
     2.1光合特性:海藻酸钠寡糖可提高菜心叶片的Pn、WUE和CE;并可通过增加LSP,降低LCP,扩大其光强可利用范围,从而促进光能的捕获和转化以及CO2的同化。
     2.2类囊体膜组成:海藻酸钠寡糖可增加菜心叶片类囊体膜色素及其蛋白复合体含量,并提高类囊体膜不饱和脂肪酸所占的比例,以维持膜的稳定性和流动性。同时诱导PSⅡ相关蛋白的表达;还可显著提高菜心叶绿体Mg2+-ATPase与Ca2+-ATPase活性,从而加快光合磷酸化进程。
     2.3类囊体膜功能:海藻酸钠寡糖处理前期促进类囊体膜对红光的吸收,后期降低对蓝光的吸收;PSⅡ荧光发射强度和希尔反应活力也有提高;海藻酸钠寡糖还可提高菜心叶片Fo、Fm、Fv、ETR和NPQ,从而促进光能的吸收和光合电子传递。
     2.4碳代谢:海藻酸钠寡糖可通过提高SS和SPS活性,促进菜心碳水化合物积累;并可通过诱导AI和NI活性,改变内部糖组成,从而提高其甜度。
     3.采用水培试验,研究了海藻酸钠寡糖对植物氮代谢的调节及其作用机制
     3.1正常钙水平下,海藻酸钠寡糖处理可显著提高菜心NR活性,使NH4+-N含量增加,N03--N含量降低;同时对GS、GDH和EP活性也有显著的促进作用。未施钙或低钙水平下,海藻酸钠寡糖对NR和GS的诱导作用均显著降低。说明海藻酸钠寡糖可加快植物氮代谢进程,且该效应与钙水平有关。
     3.2在培养液中添加钙代谢抑制剂EGTA、Vp、RR和CPZ后,海藻酸钠寡糖对菜心氨代谢的正相调节作用受到明显抑制,NR和GS活性及全氮和蛋白氮含量均有不同程度的降低,产量也有下降,表明Ca2+/CaM信号系统参与海藻酸钠寡糖对植物氮代谢的调节。
     3.3海藻酸钠寡糖主要通过诱导胞外Ca2+的进入,使[Ca2+]cyt浓度增加,激活植物生长相关的反应,同时胞内Ca2+库的释放也有一定的贡献;且其与钙形成的糖-钙复合物可能由于分子量过大的原因而不能通过质膜,最终在细胞壁间累积。
     4.采用水培试验,研究了海藻酸钠寡糖对植物内源激素代谢的影响
     海藻酸钠寡糖可促进菜心体内GA3的合成和运输,并能促进IAA向地下部和zR向地上部的运输,对ABA合成及其运输无显著影响,这导致叶片中ZR/ABA、ZR/GA、ZR/IAA和GA3/IAA比值的增加,从而有利于加快细胞的分裂或伸长,促进菜心植株生长。
     综上所述,海藻酸钠寡糖促进植物生长的可能生理机制为:被植物吸收后,在质外体空间内与Ca2+结合,形成糖-钙复合物,打破植物体内的钙稳态平衡,使[Ca2+]cyt增加,从而激活与生长发育相关的酶类,促进叶绿体对光能的吸收和转化,加快碳氮代谢进程;此外,还通过调控内源激素的水平及其平衡来加快植物细胞的分裂和伸长,促进根系的生长和养分吸收,最终表现为产量的增加和品质的改善。
The application of exogenous substances to regulate plant growth is an important agronomic practice in agricultural production. Biologically active oligosaccharides act as signal molecules, influencing plant growth and development as well as defense responses. Current researches pay more attention to their apparent biological effects on plants, but the signal transduction process in plant cells and the mechanisms by which they induce a series of biological effects are still largely unknown. Moreover, physiological effects in plants differ between oligosaccharides with different chemical structure, leading to their limited application in agricultural production. In view of these, using the techniques of modern biology and chemistry, highly active oligosaccharide to plants was screened from sodium alginate and its oligosaccharide, oligoglacturonide and chitosan-oligosaccharide, and the optimal application method was determined. Moreover, solution culture experiments were conducted to study its effects on photosynthesis, carbon and nitrogen metabolism, nutrient absorption and signal transduction of flowering Chinese cabbage (Brassica campestris L.var. utilis Tsen et Lee), and then the physiological mechanisms of plant growth promotion were discussed. The main results obtained were as follows:
     1. Soil and solution culture experiments were to study biological effects of four oligosaccharides on flowering Chinese cabbage
     1.1 The yield and quality:Spraying four oligosaccharides on leaves promoted the yield and quality of flowering Chinese cabbage to some extent, and the treatments of 20 mg/L chitosan-oligosaccharide and 40 mg/L alginate-derived oligosaccharide (ADOs) had the best effect. Both yield and quality were increased after the root-treatment with sodium alginate and its oligosaccharide, and the relationships between the yield and application concentration could be described by quadratic polynomial equation in certain concentration (0-50 mg/L). The root-treatment with oligoglacturonide and chitosan-oligosaccharide did not affect on the yield with low concentration and inhibited the growth of flowering Chinese cabbage with high concentration.
     1.2 Nutrient absorption:Under the concentration range (0-100 mg/L) in this experiment, sodium alginate and its oligosaccharides and oligoglacturonide had promotive effects on the absorption of N, P, Ca, Mg, B, Mn, Zn in low concentration. Oligoglacturonide with low concentration also promoted slightly the K absorption. Chitosan-oligosaccharide could promote the absorption of N, Mg, B, Cu, Zn in low concentrations, but caused the luxury absorption of Cu and reduced the absorption of N, P, K, Mg, Mn and the transport of Ca from the roots to the shoots in high concentrations.
     1.3 Root morphology and physiology:Sodium alginate and its oligosaccharide had significant improvement effects on root morphology and physiology of flowering Chinese cabbage.10 mg/L oligoglacturonide promoted slightly the root growth. 10-200 mg/L chitosan-oligosaccharide inhibited the root growth and physiology activity of flowering Chinese cabbage.
     1.4 To sum up, ADOs among four oligosaccharides had the best plant growth-promoting effects, with the better application of root-treatment.
     2. Solution culture experiment was conducted to study the regulation of ADOs on photosynthetic carbon metabolism and its function mechanism
     2.1 Photosynthetic characteristics:Application of ADOs raised net photosynthetic rate (Pn), water use efficiency (WUE) and CO2 carboxylation efficiency (CE) and light saturation point (LSP) of functional leaves, and decreased the light compensation point (LCP) to expand the range of light intensity utilized by photosynthesis, indicating that ADOs promoted the light capture and transformation as well as CO2 assimilation.
     2.2 The composition of thylakoid membranes:ADOs increased the contents of pigments and pigment-protein compliexes as well as the proportion of unsaturated fatty acids in the thylakoid membranes to maintain the fluidity and stability of the membranes. Moreover, ADOs induced the expression of proteins associated with photosystemⅡ(PHⅡ). The activity of Mg2+-ATPase and Ca2+-ATPase in the chloroplast also was raised significantly, indicating that ADOs promoted photosphosphorylation of the chloroplas.
     2.3 The function of thylakoid membranes:ADOs improved the absorption of the thylakoid membrane in the red band at early period, but reduced the absorption of thylakoid membrane in the blue band at lately period. PHⅡfluorescence emission intensity and Hill reaction activity were also improved. ADOs improved the minimal fluorescence (Fo), the maximal fluorescence (Fm), the variable fluorescence (Fv), PHⅡmaximal photochemical efficiency (Fv/Fm) and its electron transfer rate (ETR) and the non-photochemical quench (NPQ), therefore improving light energy capture and electronic transmission.
     2.4 Carbon metabolism:ADOs increased carbohydrate accumulation by enhancing the activity of sucrose synthase (SS) and sucrose phosphate synthase (SPS), and changed sugar composition by inducing the activity of acid invertase (AI) and neutral invertase (NI) to improve the sweetness of flowering Chinese cabbage.
     3. Solution culture experiment was conducted to study the regulation of ADOs on plant nitrogen metabolism and its function mechanism
     3.1 Under normal levels of calcium, ADOs improved the activity of nitrate reductase (NR), resulting in an increase of NH4+-N content and a decrease of NO3-N content; the activity of glutamine synthetase (GS), glutamate dehydrogenase (GDH) and endpeptidase (EP) was also enhanced. When calcium was either lacking altogether or inadequate, the ADOs-induced effects on NR and GS activity were weakened. These results indicated that ADOs promoted plant nitrogen metabolism, which is related to the supply of calcium.
     3.2 After adding EGTA (a Ca2+ chelator), verapamil (Vp) and ruthenium red (RR) (Ca2+ -channel blockers) and chlorpromazine (CPZ) (a CaM antagonist) to culture solution, the ADOs-induced effects on nitrogen metabolism were weakened. The activity of NR and GS activity as well as the contents of total nitrogen and protein nitrogen were reduced to some extent, finally leading to a decrease in yield of flowering Chinese cabbage. There results indicated that the Ca2+/CaM signal system are involved in the regulation of nitrogen metabolism through ADOs.
     3.3 ADOs induced an increase in [Ca2+]cyt concentration by the release of calcium from extracellular and intracellular stores to activate plant growth responses. Calcium-alginate did not cross the plasmalemma because of their greater molecular weight, resulting in greater quantities of calcium in the cell wall than in the cytoplasm with time.
     4. Solution culture experiment was conducted to study the regulation of ADOs on phytohormone metabolism
     ADOs enhanced the biosynthesis and transport of gibberellic acid (GA3), and the transport of indolacetic-3-acid (IAA) to the roots and trans-zeatin riboside (ZR) to the shoots, but did not affect abscisic acid (ABA), leading to an increase in the content ratio of ZR/ABA, ZR/GA3, ZR/IAA and GA3/IAA in leaves, which indicated that ADOs induced cell division and elongation to promote the growth of flowering Chinese cabbage.
     In a word, the physiological mechanisms of ADOs on promoting plant growth in flowering Chinese cabbage were:ADOs, on being absorbed by plants, form the macromolecular complexes with calcium in intercellular spaces, and thus alter calcium homeostasis to activate the enzymes associated with plant growth and development, thereby promoting the absorption and transformation of light in the chloroplast to accelerate carbon and nitrogen metabolism. Moreover, ADOs alter the levels and balance of endogenous phytohormones to accelerate the division and elongation of plant cells, thereby promoting root growth and nutrient absorption. These changes finally result in the increase in the yield and quality of flowering Chinese cabbage.
引文
1.安华明,陈力耕,樊卫国,胡西琴.高等植物中维生素C的功能、合成及代谢研究进展.植物学通报,2004,21(5):608-617.
    2.安志信,刘奎彬,马文荷,闻凤英.黄瓜、青椒对外源糖吸收、运转与分布研究.北方园艺,2001(3):11-12.
    3.鲍士旦.土壤农化分析.北京:中国农业出版社.2000.
    4.卜宁,马莲菊,马纯艳.褐藻胶寡糖浸种对高粱幼苗部分生理特性的影响.江苏农业科学,2007(2):40-42.
    5.卜宁,马莲菊,江晓路,王升厚.褐藻寡糖抗环磷酰胺诱导蚕豆根尖的细胞遗传毒性.细胞生物学杂志,2007(29):767-770.
    6.薄芯,李京霞,何立千.壳聚糖类植物保养剂对玉米根生理作用初探.北京联合大学学报(自然科学版),2003,17(3):32-35.
    7.蔡汉,李卫东,陈颖.水杨酸预处理对低温胁迫下茉莉幼苗光合作用及相关生理特性的影响.中国农业大学学报,2007,12(5):29-33.
    8.曹柳青,郝敏,贾晓梅.内源激素及植物生长调节剂对枣果实生长发育影响的研究进展.广西园艺,2008,19(5):67-68.
    9.陈春明,翁樱,庄勤标.水溶性壳聚糖的制备及其在葡萄保鲜中的应用.食品研究与开发,2008,29(7):130-133.
    10.陈范骏,米国华,刘建安,张福锁.玉米自交系木质部伤流液中氮素形态差异及其与氮效率的关系.中国农业科学,1999,32(5):43-48.
    11.陈海燕,张彬,何勇松.壳寡糖的研究进展和应用前景.广东畜牧兽医科技,2007,32(2):17-21.
    12.陈俊伟,谢鸣,秦巧平.植物糖信号与激素信号之间的联系.植物生理学通讯,2005,41(3):279-285.
    13.陈丽,陈晓艺,李冲伟,张亚楠,李宪臻.寡糖农药作用机理及生物来源研究进展.安徽农业科学,2008,36(13):5518-5519.
    14.陈惠萍,徐朗莱.壳聚糖对不结球白菜叶片氮代谢关键酶的调节作用.热带作物学报,2003,24(4):62-66.
    15.陈惠萍,徐朗莱.Ca2+/CaM在壳聚糖调控不结球白菜离体叶片氨同化关键酶活性中的作用.南京农业大学学报,2005,28(1):34-38.
    16.陈屏昭,樊钦平,罗家刚,刘忠荣,王磊,陈顺方.缺磷胁迫对脐橙光合色素和光合作用的影响.广东微量元素科学,2002,9(12):30-34.
    17.陈士林,张强,卫秀英,赵新亮,李冬莲.赤霉素和钙对棉花种子萌发的效应.河南农业科学,2005(5):18-20.
    18.陈薇,张德颐.植物组织中硝酸还原酶的提取、测定和纯化.植物生理化通讯,1980,(4):45-49.
    19.陈伟,马国瑞,李春九.植物激素对离子吸收运输和分布的影响.植物营养与肥料学报,1997,3(3):193-200.
    20.陈曦,代焕琴,张旭家,卢存福,蒋湘宁,王沙生.低温诱导及Ca2+信号对胡萝卜悬浮培养细胞抗冻蛋白的合成及细胞抗冻能力的影响.科学技术与工程.2002,2(3):23-26.
    21.陈向明,郑国生,张圣旺.钙对保护地栽培牡丹光合特性的影响.园艺学报,2001,28(6):572-574.
    22.陈筱春,文质君,屈菊兰.甲壳寡糖对运动小鼠红细胞畸变及脂质过氧化的保护.中国体育科技,2005,41(2):115-116.
    23.程建峰,潘小云,刘宜柏.土壤条件对陆稻根系生长的影响.土壤学报,2002,39(4):590-598.
    24.程建峰,戴廷波,荆奇,姜东,潘晓云,曹卫星.不同水稻基因型的根系形态生理特性与高效氮素吸收.土壤学报,2007,44(2):266-272.
    25.董权峰,于荣敏.寡糖研究新进展.食品与药品,2009,11(07):63-66.
    26.董群,方积平.多糖在医药领域中的应用.中国药学,2001,36(10):649-654.
    27.董学会,段留生,何钟佩,田晓莉,李建民,王保民,李召虎.30%己·乙水剂对玉米根系生理活性的调控效应.作物学报,2005,31(11):1500-1505.
    28.董滢.寡糖的生物学功能及其在畜牧业中的应用.饲料博览,2008(5):16-18.
    29.董志新,韩清芳,贾志宽,任广鑫.不同苜蓿(Medicago sativa L.)品种光合速率对光和CO2浓度的响应特征.生态学报,2007,27(6):2272-2278.
    30.杜昱光.化学与生命学科交叉新领域糖生物学与寡糖工程.中国微生态学杂志,2000,12(5):251-253.
    31.杜昱光,白雪芳.生命科学的一个前沿领域——寡聚糖工程.化学物理通讯,2001(9):3-5.
    32.杜昱光,白雪芳,虞星炬,韩秀文.寡聚糖类物质生理活性的研究.中国生化药物杂志,1997,18(5):268-271.
    33.杜昱光,白雪芳,赵小明,姜华.壳寡糖对烟草防御酶活性及同工酶酶谱的影响.中国生物防治,2002(5):83-86.
    34.段道环.功能性寡糖产品的开发与应用.农牧产品开发,1997(8):3-5.
    35.2008-2010年中国低聚糖市场调查及投资咨询报.http://www.askci.com/reports/ 2008-09/2008911103535.html.
    36.范金石,韩树盛,戴宝.天然活性物质甲壳低聚糖.中国畜牧兽医学分会第十次学术研讨会论文集.2002.
    37.冯建军,李健强,刘茜莉,宁君,孔繁祚.14C-寡糖在西瓜幼苗植株体内吸收传导和分布.高等学校化学学报,2004(12):2273-2277.
    38.傅华龙,何天久,吴巧玉.植物生长调节剂的研究与应用.生物加工过程,2008,6(4):7-12.
    39.傅雷.糖生物学的产生和发展.生物学通报,2006,41(12):27-28.
    40.宫晓黎,孙晓晖.寡聚甘露糖醛酸对骨髓造血作用的观察.泰山医学院学报,2001,22(2):129.
    41.龚明,李英,曹宗巽.植物体内的钙信使.植物学通报,1990,7(3):19-29.
    42.顾大路,朱云林,杨文飞,王伟中.浅谈植物生长调节剂市场现状与对策.江西农业学报,2010,22(2):169-171.
    43.郭丽民,张汝学,贾正平.寡糖的药理作用和机制研究进展.中成药,2006,28(9):1353-1356.
    44.郭卫华,赵小明,杜昱光.海藻酸钠寡糖对烟草幼苗生长及光合特性的影响.沈阳农业大学学报,2008,39(6):648-652.
    45.郭卫华,赵小明,杜昱光.壳寡糖对黄瓜种子萌发和幼苗生长及光合特性的影响.中国农业通报,2009,25(03):164-169.
    46.郭雪峰,李绍华,刘国杰,付占方,李松涛.桃果实和叶片中糖分的季节变化及其与碳代谢酶活性的关系研究.果树学报,2004,21(3):196-200.
    47.郭忠武,王来曦.糖化学研究进展.化学进展,1995,5(1):10.
    48.郝建军,玄美淑,何若韞.油菜素内酯对玉米幼苗光合速率与呼吸速率的影响.沈阳农业大学学报,1990,21(1):43-47.
    49.郝林华,石红旗,孙丕喜,陈靠山,李光友.牛蒡寡糖对黄瓜植株生理生化特性的影响.西北植物学报,2006,26(8):1612-1616.
    50.韩丽君,袁兆慧,范晓,王剑.寡糖的分离和结构分析方法.海洋科学集刊,2004,46:126-133.
    51.何福相,刘吉柱,张丽娟,王群,王德荣.以壳聚糖为原料的种籽处理剂制造使用方法CN中国专利),1990,1044748A.
    52.胡健,杨连新,周娟,王余龙,朱建国.开放式空气CO2浓度增高和施氮量对水稻结实期叶片内肽酶活力的影响.中国水稻科学,2008,22(2):155-160.
    53.华东师范大学生物系植物生理教研组.植物生理学实验指导.北京:人民教育出版社.1980.
    54.黄成林,赵昌恒,傅松玲,刘西军,姚玉敏,刘地.安徽休宁倭竹光合生理特性的研究.安徽农业大学学报,2005,32(2):187-191.
    55.黄海,汤玉玮.脱落酸和6-苄氨基嘌呤对离体小麦叶片6-氨基乙酰丙酸的调节作用.作物学报,1984(10):347-351.
    56.黄丽萍,刘宗明,姚波.甲壳质,壳聚糖在农业上的应用.天然产物研究与开发,1999,11(5):60-64.
    57.黄卓辉.叶绿体偶联因子腺苷三磷酸(ATPase)活力的测定.植物生理学实验于册.上海:上海科技出版社,1985.
    58.黄卓辉,魏家绵.光合磷酸化偶联机制研究.植物生理学报,1984,10:161-168.
    59.黄章立.壳寡糖包膜尿素的研制及其特性与肥效研究[硕士论文].浙江大学2004.
    60.扈学文,许秋瑾,金相灿,刘景辉,李立军,郭俊秀,欧阳坤.不同分子量壳寡糖对黑麦草种子萌发和幼苗抗病酶活性影响的研究.中国农业通报,2007,23(2):221-225.
    61.邝生鲁.现代精细化工高新技术与产品的合成工艺.北京:科学技术文献出版社.1997.
    62.蒋跃林,姚玉刚,张庆国,岳伟,陈庭甫,樊丽莉.大气二氧化碳浓度升高条件下大豆光合色素含量的变化.作物研究,2006(2):144-146.
    63.江琳琳,陈温福,陈晓艺,李宪臻.海藻酸寡糖生物活性研究.大连工业大学学报,2009,28(3):157-160.
    64.景岚,康俊,高瑞珍,李莉.寡糖对向日葵叶片细胞病程相关蛋白及细胞壁物质的诱导作用.西北植物学报,2009,29(6):1182-1186.
    65.赖寿鹏,倪晋山.吲哚乙酸对向日葵黄化幼苗下胚轴切段钾离子吸收的调节.植物生理学报,1983(4):391-401.
    66.雷江丽,杜永臣,朱德蔚.低温胁迫下不同耐冷性番茄品种幼叶细胞Ca2+分布变化的差异.园艺学报,2000,27(4):269-275.
    67.雷桅,汤绍虎,孙敏.糖生物学—生物化学领域的广袤前沿.生物学教学,2007(10):2-4.
    68.李采凤,马凤鸣,赵越,李文华.氮素形态对甜菜氮碳代谢关键酶活性及相关产物的影响.作物学报,2003,29(1):128-132.
    69.李常健,林庆华,张楚富.高等植物中氨同化酶及其同工酶研究.零陵师范高等专科学校学报,2000,21(3):20-22.
    70.李丽萍,韩涛.水杨酸保鲜大久保桃初探.食品科学,1999,20(7):61-63.
    71.李庆春,翁长仁,曹广才,吴东兵,何福相,刘吉柱,张丽娟.壳多糖溶液浸种对冬小麦籽粒产量和品质的影响.环境科学学报,1991,11(2):248-252.
    72.李君.复硝酚钠——新型植物生长调节剂.中国农业信息,2006(10):36.
    73.李军生,阎柳娟.豆类低聚糖的开发应用.广西工学院学报,1997,8(3):68-73.
    74.李建武.生物化学实验原理和方法.北京:北京大学出版社.1994.
    75.李合生.植物生理生化实验原理和技术.北京:高等教育出版社.2000.
    76.李合生.现代植物生理学.北京:高等教育出版社.2002.
    77.李科,卢向阳,彭丽莎,刘强.羧甲基壳聚糖对水稻氮代谢关键酶活性及籽粒蛋白质含量的影响.湖南农业大学学报,2001,27(6):421-424.
    78.李瑞国.壳聚糖衍生物的合成及其在化妆品中的应用.日用化学工业,2004,34(5):319-322.
    79.李蓉,粱恒.生物质谱-蛋白质组研究的关键技术.化学通报,2002(11):748-750.
    80.李雪驼,邱华.寡糖的种类及其生物活性功能.现代科技,1998,10(7):18-20.
    81.刘学剑.益生素、寡糖等绿色饲料添加剂的研发重点.中国饲料添加剂,2005(6):15-17.
    82.李艳,赵小明,夏秀英,栾雨时,杜昱光,李凤兰.壳寡糖对干旱胁迫下油菜光合参数的影响.作物学报,2008,34(2):326-329.
    83.李艳,李洪艳,王青,李康宁,张蕾蕾,赵小明,杜昱光,侯和胜.壳寡糖、氧化氮和植物激素在烟草气孔运动中的作用及其相互关系.植物生理学通讯,2010,46(6):575-578.
    84.梁建生,曹显祖,徐生,朱庆森,宋平.水稻籽粒库强度与淀粉累积之间关系的研究,作物学报,1994(20):685-691.
    85.廖飞勇,谢瑛,何平,范亚民.不同光强对薇甘菊生长及光系统的影响.生命科学研究,2003,7(4):355-359.
    86.刘刚.介绍两种新型植物生长调节剂.四川农业科技,2006(10):33.
    87.刘桂智,刘微,朱英波,巩振辉.壳聚糖在作物生产上的应用进展.河北科技师范学院学报,2007,21(3):76-80.
    88.刘晗,白雪芳,杜昱光,王克夷.寡糖的生物活性.精品与专用化学品,2005,13(13):15-18.
    89.刘鹏.钼和硼对大豆产量的影响及其生理机制研究[博士论文].浙江大学.2000.
    90.刘瑞志.褐藻寡糖促进植物生长与抗逆效应机理研究[博士论文].中国海洋大学.2009.
    91.刘新,孟繁霞,张署秋,娄成后.Ca2+参与气孔运动的信号传导.植物生理与分子生物学学报,2003,29(1):59-64.
    92.刘兴宇.新型植物生长调节剂复硝酚钠及其应用.农药应用科技,2007(14):35-36.
    93.刘幸海,李正名,王宝雷.具有农业生物活性壳寡糖的研究进展.农药学学报,2006,8(1):1-7.
    94.刘翼翔,吴永沛.褐藻胶裂解酶在制备海洋寡糖中的应用.食品工业科技,2007,28(6):220-222.
    95.刘元召,赵小明,姜华,杜昱光.寡聚半乳糖醛酸对大豆生长及植保素产生的影 响.山西农业科学,2008,36(3):21-23.
    96.刘传记.植物生长调节剂的应用.安徽农学通报,2008,14(04):89-90.
    97.刘自刚,张雁.水杨酸在农业生产中的利用.作物杂志,2007(2):16-19.
    98.龙翎.2005植物生长调节剂专利.农药研究与应用,2007,11(1):56-58.
    99.陆引罡,钱晓刚,彭义,马国瑞.壳寡糖油菜种衣剂剂型应用效果研究.种子,2003(4):38-40.
    100.卢航,赵小明,白雪芳,杜昱光.寡聚半乳糖醛酸诱导烟草抗烟草花叶病毒研究初探.植物保护,2008,34(3):38-41.
    101.卢合全,沈法富,刘凌霄,孙维方.植物蔗糖合成酶功能与分子生物学研究进展.中国农学通报,2005,21(7):34-37.
    102.鲁翠涛,李合生,王学奎.钙对小麦氮同化关键酶活性的影响及其与蛋白质磷酸化的关系.植物营养与肥料学报,2002,8(1):110-114.
    103.罗兵.壳聚糖对黄瓜品质、产量及蔗糖代谢的影响[硕士论文].南京农业大学.2003.
    104.马发顺.饲料寡糖的生产与应用.中国饲料添加剂,2008(6):31-33.
    105.吕艳春,姜微波.赤霉素处理对低温贮藏对接球生菜采后品质的影响.食品工业科技,2003,24(11):72-73.
    106.马镝,吴元华,赵秀香.壳寡糖的制备、分离分析方法及其在农业上的应用.现代农药,2007,6(2):1-5.
    107.梅兴国,杨忠清,彭艳华,陈路.果胶寡聚糖生物活性研究.华中理工大学学报,1996(24):137-139.
    108.苗鹏飞,刘国杰,李绍华,单守明.DA-6对秋季草莓叶片光合速率和植株生长的影响.应用生态学报,2007,18(12):2721-2726.
    109.倪红,杨艳燕,阎达中.寡糖的开发现状及其应用研究进展.湖北大学学报(自然科学版),2003,25(2):148-151.
    110.牛义,张盛林.植物硼素营养研究的现状及展望.中国农业通报,2003,19(2):101-104.
    111.欧阳寿强.壳聚糖对不接球白菜Ⅰ号营养品质的影响和对其氮代谢的调节作用[硕士论文].南京农业大学.2002.
    112.彭波,鞠东.复硝酚钠对马铃薯生长发育的影响.当代生态农业,2009(1):112-113.
    113.彭建令,赵静,潘小玫,赵建方,董汉松,王金生,刘伯新,刘广玉,程云吉.核黄素启动植物生长信号通路的初步研究.南京农业大学学报,2002,254:33-36.
    114.祁春苗,张秀月,赵会杰.氯化胆碱对受旱地黄叶片渗透调节物质与光合的影响.河南农业科学,2007(1):84-86.
    115.齐继成.国内外寡糖的开发应用及市场前景.中国医药技术与市场,2002(2):14-16.
    116.齐明芳,刘玉凤,周龙发,李天来,范永怀,张克敏.钙对亚高温下番茄幼苗叶片光合作用的调控作用.中国农业科学,2011,44(3):531-537.
    117.邱美欢,李绍鹏.多胺在果树生长发育中的应用.广西园艺,2006,17(1):56-58.
    118.瞿明仁.寡糖研究进展.中国饲料,2004(1):10-12.
    119.任丽花,翁伯琦,方金梅.施钙增强作物抗旱力的研究进展.业热带农业研究,2005,1(3):19-25.
    120.阮松林,薛庆中.壳聚糖包衣对杂交水稻种子发芽和幼苗耐盐性的影响.作物学报,2002,28(6):803-808.
    121.司宗兴.创新型植物生长调节剂.世界农药,2007,29(4):47-48.
    122.上官新晨,肖锡湘,蒋艳,沈勇根,吴少福.壳聚糖涂膜保鲜金柑的研究.食品研究与开发,2008,29(4):155-158.
    123.盛瑞艳,李鹏民,薛国光,赵新西,高辉远.氯化胆碱对低温弱光下黄瓜幼苗叶片细胞和光合结构的保护作用.植物生理与分子生物学报,2006,32(1):87-73.
    124.师素云,薛启汉,王学臣,陈游,陈洁.羧甲基壳寡糖对玉米幼苗氮代谢关键酶活性的影响.江苏农业学报,1997,13(2):70-72.
    125.师素云,薛启汉,刘霭民,练兴明,王学臣.羧甲基壳寡糖对玉米籽粒氨代谢关键酶和种子贮藏蛋白含量的影响.植物生理学报,1999,25(2):187-192.
    126.施木田,陈如凯.锌硼营养对苦瓜叶片碳氮代谢的影响.植物营养与肥料学报,2004,10(2):198-201.
    127.隋雪燕,周泽琳,张文清,夏玮,王氢,金鑫荣,李明,李守义.壳聚糖包衣对油菜种子萌发和幼苗生长以及几个生理生化指标的影响.植物生理学通讯,2002,38(3):225-227.
    128.宋广运,陈惠民.钙对棉花胚根抗冷性的影响.中国农业科学,1986,2:23-25.
    129.宋松泉,傅家瑞.Ca2+对叶绿体光还原活性的影响及与钙调素的关系.武汉植物研究,1997,15(1):39-42.
    130.宋士清,尚庆茂,郭世荣,张志刚.壳聚糖对黄瓜幼苗抗盐的协同生理.西北植物学报,2006,26(3):435-441.
    131.苏帆,王毅,瞿兴,杨跃,王巍,耿明健,付丽波,杨华,洪丽芳.菜籽饼肥与化肥配合施用对烤烟伤流液组分的影响.华中农业大学学报,2006,25(3):249-253.
    132.苏维埃,王文学,李锦树.植物类脂及其脂肪酸的分析技术.植物生理学通讯,1980(3):54-60.
    133.孙大业.植物细胞信号转导研究进展.植物生理学通讯,1996,32(2):81-91.
    134.孙大业,俞敏娟.钙调节蛋白抑制剂对转板藻光敏色素控制的叶绿体向光运动的影响.植物学报,1986,28(6):615-621.
    135.孙丽娜,石波,梁平.酶法制备寡聚半乳糖醛酸的研究.食品工业科技,2007(4):194-197.
    136.孙利军,吴少云,张亚莉,柳春燕,陈靠山,秦国正.钕和牛蒡寡糖对秦艽种子萌发的影响.西北农业学报,2008,17(2):266-269.
    137.孙磊.低温下壳聚糖处理对杂交稻叶片光合特性及类囊体膜脂肪酸组分的影响[硕士论文].南京师范大学.2007.
    138.孙艳秋,李宝聚,陈捷.寡糖诱导植物防卫反应的信号转导.植物保护,1995,31(1):5-9.
    139.唐崇钦,彭德川,娄世庆.Ca2+对叶绿体两个光系统间激发能分配调节的影响.植物学集刊,1994,7:230-236.
    140.陶龙兴,王熹,黄效林,俞美玉.植物生长调节剂在农业中的应用及发展趋势.浙江农业学报,2001,13(5):322-326.
    141.汤章城.现代植物生理学实验指南.上海:科学出版社.1999.
    142.王火焰,王运华.硼钙营养对甘蓝型油菜IAA含量的影响.华中农业大学学报,1998,17(4):341-344.
    143.王兰芳.功能性低聚糖在动物营养中的应用.中国饲料,2001(6):20-21.
    144.王平,孟繁辉.新型植物生长调节剂-硅丰环湿拌种剂.农化新世纪,2005,(8):14.
    145.王清泉,陈云,谢虹,梁建生.干旱和氮素交互作用对玉米叶片水势、气孔导度及根部ABA与CTK合成的影响.中国农学通报,2004,20(3):210-213.
    146.王仁雷,华春.杂交稻汕优63剑叶光合特性的研究.南京师范大学学报(自然科学版),2001,24(4):111-115.
    147.王霞,王永章,刘更森,刘成连,李培环IAA、GA和ABA对“红灯”樱桃果实Ca2+-ATPase活性的影响.青岛农业大学学报(自然科学版),2008,25(2):88-90,94.
    148.王文霞,李曙光,赵小明,林炳承,杜昱光.壳寡糖对烟草悬浮细胞茉莉酸合成基因转录的影响.植物学通报,2008,25(5):526-532.
    149.王学君,董亮,张玉凤,董晓霞,刘兆辉.壳寡糖、钕、微量元素对菠菜产量和品质的影响.山东农业科学,2009,1:84-86.
    150.王学奎,李合生,刘武定,伍素辉,孙晶晶.钙螯合剂对小麦幼苗氮代谢和干物重的影响.植物营养与肥料学报,2000,6(1):42-47.
    151.王学奎,李合生,伍素辉,孙晶晶,刘武定.CaM拮抗剂对麦苗氮素同化酶及干物重的影响.武汉植物学研究,2000,18(1):21-25.
    152.王孝华.海藻酸钠的提取及应用.重庆工学院学报(自然科学版),2007,21(5):124-127.
    153.王秀武,郭无瑕,栗衍华,李永德,杜昱光.海洋壳寡糖对仔猪生产性能及器官、肌组织和血清中矿物元素含量的影响.营养饲料,2008,44(5):40-42.
    154.王玉琴,林振武,吴少伯,赵毓桔,汤玉玮.6-苄胺基嘌呤促进黄化小麦叶片叶绿体的发育Ⅰ.6-苄氨基嘌呤对叶绿素形成的影响.植物生理学报,1982,8(1):45-52.
    155.王正银,胡尚钦,孙彭寿.作物营养与品质.北京:中国农业科技出版社.1999.
    156.文建平.我国寡糖产业透视.生物技术世界,2005(2):66-68.
    157.翁晓燕,蒋德安,陆庆,陶月良.表油菜素内酯对水稻产量和光合特性的影响.浙江农业大学学报,1995,21(1):51-54.
    158.吴家森,宋福强,陈荣,卢伟民.3种七叶树属植物叶片气体交换特征和叶绿素荧光特性比较.植物研究,2008,28(4):438-441.
    159.肖丽,陈国祥,魏锦城.杂交稻汕优63及其亲本光系统Ⅱ光化学特性和多肽组成的比较.作物学报,1999,25(2):244-248.
    160.香红星,董仲华,刘亚力.功能性寡糖的研究应用进展(上).饲料研究,2001(7):9-11.
    161.香红星,董仲华,刘亚力.功能性寡糖的研究应用进展(续).饲料广角,2001(15):24-25.
    162.项昭保,戴传云,朱蠡庆.核黄素生理生化特性及其功能.食品研究与开发,2004,25(12):90-95.
    163.谢平.海藻酸及其盐的食用和药用价值.开封医专学报,1997,16(4):28-31.
    164.谢志霞,张一,田晓莉,李召虎,何钟佩,翟志席,王保民,段留生.钙和生长素对棉花幼苗侧根发生的协同调控效应.棉花学报,2006,18(2):99-103.
    165.许泓瑜.功能寡糖产业的现状与发展.中国野生植物资源,2004,23(2):15-16,22.
    166.许晓明,张荣酰,唐运来.低叶绿素含量对突变体水稻吸收光能分配特性的影响.中国农业科学,2004,37(3):339-343.
    167.许正宏,熊筱晶,陶文沂.低聚木糖的生产及应用研究进展.食品与发酵工业,2002(28):56-59.
    168.徐凯,郭延平,张上隆.不同光质对草莓叶片光合作用和叶绿素荧光的影响.中国农业科学,2005,38(2):369-375.
    169.徐萌,山仑.赤霉素和钙处理春小麦种子效应的研究.种子,1990(4):25-28.
    170.徐爱东.我国蔬菜中常用植物生长调节剂的毒性及残留问题研究进展.中国蔬菜,2009(8):1-6.
    171.薛国希.低温下壳聚糖对黄瓜幼苗生理生化特性的影响[硕士论文].山东农业大学.2004.
    172.严慧如,黄绍华,余迎利.葡糖的提取及纯化.天然产物研究与开发,2001,14(1):65-69.
    173.严小龙,廖红,戈振扬,罗锡文.植物根构型特性与磷吸收效率.植物学通报,2000,17(6):511-519.
    174.杨逞,李德明.氮、锌营养与青花菜花球发育过程中核酸及钙调素的关系.园艺学报,2001,28(4):312-316.
    175.杨根平,高向阳,荆家海.水分胁迫下钙对大豆叶片光合作用的改善效应.作物学报,1995,21(6):711-717.
    176.杨生琳.新型高效植物生长调节剂——氯毗脲的应用技术.农业科技与信息,2009(19):16.
    177.杨文.低磷胁迫对高等植物中膜脂含量及分布影响的研究[硕士论文].北京:中国科学院研究生院.2003.
    178.杨秀荣,刘亦学,刘水芳,孙凤芝,孙淑琴,张学文,张惟.植物生长调节剂及其研究和应用.天津农业科学,2007,13(1):23-25.
    179.叶济宇,米华玲.叶绿体Hill反应活力的测定.现代植物生理学实验指南.北京:科学出版社.1999.
    180.尹恒,杨金丽,李曙光,赵小明,白雪芳,马小军,杜昱光.受壳寡糖诱导的油菜MAPK基因的克隆与分析.作物学报,2008,17(2):743-747.
    181.尹恒,王文霞,赵小明,杜昱光.植物糖生物学研究进展.植物学报,2010,45(5):521-529.
    182.于俊红,彭智平,杨少海,黄继川,詹愈忠.DA-6对干旱胁迫下花生生理及生长指标的影响.干旱地区农业研究,2009,27(1):168-172.
    183.袁亮,潘光堂,张志明,谭登峰.植物中淀粉的代谢及其调控研究进展.分子植物育种,2006,6(S):65-72.
    184.曾乃燕,何军贤,赵文,梁厚果.低温胁迫期间水稻光合膜色素与蛋白水平.西北植物学报,2000,20(1):8-14.
    185.赵春燕,孙军德,刘志恒,张恩禄,何瀛,崔晓晶.甲壳素对土壤微生物区系组成的影响.辽宁农业科学,2000(5):7-8.
    186.赵继德,王世红,赵薇娜.寡糖作用机理及其在生猪生产中的应用.中国猪业,2008(12):43-45.
    187.赵可夫,卢元芳,张宝泽,衣建龙.Ca2+对小麦幼苗降低盐害的研究.植物学报,1993,35(1):51-56.
    188.赵惠芝.壳聚糖对向日葵种子萌发及幼苗生理特性的影响.河北农业技术师范 学院学报,1999,13(2):37-39.
    189.赵敏,邵凤贇,周淑新,崔彦宏.植物生长调节剂对农作物和环境的安全性.环境与健康杂志,2007,24(5):370-372.
    190.赵琦,李生海.叶片阶段性白化小麦的叶绿体激发能分配和荧光动力学特征.生物物理学报,1996,12(4):703-708.
    191.赵淑璋.海藻酸钠的制备及应用.武汉化工,1989(1):11-14.
    192.赵燕,李淑芬,吴杏红,郑启宏.我国可降解地膜的应用现状及发展趋势.现代农业科技,2010(23):105-107.
    193.赵云强,方伊.甲壳素、壳聚糖的综合应用及其发展前景.贵州化工,2001,26(1):10-13.
    194.赵玉梅,郭爱英.寡糖作为饲料添加剂的研究与应用.养殖与饲料,2010(4):53-55.
    195.赵志中,张上隆,徐杰昌,陈昆松,刘拴桃.蔗糖代谢相关酶在温州蜜柑果实糖积累中的作用.园艺学报,2001,28(2):112-118.
    196.占秀安,胡彩虹,许梓荣.果寡糖对肉鸡生长、肠道菌群和肠形态的影响.中国兽医学报,2003,23(2):196-198.
    197.张阿宏,齐孟文,张晔晖.调制叶绿素荧光动力学参数及其计量关系的意义和公理化讨论.核农学报,2008,22(6):909-912.
    198.张宏军,刘学,嵇莉莉,李健强,张敦阳,倪汉文.近几年我国植物生长调节剂登记概述.杂草科学,2007(4):60-62.
    199.张敏恒,邓忠贤,徐江.甲壳质在农业上的开发及应用.农药,2001,20(4):3-5.
    200.张必武.新型饲料添加剂寡聚糖.中国饲料,2001(11):12-13.
    201.张明才,段留生,何钟佩,翟志席,曾建波,李召虎.SHK-6对大豆根系生理活性和激素的调控效应.中国油料作物学报,2005,27(3):32-36.
    202.张明才,翟志席,何钟佩,段留生,李召虎.80%胺羧酯·甲哌可溶性粉剂对大豆根系生理生化特性的调控.华北农学报,2007,22(1):44-49.
    203.张明方,李志凌.高等植物中与蔗糖代谢相关的酶植物生理学通讯,2002,38(3):289-295.
    204.张军,李宗友.甘草根中的果胶多糖类.国外医学:中医中药分册,1997,19(4):50.
    205.张君.新型植物生长调节剂研制成功.科技致富向导,2006(6):15.
    206.张守仁.叶绿素荧光动力学参数的意义及讨论.植物学通报,1999,16(4):444-448.
    207.张遂坡,吴隽平,徐友涵.钙调蛋白拮抗剂.生物化学与生物物理进展,1988, 15(4):275.
    208.张巽,王鑫.植物生长调节剂的研究现状及其在马铃薯田的应用进展.安徽农学通报,2006,12(13):61-63.
    209.张一宾.植物生理活性物质的研究与应用.世界农药,2006,28(5):1-10.
    210.张燕,方力,李天飞,姚照兵.氯化胆碱浸种对烟草幼苗某些生理特性的影响.植物生理学通讯,2004,40(2):164-166.
    211.张燕,方力,王宝.壳聚糖对烟草种子萌发及幼苗生理生化特性的影响.吉林农业大学学报,1998,20(3):114-116.
    212.张剑波,田庚元.寡糖分离和结构分析进展.生物化学与生物物理进展,1998,25(1):114-119.
    213.张虎.几丁寡糖与壳寡糖的制备和功能.中国生化药物杂志,1999,20(2):99-101.
    214.张宪政,陈风玉,王荣富.植物生理学实验技术.沈阳:辽宁科学技术出版社.1994.
    215.张智猛,戴良香,胡昌洁,董树亭,王空军,宁堂原.灌浆期不同水分处理对玉米籽粒蛋白质及其组分和相关酶活性的影响.植物生态学报,2007,31(4):720-728.
    216.张振贤.蔬菜生理.北京:中国农业科技出版社,1993.
    217.张子龙.DA-6浸种对水稻幼苗生长及抗寒性的影响.贵州农业科学,2001,29(4):14-16.
    218.郑学勤,宫明波.壳聚糖衍生物对苹果和梨的贮存效果.中国果树,1996(2):16-19.
    219.仲静洁,王东凯,张翠霞,高红,张勖.海藻酸钠在药物制剂中的研究进展.中国新药杂志,2007,16(8):591-594.
    220.周江华.壳聚糖对棉花壮苗的影响.江西棉花,2001,23(4):18-20.
    221.周永国,杨越冬,齐印阁,张智猛,王秀娟,胡小军.壳聚糖对花生种子萌发过程中某些生理活性的影响.花生学报,2002,31(1):22-25.
    222.周忠新,袁永泽,王云华,欧吉权,张楚富.蔗糖对不同氮源培养下水稻根部氮同化相关酶活性的影响.武汉植物学研究,2005,23(6):572-576.
    223.朱为民,朱龙英,陆世钧,徐悌惟.光合特性作为番茄设备专用品种选育指标的效应.上海农业学报,2001(4):45-48.
    224.朱晓军,杨劲松,梁永超,娄运生,杨晓英.盐胁迫下钙对水稻幼苗光合作用及相关生理特性的影响.中国农业科学,2004,37(10):1497-1503.
    225.宗会,胡文玉.植物钙调素(CaM)研究进展.园艺学年评,1996(2):177-196.
    226.邹春琴,李振声,李继云.小麦对钾高效吸收的根系形态学和生理学特征.植物 营养与肥料学报,2001,7(1):36-43.
    227.邹寿青,蹇洪英.地摊草的光合特性研究.广西植物,2003,23(2):181-184.
    228.祖艳群,林克群.硼在植物体中的作用及对作物产量和品质的影响.云南农业大学学报,2000,12(4):359-363.
    229.Adams W W, Demmig-Adams B, Logan B A, Barker D H, Osmond C B. Rapid changes in xanthophyll cycle-dependent energy dissipation and photosystem Ⅱ efficiency in two vines, Stephania japonica and Smilax australis, growing in the understory of an open Eucalyptus forest. Plant Cell Environ,1999,22:125-136.
    230.Albersheim P, Valent B S. Host-pathogen interactions in plants, when exposed to oligosaccharides of fungal origin, defend themselves by accumulating antibiotics. J Cell Biol,1978,78 (3):627-632.
    231.A1-Hasan R H, Ghannoum M A, Sallal A K, Abu-elteen K H, Radwan S S. Correlative change of growth, pig-mentation and lipid composition of Dunaliella saline in response to halo stress. J Gen Mutobiol,1987,133:2607-2616.
    232.Aloni R, Tollier M T, Monties B. The role of auxin and gibberellin in controlling lignin formation in primary phloem fibers and in xylem of coleus-blumei stems. Plant Physiol,1990,94(4):1743-1747.
    233.Amano M, Toyoda K, Ichinose Y, Yamada T, Shiraishi T. Association between ion fluxes and defense responses in pea and cowpea tissues. Plant Cell Physiol,1997,38 (6):698-706.
    234.Amarante L, Sodek L. Waterlogging effect on xylem sap glutamine of nodulated soybean. Biologia Plantarum,2006,50(3):405-410.
    235.Ananyev G, Renger G, Wacker U, Klimov V. The photoproduction of superoxide radicals and the superoxide dismutase activity of Photosystem Ⅱ. The possible involvement of cytochrome b559. Photosynth Res,1994,41:327-338.
    236.Askerlund P. Calmodulin-stimulated Ca2+-ATPases in the vacuolar and plasma membranes in cauliflower. Plant Physiol,1997,114:999-1007.
    237.Arenas-Huertero F, Arroyo A, Zhou L, Sheen J, Leon P. Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev, 2000,14(16):2085-2096.
    238.Aro E M, Virgin I, Andersson B. Photoinhibition of photosystem Ⅱ. Inactivation, protein damage and turnover. Biochim Biophys Acta,1983,1143(2):113-134.
    239.Ayers A R, Ebel J, Valent B, Albersheim P. Host-pathogen interactions:X. Fractionation and biological activity of an elicitor isolated from the mycelial walls of Phytophthora megasperma var. sojae. Plant Physiol,1976,57(5):760-765.
    240.Banuelos G S, Bangerth F, Marschner H. Relationship between polar basipetal auxin transport and acropetal Ca2+ transport into tomato fruit. Physiol Plant,1987,71: 321-327.
    241.Baldwin E A, Biggs R H. Cell-wall lysing enzymes and products of cell-wall digestion elicit ethylene in citrus. Physiol. Plant,1988,73(1):58-64.
    242.Barr R, Troxel K S, Crane F L. Calmodulin antagonists inhibit electron transport in photosystem II of spinach chloroplasts. Biochem Biophys Res Commun,1982, 104(4):1182-1188.
    243.Barzda V, Mustardy L, Garab G. Size dependency of circular dichroism in macroaggregates of photosynthetic pigment-protein complexes. Biochemistry,1994, 33(35):10837-10841.
    244.Basse C W, Fath A, Boller T. High affinity binding of a glycopeptide elicitor to tomato cells and microsomal membranes and displacement by specific glycan suppressors. J Biol Chem,1993,268(20):14724-14731.
    245.Beemster G T S, Baskin T I. Stunted plant 1 mediates effects of cytokinin, but not of auxin, on cell division and expansion in the root of Arabidopsis. Plant Physiol,2000, 124(4):1718-1727.
    246.Bennett M J, Marchant A, May S T, Swarup R. Going the distance with auxin: unravelling the molecular basis of auxin transport. Philos Trans R Soc Lond B,1998, 353(1374):1511-1515.
    247.Berthold D A, Babcock G. T, Yocum C F. A highly resolved, oxygen-evolving photosystem Ⅱ preparation from spinach thylakoid membranes. FEBS Lett,1981, 134:231-234.
    248.Bilger W, Bjorkman O. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res,1990,25(3): 173-185.
    249.Bilisics L, Vojtassak J, Capek P, Kollarova K, Liskova D. Changes in glycosidase activities during galactoglucomannan oligosaccharide inhibition of auxin induced growth. Phytochemistry,2004,65(13):1903-1909.
    250.Blackford S, Res P A, Sanders D. Voltage sensitivity of H+/Ca2+ antiport in higher planttonoplast suggests a role in vacuolar calcium accumulation. J Biol Chem,1990, 265(17):9617-9620.
    251.Boland M J, Fordyce H M, Greenwood R M. Enzymes of nitrogen metabolism in legume nodules:a comparative study. Aust J Plant Physiol,1978,5(5):553-559.
    252.Cabrera J C, Boland A, Messiaen J, Cambier P, Van Cutsem P. Egg box conformation of oligogalacturonides:The time-dependent stabilization of the elicitor-active conformation increases its biological activity. Glycobiology,2008,18(6):473-482.
    253.Cabrera J C, Boland A, Cambier P, Frettinger P, Van Cutsem P. Chitosan oligosaccharides modulate the supramolecular conformation and the biological activity of oligogalacturonides in Arabidopsis. Glycobiology,2010,20(6):775-786.
    254.Che F S, Cho C, Hyeon S B, Isogai A, Suzuki A. Metabolism of choline chloride and its analogs in wheat seedlings. Plant Cell Physiol,1990,31(1):45-50.
    255.Cheng W H, Endo A, Zhou L, Penney J, Chen H C, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J. A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell,2002,14(11):2723-2743.
    256.Cheong J J, Birberg W, Fugedi P, Pilotti A, Garegg P J, Hong N, Ogawa T, Hahn M G. Structure activity relationships of oligo-beta-glucoside elicitors of phytoalexin accumulation in soybean. Plant Cell,1991,3(2):127-136.
    257.Corthesy-Theulaz I, den Dunnen J T, Ferre P, Geurts J M, Muller M, van Belzen N, van Ommen B. Nutrigenomics:the impact of biomics technology on nutrition research. Ann Nutr Metab,2005,49(6):355-365.
    258.Coruzzi G M, Zhou L. Carbon and nitrogen sensing and signaling in plants: Emerging'matrix effects'. Curr. Opin. Plant Biol,2001,4(3):247-253.
    259.Cosgrove D J, Hedrich R. Stretch-activated chloride, potassium and calcium channels coexisting in plasma membranes of guard cell of Vicia faba L. Planta,1991,186(1): 143-153.
    260.Creelman R A, Mullet J E. Oligosaccharins, brassinolides, and jasmonates: Nontraditional regulators of plant growth, development and gene expression. Plant Cell,1997(9):1211-1223.
    261.Davies W J, Zhang J H. Root signals and the regulation of growth and development of plants in drying soil. Ann Rev Plant Physiol Plant Mol Biol,1991,42:55-76.
    262.Desikan R, Cheung M K, Bright J, Henson D, Hancock J T, Neill S J. ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J Exp Otany, 2004,55(395):205-212.
    263.Downes B P, Crowell D N. Cytokinin regulates the expression of a soybean beta-expansin gene by a post-transcriptional mechanism. Plant Mol Biol,1998,37(3): 437-444.
    264.Dunahay T G, Staehelin L A, Seibert M, Ogilvie P D, Berg S P. Structural, biochemical and biophysical characterization of four oxygen-evolving photosystem Ⅱ from spinach. BBA,1984,764(2):179-1193.
    265.Eckardt N A. Abscisic acid biosynthesis gene underscores the complexity of sugar, stress, and hormone interactions. Plant Cell,2002,14:2645-2649.
    266.Eissenstat D M, Yanai R D. The ecology of root life span. Adv Ecol Res,1997,27:1-60.
    267.E1-komy H M, Hamdia M A, Abd-el-baki. Nitrate reductase in wheat plants growth under water stress and inoculated with Azospirllum spp. Bio Plant,2003,46: 281-287.
    268.Elling L. Effect of metal ions on sucrose synthase from rice grains-a study on enzyme inhibition and enzyme topography. Glycobiology,1995,5(2):201-206.
    269.Evans D E, Briars S A, Williams L E. Active calcium transport by plant cell membranes. J Eep Bot,1995,42(3):285-303.
    270.Falasca G, Capitani F, Rovere F D, Zaghi D, Franchin C, Biondi S, Altamura M M. Oligogalacturonides enhance cytokinin-induced vegetative shoot formation in tobacco explants, inhibit polyamine biosynthetic gene expression, and promote long-term remobilisation of cell calcium. Planta,2008,227(4):835-852.
    271.Falchuk K H, Hardy C, Ulpino L, Vallee B L. RNA metabolism, manganese, and RNA Polymerases of zinc-sufficient and zinc-deficient Euglena gracilis. Proc Natl Acad Sci USA,1978,75(9):4175-4179.
    272.Fang Y P, Al-Assaf S, Phillips G O, Nishinari K, Funami T, Williams P A, Li L B. Multiple steps and critical behaviors of the binding of calcium to alginate. J Phys Chem B,2007,111(10):2456-2462
    273.Farmer E E, Moloshok T D, Saxton M J, Ryan C A. Oligosaccharide signaling in plants. J Biol Chem,1991,266(5):3140-3145.
    274.Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annu Rev Plant Physiol,1982,33:317-345.
    275.Farrar J, Pollock C. Gallagher J. Sucrose and the integration of metabolism in vascular plants. Plant Sci,2000,154(1):1-11.
    276.Feizi T, Childs R A. Carbohydrates as antigenic determinants of glycoproteins. Biochem. J,1987,245(1):1-11.
    277.Felix G, Regenass M, Boller T. Specific perception of subnanomolar concentrations of chitin fragments by tomato cells:Induction of extracellular alkalinization, changes in protein phosphorylation, and establishment of a refractory state. Plant J,1993,4 (2):307-316.
    278.Felle H. Auxin causes oscillations of cytosolic free calcium and pH in Zea mays coleoptiles. Planta,1988,174(4):495-499.
    279.Ferepons D. Enhancing food production with chitosan seed coating technology. In: Donald ferepons (ed):application of chitin and chitsoan. Lancaster:Technomic Publishing ComPany inc,1997:129-139.
    280.Finkelstein R R, Gampala S S L, Rock C D. Abscisic acid signaling in seeds and seedlings. Plant Cell,2002(14):15-45.
    281.Foyer C H, Valadier M H, Migge A, Becker T W. Drought-induced effects on nitrate reductase activity and mRNA and on the coordination of nitrogen and carbon in maize leaves. Plant Physiol,1998,117(1):283-292.
    282.Frank H A, Bautista J A, Josue J S, Young A J. Mechanism of non-photochemical quenching in green plants:energies of the lowest excited singlet states of violaxanthin and zeaxanthin. Biochemistry,2000,39(11):2831-2837.
    283.Fredeen A L, Rao I M, Terry N. Influence of phosphorus nutrition on growth and carbon partitioning in Glycine max. Plant Physiol,1989,89(1):225-230.
    284.Frigerio M, Alabadi D, Perez-Gomez J, Garcia-Carcel L, Phillips A L, Hedden P, Blazquez M A. Transcriptional regulation of gibberellin metabolism genes by auxin signaling in Arabidopsis. Plant Physiol,2006,142:553-563.
    285.Fry S C. The structure and functions of xyloglucan. J. Exp. Bot.1989,40 (210):1-11.
    286.Fry S C, Aldington S, Hetherington P R, Aitken J. Oligosaccharides as signals and substrates in the plant cell wall. Plant Physiol,1993,103(1):1-5.
    287.Gao Z F, Petreikov M, Zamski E, Arthur A, Schaffer A A. Carbohydrate metabolism during early fruit development of sweet melon (Cucumis melo). Physiol Plant,1999, 106(1):1-8.
    288.Geigenberger P, Stitt M. Sucrose synthase catalyses a readily reversible reaction in vivo in developing potato tuber and other plant tissues. Planta,1993,189(3): 329-339.
    289.Gibson S I, Laby R J, Kim D. The sugar-insensitive 1(sis 1) mutant of Arabidopsis is allelic to ctrl.Biochem Biophys Res Commun,2001,280:196-203.
    290.Gilroy S, Read N D, Trewavas A J. Elevation of cytoplasmic calcium by caged calcium or caged inositol trisphosphate initiates stomatal closure. Nature,1990,346: 769-771.
    291.Gombos Z, Wada H, Murata N. The recovery of photosynthesis from low-temperature photoinhibition is accelerated by the unsaturation of membrane lipids:a mechanism of chilling tolerance. Proc Natl Acad Sci USA,1994,91(19):8787-8791.
    292.Goss T J, Perez-Matos A, Bender R A. Roles of glutamate synthase, gltBD, and gltF in nitrogen metabolism of Escherichia coli and Klesiella aerogenes. J Bacteriol,2001, 183(22):6607-6619.
    293.Gupta A K, Kaur N. Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. J Biosci,2005,30(5):761-776.
    294.Hagen A, Skiak-Braek G, Darnish M. Pharmacokinetics of sodium alginate in mice. Eur J pharm Sci,1996,4(1):100.
    295.Halford N G, Hardie D G. SNF1-related protein kinases:global regulators of carbon metabolism in plants? Plant Mol Biol,1998,37(5):735-748.
    296.Halford N G, Hey S J. Snfl-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signalling in plants. Biochem J,2009,419(2): 247-259.
    297.Hansch R, Mendel R R. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, C1). Curr Opin Plant Biol,2009,12(3):259-266.
    298.Helenius A, Aebi M. Intracellular functions of N-linked glycans. Science,2001, 291(5512):2364-2369.
    299.Herendeen S L, Vanbogelen R A, Neidhardt F C. Levels of major proteins of Escherichia coli during growth at different temperatures. J. Bacteriol,1979,139(1): 185-194.
    300.Hien N Q, Nagasawa N, Tham L X, Yoshii F, Dang V H, Mitomo H, Makuuchi K, Kume T. Growth-promotion of plants with depolymerized alginates by irradiation. Radiat Phys Chem,2000,59(1):97-101.
    301.Himmelbach A, Yang Y, Grill E. Relay and control of abscisic acid signaling. Curr Opin Plant Biol,2003,6(5):470-479.
    302.Hirano S, Nagao N. Effects of chitosan, pectic acid, lysozyme, and chitinase on the growth of several phytopathogens. Agr Biol Chem,1989,53:3065-3066.
    303.Honda S, Suzuki S, Nitta A, Iwase S, Kakehi K. Application of high-performance capillary electrophoresis to analysis of carbohydrates, especially those in glycoproteins. Methods:A companion to methods in enzymology,1992,4(3): 233-243.
    304.Huber S C, Mcmichael R W, Bachmann M, Huber J L, Shannon J C, Kang K K, Paul M. Regulation of leaf sucrose-phosphate synthase and nitrate reductase by reversible protein phosphorylation. In:Shewry P R, Halford N G, Hooley R (eds), Protein Phosphorylation in Plants. Proceedings of the Phytochemical Society of Europe. Oxford Science Publications, Clarendon Press, Oxford, UK,1996:19-34.
    305.Huijser C, Kortstee A, Pego J, Weisbeek P, Wisman E, Smeekens S. The Arabidopsis sucrose uncoupled-6 gene is identical to abscisic acid insensitive-4:Involvement of abscisic acid in sugar responses. Plant J,2000,23(5):577-585.
    306.Huseynova L M, Suleymanov S Y, Aliyev J A. Structural-functional state of thylakoid membranes of wheat genotypes under water stress. Biochim biophys Acta,2007, 1767(6):869-875.
    307.1sherwood F A, Chen Y T, Mapson L W. Synthesis of L-ascorbic acid in plants and animals. Biochem J,1954,56(1):1-15.
    308.Iwasaki K, Matsubara Y. Purification of alginate oligosaccharides with root growth-promoting activity toward lettuce. Biosci Biotech Biochem,2000,64(5): 1067-1070.
    309.Jang J C. Sheen J. Sugar sensing in higher plants. Plant Cell,1994,6(11):1665-1679.
    310.Jarvis B C, Yasmin S. Plant growth regulators and adventitious root development in relation to auxin. Bio Plant,1987,29(3):189-198.
    311.Jiang Y W, Huang B R. Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses. J Exp Bot,2001 (355):341-349.
    312.Jossier M, Bouly J P, Meimoun P, Arjmand A, Lessard P, Hawley S, Grahame Hardle D, Thomas M. SnRK1 (SNF1-related kinase 1) has a central role in sugar and ABA signalling in Arabidopsis thaliana. Plant J,2009(59):316-328.
    313.Jyung W H, Camp M E, Polson D E, Afams M W, Witter S H. Differential response of two bean varieties to zinc as revealed by electrophoretic protein pattern. Crop Sci, 1972,12:26-29.
    314.Kaku H, Nishizawa Y, Isaii-minami N, Akimoto-tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Pro Na Acad Sci USA,2006,103(29):11086-11091.
    315.Kaiser W M, Spill D, Glaab J. Rapid modulation of nitrate reductase in leaves and roots:indirect evidence for the involvement of protein phosphorylation/ dephosphorylation. Physiol Plant,1993,89(3):557-562.
    316.Katduraya K, Nakashima H, Yamamoto N. Synthesis of sulfated oligosaccharide glycosides having high anti-HIV activity and the relationship between activity and chemical structure. Carbohydr Res,1999,315(3-4):234-242.
    317.Kanervo E, Aro E M, Murata N. Low unsaturation level of thylakoid membrane lipids limits turnover of the D1 protein of photosystem II at high irradiance. FEBS Lett,1995,364(2):239-242.
    318.Kauss H. Some aspects of calcium-dependent regulation in plant metabolism. Annu Rev Plant Physiol,1987,38:47-72.
    319.Kawadaa A, Hiura N, Shiraiwac M, Tajimaa S, Hirumaa M, Harad K, Ishibashia A, Takaharac H. Stimulation of human keratinocyte growth by alginate oligosaccharides, a possible co-factor for epidermal growth factor in cell culture. FEBS Lett,1997, 408(1):43-46.
    320.Khan W M, Prithiviraj B, Smith D L. Effect of foliar application of chitin and chitosan oligasaccharides on photosynthesis of maize and soybean. Photosynthetica, 2002,40(4):621-624.
    321.Kiba T, Taniguchi M, Imamura A, Ueguchi C, Mizuno T, Sugiyama T. Differential expression of genes for response regulators in response to cytokinin and nitrate in Arabidopsis thaliana. Plant Cell Physiol,1999,40(7):767-771.
    322.Klarzynski O, Descamps V, Plesse B, Yvin J C, Kloareg B, Fritig B. Sulfated fucan oligosaccharides elicit defense responses in tobacco and local and systemic resistance against tobacco mosaic virus. Mol Plant Microbe In,2003,16(2):115-122.
    323.Klarzynski O, Plesse B, Joubert J M, Yvin J C, Kopp M, Kloareg B, Fritig B. Linear β-1,3 glucans are elicitors of defense responses in tobacco. Plant Physiol,2000,124 (3):1027-1037.
    324.Koch K E. Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol plant Mol Biol,1996,47:509-540.
    325.Krapp A, Stitt M. An evaluation of direct and indirect mechanisms for the "sink-regulation" of photosynthesis in spinach:changes in gas exchange, carbohydrates, metabolites, enzyme activities and steady-state transcript levels after cold girdling source leaves. Planta,1995,195:313-323
    326.Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis:The basic. Ann Rev Plant Physiol Plant Mol Biol,1991,42:313-349.
    327.Kuchitsu K, Kikuyama M, Shibuya N. N-acetyl-chitoligosaccharides biotic elicitor for phytoalexin production, induce transient membrane depolarization in suspension-cultured rice cells. Protoplasma,1993,174 (1-2):79-81.
    328.Laby R J, Kincaid M S, Kim D, Gibson S I. The Arabidopsis sugar-insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response. Plant J, 2000,23(5):587-596.
    329.Lalonde S, Boles E, Hellmann H, Barker L, Patrick J W, Frommer W B, Ward J M. The dual function of sugar carriers:transport and sugar sensing. Plant Cell,1999,11: 707-726.
    330.Lam H M, Coschigano K T, Oliveira I C, Melo-Oliveira R, Coruzzi G M. The molecular genetics of nitrogen assimilation into amino acids in higher plants. Annu Rev Plant Physiol Plant Mol Biol,1996,47:569-593.
    331.Lanteri M L, Pagnussat G C, Lamattina L. Calcium and calcium-dependent protein kinases are involved in nitric oxide-and auxin-induced adventitious root formation in cucumber. J Exp Bot,2006,57(6):1341-1351.
    332.Larsen A Z, Olsen L F, Kummer U. On the encoding and decoding of calcium signals in hepatocytes. Biophys Chem,2004,107:83-99.
    333.Leach R P, Rogers J, Wheeler K P, Flowers T J, Yeo A R. Molecular markers for ion compartmentation in cells of higher plants. Soc Exp Biol,1990,41(9):1079-1087.
    334.Lee C, Chen L B. Dynamic behavior of endoplasmic reticulum in living cells. Cell, 1988,54(1):37-46.
    335.Leckie C P, McAinsh M R, Allen G J, Sanders D, Hetherington A M. Abscisic acid-induced stomatal chosure mediated by cyclic ADP-ribose. Proc Natl Acad Sci USA,1998,95(26):15837-15842.
    336.Lejay L, Wirth J, Pervent M, France Cross J M, Tillard P, Gojon A. Oxidative pentose phosphate pathway-dependent sugar sensing as a mechanism for regulation of root ion transporters by photosynthesis. Plant Physiol,2008,146:2036-2053.
    337.Letham D S. Cytokinins as phytohormones:sites of biosynthesis, translocation, and function of translocated cytokinin. In:Mok DWS, Mok MC, eds. Cytokinins: chemistry, activity and function. Boca Raton, FL:CRC Press.1994.
    338.Li L B, Fang Y P, Vreeker R, Appelqvist I. Reexamining the egg-box model in calcium-alginate gels with X-ray diffraction. Biomacromolecules,2007,8(2):464-468.
    339.Lichtenthaler H K, Wellburn A R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc T,1983(11): 591-592.
    340.Li X F, Li Y J, An Y H, Xiong L J, Shao X H, Wang Y, Sun Y. AKIN β 1 is involved in the regulation of nitrogen metabolism and sugar signaling in Arabidopsis. J Int Plant Biol,2009,51(5):513-520.
    341.Loulakakis C A, Roubelakis-Angelakis K A. Immunocharacterization of NADH-glutamate dehydrogenase from Vitis vinifera L. J Plant Physiol,1990,94:109-113.
    342.Magdy M, Mansour F, van Hasselt P R, Kuiper P J C. Plasma membrane lipid alterations induced by NaCl in winter wheat roots. Physiol Plant,1994,92(3): 473-478.
    343.Mansfield T A. Responses of stomata to short duration increases in carbon dioxide concentration. Physiol Plant,1965,18(1):79-84.
    344.Marschner H. Mineral nutrition of higher plant. Academic Press INC. Orlando, Florida,1986.
    345.Mathieu Y, Guern J, Spiro M D, O'Neill M A, Kates K, Darvill A G, Albersheim P. The transient nature of the oligogalaturonide-induced ion fluxes of tobacco cells is not correlated with fragmentation of the oligogalacturonides. Plant J,1998,16(3): 305-311.
    346.Matsuda F, Miyagawa H, Ueno T. Involvement of reactive oxygen species in the induction of (S)-N-p-coumaroyloctopamine accumulation by beta-1,3-glucooligosaccharide elicitors in potato tuber tissues. Z Naturforsch,2001,56 (3-4): 228-234.
    347.Matthew F. The use of high-performance anion-exchange chromatography and matrix-assisted laster desorption/ionization time-of-flight mass spectrometry to monitor and identify oligosaccharide degradation. Anal Biochem,1996,239(1): 92-98.
    348.Maxwell K, Johnson G N. Chlorophyll fluorescence-a practical guide. J Exp Bot, 2000,51 (345):659-668.
    349. Medvedev S S. Calcium signaling system in plants. Russian J Plant Physiol,2005,52 (2):249-270.
    350.Messiaen J, Van Cutsem P. Polyamines and pectins Ⅱ. Modulation of pectic-signal transduction. Planta,1999,208(2):247-256.
    351.Mizuno T. Plant response regulators implicated in signal transduction and circadian rhythm. Curr Opin Plant Biol,2004,7(5):499-505.
    352.Monroy A F, Dhindsa R S. Low-temperature signal transduction:induction of cold acclimation-specific genes of alfalfa by calcium at 25 degrees C. Plant Cell,1995, 7(3):321-331.
    353.Morcuende R, Krapp A, Hurry V, Stitt M. Sucorse-feeding leads to increased rates of nitrate assimilation, increased rates of aipha-oxoglutarate synthesis, and increased synthesis of a wide spectrum of amino acids in tabacco leaves. Planta,1998,206(3): 394-409.
    354.Muller R, Morant M, Jarmer H, Nilsson L, Nielsen T H. Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism. Plant Physiol.,2007,143(1):156-171.
    355.Mullet J E, Burke J J, Arntzen C J. Chlorophyll proteins of photosystem I. Plant physiol,1980,65(5):814-822.
    356.Natsume M, Kamo Y, Hirayama M, Adachi T. Isolation and characterization of alginate-derived oligosaccharides with root growth-promoting activities. Carbohydr Res,1994,258:187-197.
    357.Navazio L, Moscatiello R, Bellincampi D, Baldan B, Meggio F, Brini M, Bowler C, Mariani P. The role of calcium in oligogalacturonide-activated signalling in soybean cells. Planta,2002,215 (4):596-605.
    358.Nijs I, Ferris R, Blum H, Hendrey G, Impens I. Stomatal regulation in a changing climate:A field study using free air temperature increase (FATI) and free air CO2 enrichment (FACE). Plant Cell Environ,1997,20(8):1041-1050.
    359,Nowak G, Czapla J. The effect of GA3 and magnesium fertilizer on biometric features and macroelement content of soybean organs. Acta Acad Agric Tech Olsten Agr, 1991,53:171-180.
    360.Oak A, Stulen I, Jones K, Winspear M J, Misra S, Boesel I L. Enzymes of nitrogen assimilation in maize roots. Planta,1980,148(5):477-484.
    361.Ohta K, Taniguhi A, Konishi N, Hosoki T. Chitosan treatment affects plant growth and flower quality in Eustomagrandiflorum. Hort Sci,1999,34:233-234.
    362.Ohtsubo K, Marth J D. Glycosylation in cellular mechanisms of health and disease. Cell,2006,126 (5):855-867.
    363.Okada M, Matsumura M, Shibuya N. Identification of a high-affinity binding protein for N-acetylchitooligosaccaride elicitor in the plasma membrane from rice leaf and root cell. J Plant Physiol,2001,158(1):121-124.
    364.Oliveira I C, Coruzzi G M. Carbon and amino acids reciprocally modulate the expression of glutamine synthetase in Arabidopsis. Plant Physiol,1999,121(1):301-310.
    365,Olsson T, Leverenz J W. Non-uniform stomatal closure and the apparent convexity of the photosynthetic photon flux density response curve. Plant Cell Environ,1994, 17(6):701-710.
    366.Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S. Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell,2003,15(7):1591-1604.
    367.O'Neal D, Joy K W. Glutamine synthetase of pea leaves.1. Purification, stabilization, and pH optima. Arch Biochem Biophys,1973,159(1):113-122.
    368.Osuji G O, Cuero R G. Regulation of ammioniumlon salvage and enhancement of the storage protein of corn, sweet potato, and yam tuber by N-(Carboxymethy1) chitosan application. Food Biotech,1992,40:724-734.
    369.Pagnussat G C, Lombardo C, Lanteri L, Lamattina L. Nitric oxide mediates MAPK activation during the IAA-induced adventitious root formation. Plant Biology (Rockville),2003(7):185.
    370.Patel J K. Effect of triacontanol and naphthalene acetic acid on lint yield, fibre quality, and nitrogen, phosphorus and potassium uptake in cotton. Indian J Agr Sci, 1992,37(2):332-337.
    371.Pathore V S, Bajai Y P, Wittwer S H. Subcellular localization of zinc and calcium in bean (Phaseolus vulgaris L.) tissues. Plant Physiol,1972,49(2):207-211.
    372.Pauly N, Knight M R, Thuleau P, Graziana A, Muto S, Ranjeva R, Mazars C. The nucleus together with cytosol generates patterns of specific cellular calcium signatures in tobacco suspension culture cells. Cell Calcium,2001,30(6):413-421.
    373.Peschek G A, Schmetterer G. Evidence for plastoquinol-cytochrome f/b-563 reductase as a common electron donor to P700 and cytochrome oxidase in cyanobacteria. Biochem Biophys Res Commun,1982,108(3):1188-1195.
    374.Poovaiah B S, Reddy A S. Calcium and signal transduction in plants. Crc Rev Plant Sci,1993(12):185-211.
    375.Poovaiah B W. Molecular and cellular aspects of calcium action in plants. Hort Sci, 1988,23(2):267-271.
    376.Poovaiah B W. Biochemical and molecular aspects of calcium action. Acta Horticulture,1993,326:139-145.
    377.Prioul J L, Chartier P. Partitioning of transfer and carboxylation components of intracellular resistance to photosynthetic CO2 fixation:A critical analysis of the methods used. Ann Bot,1977(41):789-800.
    378.Rao I M, Terry N. Leaf phosphate status and photosynthesis in vivo in sugar beet. I-Changes in growth, photosynthesis and Calvin cycle enzymes. Plant Physiol,1989, 90:814-819.
    379.Reymond P, Grunberger S, Paul K, Muller M, Farmer E E F. Oligogalacturonide defense signals in plants:large fragments interact with the plasma membrane in vitro. Proc Natl Acad Sci USA,1995,92(10):4145-4149.
    380.Rook F, Corke F, Card R, Munz G, Smith C, Bevan M W. Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signalLing. Plant J,2001,26(4):421-433.
    381.Rubio V, Bustos R, Irigoyen M L, Cardona-Lopez X, Rojas-Triana M, Paz-Ares J. Plant hormones and nutrient signaling. Plant Mol Biol,2009,69(4):361-373.
    382.Rudd J J, Franklin-Tong V E. Unravelling response-specificity in Ca2+ signalling pathways in plant cells. New Phytol,2001,151(1):7-33.
    383.Rolland F, Moore B, Sheen J. Sugar sensing and signaling in plants. Plant Cell,2002, 14:185-205.
    384.Sakakibara H, Taniguchi M, Sugiyama T. His-Asp phosphorelay signaling:a communication avenue between plants and their environment. Plant Mol Biol,2000, 42(2):273-278.
    385.Sanders D, Brownlee C, Harper J F. Communicating with calcium. Plant Cell,1999, (11):691-706.
    386.Sanz-Saez A, Erice G, Aranjuelo I, Nogues S, Irigoyen J J, Sanchez-Diaz M. Photosynthetic down-regulation under elevated CO2 exposure can be prevented by nitrogen supply in nodulated alfalfa. J Plant Physiol,2010,167(18):1558-1565.
    387.Sarfaraz A, Naeem M, Nasir S, Idrees M, Aftab T, Hashmi N, Khan MMA, Moinuddin, Varshney L. An evaluation of the effects of irradiated sodium alginate on the growth, physiological activities and essential oil production of fennel (Foeniculum vulgare Mill.). J Med Plants Res.2011,5(1):15-21.
    388.Singh M, Silva E, Schulze S, Sinclair D A, Fitzpatrick K A, Honda B M. Cloning and characterization of a new theta-class glutathione-S-transferase (GST) gene, gst-3, from Drosophila melanogaster. J Gene,2000,247(1-2):167-173.
    389.Smeekens S, Rook F. Suger sensing and sugar-mediated signal transduction in plants. Plant Physiol,1997,115(1):7-13.
    390.Smeekens S, Ma J, Hanson J, Rolland F. Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol,2010,13(3):274-279.
    391.Sharma A. Komatsu S. Involvement of a Ca2+-dependent protein kinase component downstream to the gibberellin-binding phosphoprotein, RuBisCO activase in rice. Biochem B Bophy Res Corem,2002,290 (18):690-695.
    392.Sharp J K, Valent B, Albersheim P. Purification and partual characterization of a bata-glucan fragment that elicits phytoalexin accumulation in soybean. J. Biol. Chem. 1984,259:11312-11320.
    393.Sharkey T D. Steady-state room temperature fluorescence and CO2 assimilation rates in intact leaves. Photosynthesis Res,1985,7:163-174.
    394.Shen W, Reyes M I, Hanley-Bowdoin L. Arabidopsis protein kinases GRIK1 and GRIK2 specifically activate SnRK1 by phosphorylating its activation loop. Plant Physiology,2009,150(2):996-1005.
    395.Shuvalov V A. Composition and function of cytochrome b559 in reaction centers of photosystem Ⅱ of green plants. J Bioenerg Biomembr,1994,26(6):619-626.
    396.Siegenthaler P A, Murata N. Lipids in photosynthesis:structure function and genetics. Dordrecht, The Netherlands:Kluwer Academic Press.1998.
    397.Smeekens S. Sugar-induced signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol,2000,51:49-81.
    398.Shrotri C K, Tewari M N, Rathore V S. Effects of zinc nutrition on sucrose biosynthesis in maize. Phytochemistry,1980,19:139-140
    399.Srivastava H S, Singh R P. Role and regulation of L-glutamate dehydrogenase activity in higher plants. Phytochem,1987,26(3):597-610.
    400.Stenlid G. Cytokinins as inhibitors of root growth. Physiol Plant,1982,56(4):500-506.
    401.Stiborova M, Ditrichova M, Brezinva A. Mechanism of function of Cu2+ and Zn2+ on ribulose-1,5-biphosphate carboxylase from barley (Hordeum ulgare L). Photosynthetica,1987,21:161-165.
    402.Suzuki T, Tomita-Yokotani K, Yoshida S, Takase Y, Kusakabe I, Hasegawa K. Preparation and isolation of oligogalacturonic acids and their biological effects in cockscomb (Celosia argentea L.) seedings. Plant Growth Regul.2002,21(3): 209-215.
    403.Swarup R, Parry G, Graham N, Allen T, Bennett M. Auxin cross-talk:integration of signalling pathways to control plant development. Plant Mol Bio,2002,49(3-4): 411-426.
    404.Sweere U, Eichenberg K, Lohrmann J, Mira-Rodado V, Baurle I, Kudla J, Nagy F, Schafer E, Harter K. Interaction of the response regulator ARR4 with phytochrome B in modulating red light signaling. Science,2001,294(5544):1108-1111.
    405.Teng S, Rognoni S, Bentsink L, Smeekens S. The Arabidopsis GSQ5/DOG1 Cvi allele is induced by the ABA-mediated sugar signaling pathway and enhances sugar sensitivity by stimulating AB14 expression. Plant J,2008,55:372-381.
    406.Tomoda Y, Umemura K, Adachi T. Promotion of barley root elongation under hypoxic conditions by alginate lyase-lysate. Biosci Biotech Biochem,1994,58:202-203.
    407.Tran Thann Van K, Toubart P, Cousson A, Darvill A G, Gollin D J, Chelf P, Albersheim P. Manipulation of morphogenetic pathways of tobacco explants by oligosaccharins. Nature,1985,314:615-617.
    408.Tsutsui T, Morita-yamamuro C, Asada Y, Minami E, Shibuya N, Ikeda A, Yamaguchi J. Salicylic acid and a chitin elicitor both control expression of the CAD1 gene involved in the plant immunity of Arabidopsis. Biosci Biotech Biochem,2006, 70(9):2042-2048.
    409.Uemura M, Joseph R A, Steponkus P L. Cold acclimation of Arabidopsis thaliana: effect on plasma membrane lipid composition and freeze-induced lesions. Plant Physiol,1995,109:15-30.
    410.Uemura M, Steponkus P L. A contrast of the plasma membrane lipid composition of oat and rye leaves in relation to freezing tolerance. Plant Physiol,1994,104(2):479-496.
    411.Umemoto N, Kakitani M. Iwamatsu A, Yoshikawa M, Yamaoka N, Ishida I. The structure and function of soybean (3-glucan-elicitor-binding protein. Proc Natl Acad Sci USA,1997,94(3):1029-1034.
    412.Vander Luit A H, Qlivari C, Haley A, Knight M R, Trewavas A J. Distict calcium signaling pathways regulate calmodulin gene expression in tobacco. Plant Physiol., 1999,121(3):705-714.
    413.Vijayan P, Browse J. Photoinhibition in mutants of Arabidopsis deficient inthylakoid unsaturation. Plant Physiol,2002,129(2):876-885.
    414.Vincentz M, Moureaux T, Ley decker M T, Vaucheret H, Caboche M. Regulation of nitrate and nitrite reductase expression in Nicotiana plumbaginifolia leaves by nitrogen and carbon metabolites. Plant J,1993,3(2):315-324.
    415.Wallsgrove R M, Lea P J, Miflin B J. Distribution of the enzymes of nitrogen assimilation within the pea leaf cell. Plant Physiol,1979,63(2):232-236.
    416.Wan J R, Zhang X C, Neece D, Ramonell K M, Clough S, Kim S Y, Stacey M G, Stacey G. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell,2008,20:471-481.
    417.Wang W T, LeDonne NC Jr, Ackerman B, Sweeley C C. Structural characterization of oligosaccharides by high-performance liquid chromatography, fast-atom bombardment-mass spectrometry, and exoglycosidase digestion. Anal Biochem,1984, 141(2):366-381.
    418.Wang J X, Jiang X L, Mou H J, Guan H S. Anti-oxidation of agar oligosaccharides produced by agarase from a marine bacterium. Appl Phycol,2004,16(5):333-340.
    419.Wang J J, Li D F, Dangott L J, Wu G Y. Proteomics and its role in nutrition research. J Nutri,2006,136:1759-1762.
    420.Wang H Q, Xiao L T. Effects of chlorocholine chloride on phytohormones and photosynthetic characteristics in potato(Solarium tuberrosum L.). J Plant Growth Regul,2009,28(1):21-27.
    421.Weigel H J, Jager H J. Subcellular distribution and chemical form of cadmium in bean plant. Plant Physiol,1980,65(3):480-482.
    422.Wendehennle D, Binet M N, Blein J P, Ricci P, Pugin A. Evidence for specific high affinity binding-sites for a proteinaceous elicitor in tobacco plasma-membrane. FEBS Letter,1995,374(2):203-207.
    423.Yamaguchi T, Ito Y, Shibuya N. Oligosaccharide elicitors and their receptors for plant defense responses J. Trends Glycosci Glyc,2000,12(64):113-120.
    424.Yamaguchi T, Yamada A, Hong N, Ogawa T, Ishii T, Shibuya N. Differences in the recognition of glucan elicitor signals between rice and soybean:beta-glucan fragments from the rice blast disease fungus Pyricularia oryzae that elicit phytoalexin biosynthesis in suspension-cultured rice cells. Plant Cell,2000,12(5): 817-826.
    425.Yang T, Poovaiah B W. Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci,2003,8 (10):505-512.
    426.Yang H M, Zhang X Y, Wang G X. Cytosolic calcium oscillation signaling in guard cell. Plant Sci,2004,166:549-556.
    427.York W S, Darvill A G, Albersheim P. Inhibition of 2,4-dichlorophenoxyacetic acid-stimulated elongation of pea stem segments by a xyloglucan oligosaccharide. Plant Physiol,1984,75:295-297.
    428.Yokose T, Nishikawa T, Yamamoto Y, Yamasaki Y, Yamaguchi K, Oda T. Growth-promoting effect of alginate oligosaccharides on a unicellular marine microalga, Nannochloropsis oculata. Biosci Biotech Biochem,2009,73(2):450-453.
    429.Yokoyama T, Kobayashi N, Kouchi H, Minamisawa K, Kaku H, Tsuchiya K. A lipochito-oligosaccharide, Nod factor, induces transient calcium influx in soybean suspension-cultured cells. Plant J,2000,22(1):71-80.
    430.Zelitch I. The close relationship between net photosynthesis and crop yield. Bioscience,1982,32(10):796-802.
    431.Zhang R E, Cao Y L, Hearn M W. Synthesis and application of fmoc-hydrazine for the quantitative determination of saccharides by reversed-phase high-performance liquid chromatography in the low and subpicomole range. Anal Biochem.1991, 195(1):160-167.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700