用户名: 密码: 验证码:
水培条件下玉米耐低磷的种质资源评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米广泛种植于全球温热带地区,是一个具有广泛用途和丰富遗传多样性的物种。磷是对植物生长发育具有重要作用的大量元素,低磷胁迫影响植物的正常生长。为了适应低磷胁迫的土壤环境,植物进化出适应低磷环境的机制,帮助植物在缺磷的条件下搜寻、活化和吸收土壤中的磷并对体内的磷进行循环利用。土壤中缺磷是限制玉米产量的重要因素之一,这种情况在以低投入农业为主的发展中国家更为严重。本研究应用遗传育种学的方法和技术初步揭示了玉米耐低磷遗传变异的生理机理。
     我们利用室内水培培养的方法进行对550个玉米自交系(包括338份来自于两个RIL群体的材料,69份温带自交系和143份热带自交系)进行了耐低磷的表型鉴定。试验设置低磷和常磷两个处理。统计分析表明所测定的茎叶性状在玉米材料之间表现出较大的遗传变异性,遗传力在0.70到0.91之间。最佳线性无偏估计(BLUP)分析发现BLUP和平均值之间表现出较强的正相关。苗长和其他性状相关性极显著,表明通过对苗长进行选择,可以达到改良其他性状的目的。我们对所有性状进行主成分分析,前两个主成分可以解释81.27%的表型变异,其中第一个主成分可解释表型变异的59.35%,主要贡献来自于总干重、苗干重、根干重、苗鲜重、根鲜重、根长和苗长。通过主成分分析计算出一个综合选择指数,利用该选择指数对玉米的耐低磷能力进行筛选,共筛选出30个优良材料。这些材料可能对提高玉米的耐低磷能力有一定的应用价值。
     我们利用GiA Root软件对低磷和常磷处理下的220个玉米自交系的根系性状进行了测量。方差分析表明,这些根部性状的遗传变异较大,遗传力在0.59到0.95之间,不同性状的遗传方差在0.01到0.60之间。BLUP与平均值之间表现出较强的线性关系。Euclidean遗传距离在0.61到29.33之间,表明自交系之间的变异性较大。主成分分析表明,前三个主成分解释表型变异的79%,其中贡献最大的是根系总长、根系表面积、根系周长、根系面积、最大根数、根系体积、根系凸面面积、根长、根系深度、交叉根数和根系宽度。
     缺磷将激发植物许多转录水平、生化水平和生理水平的变化,这些变化能够帮助植物吸收土壤中的磷以及改善植物的磷利用效率。玉米遗传材料的磷利用效率变异很大。系统生物学结合高通量、多维度和高精度的表型鉴定将有助于培育耐低磷的玉米新品种。
Maize (Zea mays L.) is a versatile cereal crop and can grow in tropical, subtropical and temperate agro-climatic conditions. Phosphorus (P) is a second most important macro-element that is essential for plant growth and development. Plants have developed complex responsive and adaptive mechanisms for foraging, remobilizing and recycling of phosphorus to retain P homeostasis. Low-phosphorus (LP) in the soil is a major yield-limiting factor in maize production, particularly in low-input agriculture and developing countries. The present studies experimental breeding approaches were applied to reveal morpho-physiological mechanisms underlying natural variation for LP tolerance in maize and to find ways to explore this variation.
     A total of550maize germplasm, including338from two RIL populations and69temperate and143tropical maize inbreds, were evaluated for seedling traits in hydroponic under LP (2.5×10-6mol L"-1of KH2PO4) and normal phosphorus (NP)(2.5×104mol L-1of KH2PO4) conditions. Descriptive statistics and analysis of variance revealed a wide range of variability for LP tolerance related traits. Estimated broad-sense heritability (h2) for all the measured traits ranged from70%to91%, indicating that all the traits were highly inheritable. Genetic variances were low to moderate (0.05-0.31) for most seedling traits, indicating strong treatment effects and/or complex genetic architecture. Best linear unbiased predictor (BLUP) analysis found a strong positive correlation between BLUPs and means of the traits. Shoot length was significantly correlated with other root traits, indicating that direct selection based on maximum shoot length (MSL) might be sufficient for improvement of other traits. The first two principal components (PCs) explained about81.27%of the total variation among lines for the eight maize seedling traits. The relative magnitudes of eigenvectors for the first principal component was59.35%, explained mostly by total dry matter (TDM), shoot dry weight (SDW), root dry weight (RDW) shoot fresh weight (SFW), root fresh weight (RFW), maximum root length (MRL) and MSL. Genotype by trait (GXT) biplot revealed superior genotypes with combinations of favorable traits. The average genetic distance was3.53, ranging from0.25to20.01, indicating high levels of variability among the germplasm. A multi-trait selection index was calculated based on principal component analysis (PCA) using all measured traits, and30accessions with tolerance to LP stress were selected. These lines could be of potential use for breeding LP tolerance maize.
     Root network system (RNS) traits were measured from images of220inbred lines using GiA Root software. The inbred lines grew up to15days under hydroponic conditions in the high lux plant growth room with LP and NP treatments. Analysis of variance revealed a wide range of variability among the inbred lines, and heritability estimates ranged from0.59to0.95for all RNS traits, indicating consistency across experiments. The proportions of genetic variance ranged from0.01-0.60in the maize RNS traits. There was a strong positive, linear relationship between best linear unbiased predictors and estimated means. The Euclidean genetic distances ranged from0.61to29.33, indicating high levels of variability among the inbred lines. The first three PCs explained more than79%of total genetic variation, which were mostly contributed by network length (NWL), network surface area (NWSA), network perimeter (NWP), network area (NWA), maximum number of roots (MANR), median number of roots (MENR), network volume (NWV), network convex area (NWCA), specific root length (SRL), network depth (NWD), number of connected components (NCC) and network width (NWW). The G×T biplot revealed superior genotypes with combinations of favorable traits. Some outstanding genotypes with higher values of most RNS traits were identified. These lines could be of potential use for breeding LP tolerance maize.
     P deficiency in plants triggers many transcriptional, biochemical, and physiological changes that ultimately help the plants absorb P from the soil or improve the P use efficiency. Substantial genetic variation in P efficiency exists among the maize genotypes. It is expected that integration of systems biology with high-throughput, high-dimensional and precision phenotyping will contribute to the development of maize varieties tolerant to LP stress.
引文
1. Alves, V. M. C., Parentoni, S. N., Vasconcellos, C. A., Bahia Filho, A. F. C., Pitta, G. V. E. and Schaffert, R. E., Mechanisms of phosphorus efficiency in maize. In:Walter Horst, M. K. S., A. Biirkert, N. Claassen, H. Flessa, W.B. Frommer, Heiner E. Goldbach, H.-W. Olfs, V. Romheld, B. Sattelmacher, U. Schmidhalter, S. Schubert, N. Von Wiren, L. Wittenmayer (Eds.), Plant nutrition:Food security and sustainability of agro-ecosystems.2001, Kluwer Academic Publishers, The Netherlands, p.566-567.
    2. Anghinoni, I. and Barber, S., Phosphorus influx and growth characteristics of corn roots as influenced by phosphorus supply. Agronomy Journal,1980,172:655-668.
    3. Arai, Y. and Sparks, D. L., Phosphate reaction dynamics in soils and soil components:A multiscale approach. Advances in Agronomy,2007,94:135-179.
    4. Araus, J. L., Slafer, G. A., Royo, C. and Serret, M. D., Breeding for yield potential and stress adaptation in cereals. Critical Reviews in Plant Sciences,2008,27:377-412.
    5. Bayuelo-Jimenez, J. S., Gallardo-Valdez, M., Perez-Decelis, V. A., Magdaleno-Armas, L., Ochoa, I. and Lynch, J. P., Genotypic variation for root traits of maize(Zea mays L.) from the Purhepecha Plateau under contrasting phosphorus availability. Field Crops Research,2011,121:350-362.
    6. Bayuelo-Jimenez, J. S. and Ochoa-Cadavid, I., Phosphorus acquisition and internal utilization efficiency among maize landraces from the central Mexican highlands. Field Crops Research,2014,156:123-134.
    7. Bucher, M., Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytologist,2007,173:11-26.
    8. Buckler, E. S., Holland, J. B., Bradbury, P. J., Acharya, C. B., Brown, P. J., Browne, C., Ersoz, E., Flint-Garcia, S., Garcia, A., Glaubitz, J. C., Goodman, M. M., Harjes, C., Guill, K., Kroon, D. E., Larsson, S., Lepak, N. K., Li, H., Mitchell, S. E., Pressoir, G., Peiffer, J. A., Rosas, M. O., Rocheford, T. R., Romay, M. C., Romero, S., Salvo, S., Sanchez Villeda, H., da Silva, H. S., Sun, Q., Tian, F., Upadyayula, N., Ware, D., Yates, H., Yu, J., Zhang, Z., Kresovich, S. and McMullen, M. D., The genetic architecture of maize flowering time. Science,2009,325:714-718.
    9. Bustos, R., Castrillo, G., Linhares, F., Puga, M. I., Rubio, V., Perez-Perez, J., Solano, R., Leyva, A. and Paz-Ares, J., A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genetics,2010,6:1-15.
    10. Cai, H., Chen, F., Mi, G., Zhang, F., Maurer, H. P., Liu, W., Reif, J. C. and Yuan, L. Mapping QTLs for root system architecture of maize(Zea mays L.) in the field at different developmental stages. Theoretical and Applied Genetic,2012,125:1313-1324.
    11. Cai, H., Chu, Q., Gu, R., Yuan, L., Liu, J., Zhang, X., Chen, F., Mi, G. and Zhang, F., Identification of QTLs for plant height, ear height and grain yield in maize(Zea mays L.) in response to nitrogen and phosphorus supply. Plant Breeding,2012,131:502-510.
    12. Cai, H., Chu, Q., Yuan, L., Liu, J., Chen, X., Chen, F., Mi, G. and Zhang, F., Identification of quantitative trait loci for leaf area and chlorophyll content in maize (Zea mays) under low nitrogen and low phosphorus supply. Molecular Breeding,2011,30:251-266.
    13. Cakmak, I., Hengeler, C. and Marschner, H., Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. Journal of Experimental Botany,1994,45:1245-1250.
    14. Calderon-Vazquez, C., Ibarra-Laclette, E., Caballero-Perez, J. and Herrera-Estrella, L., Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant- and species-specific levels. Journal of Experimental Botany,2008,59: 2479-2497.
    15. Calderon-Vazquez, C., Sawers, R. J. and Herrera-Estrella, L., Phosphate deprivation in maize:genetics and genomics. Plant Physiology,2011,156:1067-1077.
    16. Chen, F.-j., Liu, X.-s. and Mi, G.-h., Varietal differences in plant growth, phosphorus uptake and yield formation in two maize inbred lines grown under field conditions. Journal of Integrative Agriculture,2012,11:1738-1743.
    17. Chen, J. and Xu, L., Comparative mapping of QTLs for H+ secretion of root in maize (Zea mays L.) and cross phosphorus levels on two growth stages. Frontiers of Agriculture in China,2011,5:284-290.
    18. Chen, J., Xu, L., Cai, Y. and Xu, J., QTL mapping of phosphorus efficiency and relative biologic characteristics in maize (Zea mays L.) at two sites. Plant and Soil,2008,313: 251-266.
    19. Chen, J., Xu, L., Cai, Y. and Xu, J., Identification of QTLs for phosphorus utilization efficiency in maize (Zea mays L.) across P levels. Euphytica,2009,167:245-252.
    20. Chiou, T. J. and Lin, S. I., Signaling network in sensing phosphate availability in plants. Annual Review of Plant Biology,2011,62:185-206.
    21. Clark, R. B. and Brown, J. C., Differential phosphorus uptake by phosphorus-stressed corn inbreds. Crop Science,1974,14:505-508.
    22. Cobb, J. N., Declerck, G., Greenberg, A., Clark, R. and McCouch, S., Next-generation phenotyping:requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement. Theoretical and Applied Genetics,2013,126:867-887.
    23. Collard, B. C. and Mackill, D. J., Marker-assisted selection:an approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society B:Biological Sciences,2008,363:557-572.
    24. Cordell, D., Towards global phosphorus security:A systems framework for phosphorus recovery and reuse options. Chemosphere,2011,84:747-758.
    25. Crossa, J., Perez, P., de los Campos, G., Mahuku, G., Dreisigacker, S. and Magorokosho, C., Genomic selection and prediction in plant breeding. Journal of Crop Improvement, 2011,25:239-261.
    26. DaSilva, A. E. and Gabelman, W. H., Screening maize inbred lines for tolerance to low-P stress condition. Plant and Soil,1992,146:181-187.
    27. Devau, N., Le Cadre, E., Hinsinger, P. and Gerard, F., A mechanistic model for understanding root-induced chemical changes controlling phosphorus availability. Annals of Botany,2010,105:1183-1197.
    28. Eathington, S. R., Crosbie, T. M., Edwards, M. D., Reiter, R. S. and Bull, J. K., Molecular markers in a commercial breeding program. Crop Science,2007,47:S-154-S-163.
    29. Elser, J. J., Phosphorus:a limiting nutrient for humanity? Current Opinion in Biotechnology,2012,23:1-6.
    30. Fernie, A. R. and Schauer, N., Metabolomics-assisted breeding:a viable option for crop improvement? Trends in Genetics,2009,25:39-48.
    31. Gahoonia, T., Nielsen, N. and Lyshede, O., Phosphorus (P) acquisition of cereal cultivars in the field at three levels of P fertilization. Plant and Soil,1999,211:269-281.
    32. Galkovskyi, T., Mileyko, Y., Bucksch, A., Moore, B., Symonova, O., Price, C. A., Topp, C. N., Iyer-Pascuzzi, A. S., Zurek, P. R., Fang, S., Harer, J., Benfey, P. N. and Weitz, J. S., GiA Roots:software for the high throughput analysis of plant root system architecture. BMC Plant Biology,2012,12:116.
    33. Gamuyao, R., Chin, J. H., Pariasca-Tanaka, J., Pesaresi, P., Catausan, S., Dalid, C., Slamet-Loedin, I., Tecson-Mendoza, E. M., Wissuwa, M. and Heuer, S., The protein kinase Pstoll from traditional rice confers tolerance of phosphorus deficiency. Nature, 2012,488:535-539.
    34. Gaume, A., Machler, F., De Leon, C., Narro, L. and Frossard, E., Low-P tolerance by maize (Zea mays L.) genotypes:Significance of root growth, and organic acids and acid phosphatase root exudation. Plant and Soil,2001,228:253-264.
    35. Graham, R. D., Breeding for nutritional characteristic in cereals. In:Tinker, P. B. and A. Lauchli, editors, Advances in Plant Nutrition. Praeger.1984, New York. p.57-102.
    36. Grant, C. B., S.; Montrea,M.; Plenchette, C.; Morel, C., Soil and fertilizer phosphorus: Effects on plant p supply and mycorrhizal development. Canadian Journal of Plant Science,2005,85:3-14.
    37. Gunes, A., Inal, A., Alpaslan, M. and Cakmak, I., Genotypic variation in phosphorus efficiency between wheat cultivars grown under greenhouse and field conditions. Soil Science & Plant Nutrition,2006,52:470-478.
    38. Haling, R. E., Brown, L. K., Bengough, A. G., Young, I. M., Hallett, P. D., White, P. J. and George, T. S., Root hairs improve root penetration, root-soil contact, and phosphorus acquisition in soils of different strength. Journal of Experimental Botany, 2013,64:3711-3721.
    39. Hartmann, A., Czauderna, T., Hoffmann, R., Stein, N. and Schreiber, F., HTPheno:An image analysis pipeline for high-throughput plant phenotyping. BMC Bioinformatics, 2011,12:148.
    40. Heffher, E. L., Sorrells, M. E. and Jannink, J.-L., Genomic selection for crop improvement. Crop Science,2009,49:1.
    41. Holland, J. B., Genetic architecture of complex traits in plants. Current Opinion in Plant Biology,2007,10:156-161.
    42. Jain, A., Poling, M. D., Smith, A. P., Nagarajan, V. K., Lahner, B., Meagher, R. B. and Raghothama, K. G., Variations in the composition of gelling agents affect morphophysiological and molecular responses to deficiencies of phosphate and other nutrients. Plant Physiology,2009,150:1033-1049.
    43. Jiang, H. Y., Jc; Zhang, Jf; Hou, Yn. Screening of tolerant maize genotypes in the low phosphorus field soil. The 19th World Congress of Soil Science:Soil solutions for a changing world, Brisbane, Australia,1-6 August 2010. Symposium 3.1.2 Farm system and environment impacts 2010. Australia.
    44. Jungk, A., Root hairs and the acquisition of plant nutrients from soil. Journal of Plant Nutrition and Soil Science,2001,164:121-129.
    45. Kaeppler, S. and Jennifer L. Parke, S. M. M., Lynn Senior, Charles Stuber, and William F. Tracy, Variation among maize inbred lines and detection of quantitative trait loci for growth at low phosphorus and responsiveness to arbuscular mycorrhizal fungi. Crop Science,2000,40:358-364.
    46. Kearsey, M. J. and Farquhar, A. G. L., QTL analysis in plants; where are we now? Heredity,1998,80:137-142.
    47. Kim, S. I., Andaya, C. B., Newman, J. W., Goyal, S. S. and Tai, T. H., Isolation and characterization of a low phytic acid rice mutant reveals a mutation in the rice orthologue of maize MIK. Theoretical and Applied Genetics,2008,117:1291-1301.
    48. Lambers, H., Ahmedi, I., Berkowitz, O., Dunne, C, Finnegan, P. M., Hardy, G. E. S. J., Jost, R., Laliberte, E., Pearse, S. J. and Teste, F. P., Phosphorus nutrition of phosphorus-sensitive Australian native plants:threats to plant communities in a global biodiversity hotspot. Conservation Physiology,2013,1:1-21.
    49. Lambers, H., Finnegan, P. M., Laliberte, E., Pearse, S. J., Ryan, M. H., Shane, M. W. and Veneklaas, E. J., Update on phosphorus nutrition in proteaceae. Phosphorus nutrition of proteaceae in severely phosphorus-impoverished soils:Are there lessons to be learned for future crops? Plant Physiology,2011,156:1058-1066.
    50. Lambers, H., Shane, M. W., Cramer, M. D., Pearse, S. J. and Veneklaas, E. J., Root structure and functioning for efficient acquisition of phosphorus:Matching morphological and physiological traits. Annals of Botany,2006,98:693-713.
    51. Li, M., Guo, X., Zhang, M., Wang, X., Zhang, G., Tian, Y. and Wang, Z., Mapping QTLs for grain yield and yield components under high and low phosphorus treatments in maize (Zea mays L.). Plant Science,2010,178:454-462.
    52. Li, X., Zhu, C., Yeh, C. T., Wu, W., Takacs, E. M., Petsch, K. A., Tian, F., Bai, G., Buckler, E. S., Muehlbauer, G. J., Timmermans, M. C, Scanlon, M. J., Schnable, P. S. and Yu, J., Genie and nongenic contributions to natural variation of quantitative traits in maize. Genome Research,2012,22:2436-2444.
    53. Li, Y., Ma, X., Wang, T., Li, Y., Liu, C, Liu, Z., Sun, B., Shi, Y., Song, Y., Carlone, M., Bubeck, D., Bhardwaj, H., Whitaker, D., Wilson, W., Jones, E., Wright, K., Sun, S., Niebur, W. and Smith, S., Increasing maize productivity in china by planting hybrids with germplasm that responds favorably to higher planting densities. Crop Science, 2011,51:2391.
    54. Li, Z., Xu, C., Li, K., Yan, S., Qu, X. and Zhang, J., Phosphate starvation of maize inhibits lateral root formation and alters gene expression in the lateral root primordium zone. BMC Plant Biologyogy,2012,12:89.
    55. Lindsay, W., Vlek, P. and Chien, S., Phosphate minerals. Minerals in soil environment, 1989:1089-1130.
    56. Linkohr, B. I., Williamson, L. C, Fitter, A. H. and Leyser, H. M. O., Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. The Plant Journal,2002,29:751-760.
    57. Liu, T. Y., Chang, C. Y. and Chiou. T.J., The long-distance signaling of mineral macronutrients. Current Opinon in Plant Biology,2009,12:312.
    58. Lopez-Arredondo, D. L. and Herrera-Estrella, L., Engineering phosphorus metabolism in plants to produce a dual fertilization and weed control system. Nature Biotechnology, 2012,30:889-893.
    59. Lopez-Bucio, J., Hernandez-Abreu, E., Sanchez-Calderon, L., Nieto-Jacobo, M. F., Simpson, J. and Herrera-Estrella, L., Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiology,2002,129:244-256.
    60. Lough, T. J. and Lucas, W. J., Integrative plant biology:Role of phloem long-distance macromolecular trafficking. Annual Review of Plant Biology,2006,57:203-232.
    61. Lu, Y., Zhang, S., Shah, T., Xie, C., Hao, Z., Li, X., Farkhari, M., Ribaut, J. M., Cao, M., Rong, T. and Xu, Y., Joint linkage-linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Proceeding of the National Academy of Science of the United States of America,2010, 107:19585-19590.
    62. Lucas, W. J., Groover, A., Lichtenberger, R., Furuta, K., Yadav, S.-R., Helariutta, Y., He, X.-Q., Fukuda, H., Kang, J., Brady, S. M., Patrick, J. W., Sperry, J., Yoshida, A., Lopez-Millan, A.-F., Grusak, M. A. and Kachroo, P., The plant vascular system: Evolution, development and functions. Journal of Integrative Plant Biology,2013,55: 294-388.
    63. Luengo, C., Brigante, M., Antelo, J. and Avena, M., Kinetics of phosphate adsorption on goethite:Comparing batch adsorption and ATR-IR measurements. Journal of Colloid and Interface Science,2006,300:511-518.
    64. Lynch, J. and Brown, K., Topsoil foraging-an architectural adaptation of plants to low phosphorus availability. Plant and Soil,2001,237:225-237.
    65. Lynch, J. P., Root phenes for enhanced soil exploration and phosphorus acquisition:tools for future crops. Plant Physiology,2011,156:1041-1049.
    66. Lynch, J. P. and Brown, K. M., New roots for agriculture:exploiting the root phenome. Philosophical Transactions of the Royal Society B:Biological Sciences,2012,367: 1598-1604.
    67. Messmer, R., Fracheboud, Y., Banziger, M., Stamp, P. and Ribaut, J.-M., Drought stress and tropical maize:QTLs for leaf greenness, plant senescence, and root capacitance. Field Crops Research,2011,124:93-103.
    68. Mollier, A. and Pellerin, S., Maize root system growth and development as influenced by phosphorus deficiency. Journal of Experimental Botany,1999,50:487-497.
    69. Mundim, G. B., Viana, J. M. S., Maia, C. and Tuberosa, R., Early evaluation of popcorn inbred lines for phosphorus use efficiency. Plant Breeding,2013,132:613-619.
    70. Nagarajan, V. K. and Smith, A. P., Ethylene's role in phosphate starvation signaling:more than just a root growth regulator. Plant Cell Physiology,2012,53:277-286.
    71. Niu, Y. F., Chai, R. S., Jin, G. L., Wang, H., Tang, C. X. and Zhang, Y. S., Responses of root architecture development to low phosphorus availability:a review. Annals of Botany,2013,112:391-408.
    72. Parentoni, S. N., Jr., C. L. d. S., Alves, V. M. d. C, Gama, E. E. G., Coelho, A. M., Oliveira, A. C. d., Guimaraes, P. E. O., Guimaraes, C. T., Vasconcelos, M. J. V., Pacheco, C. A. P., Meirelles, W. F., Magalhaes, J. V. d., Guimaraes, L. J. M., Silva, A. R. d., Mendes, F. F. and Schaffert, R. E., Inheritance and breeding strategies for phosphorus efficiency in tropical maize(Zea Mays L.). Maydica,2010,55:1-15.
    73. Plenets, D. M., A.; Pellerin, S.I., Growth analysis of maize field crops under phosphorus deficiency. Ⅱ. Radiation use efficiency, biomass accumulation and yield components. Plant Soil,2000,224:259-272.
    74. Rafalski, J. A., Association genetics in crop improvement. Current Opinion in Plant Biology,2010,13:174-180.
    75. Rose, T. J., Pariasca-Tanaka, J., Rose, M. T., Fukuta, Y. and Wissuwa, M, Genotypic variation in grain phosphorus concentration, and opportunities to improve P-use efficiency in rice. Field Crops Research,2010,119:154-160.
    76. Salvi, S. and Tuberosa, R., To clone or not to clone plant QTLs:present and future challenges. Trends in Plant Science,2005,10:297-304.
    77. Sanchez-Calderon, L., Lopez-Bucio, J., Chacon-Lopez, A., Cruz-Ramirez, A., Nieto-Jacobo, F., Dubrovsky, J. G. and Herrera-Estrella, L., Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Plant Cell Physiology,2005,46:174-184.
    78. Sanchez-Calderon, L., Lopez-Bucio, J., Chacon-Lopez, A., Gutierrez-Ortega, A., Hernandez-Abreu, E. and Herrera-Estrella, L., Characterization of low phosphorus insensitive mutants reveals a crosstalk between low phosphorus-induced determinate root development and the activation of genes involved in the adaptation of Arabidopsis to phosphorus deficiency. Plant Physiology,2006,140:879.
    79. Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X., Zhang, W. and Zhang, F., Phosphorus dynamics:from soil to plant. Plant Physiology,2011,156:997-1005.
    80. Shiferaw, B., Prasanna, B., Hellin, J. and Banziger, M., Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security,2011,3:307-327.
    81. Sinclair, T. R., Challenges in breeding for yield increase for drought. Trends in Plant Science,2011,16:289-293.
    82. Singh, G. and Nielsen, N., Root traits as tools for creating phosphorus efficient crop varieties. Plant and Soil,2004,260:47-57.
    83. Tester, M. and Langridge, P., Breeding technologies to increase crop production in a changing world. Science,2010,327:818-822.
    84. Thibaud, M. C., Arrighi, J. F., Bayle, V., Chiarenza, S., Creff, A., Bustos, R., Paz-Ares, J., Poirier, Y. and Nussaume, L., Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis. The Plant Journal,2010,64:775-789.
    85. Tuberosa, R., Salvi, S., Giuliani, S., Sanguined, M., Frascaroli, E., Conti, S. and Landi, P., Genomics of root architecture and functions in maize. In:Costa De Oliveira, A. and R. K. Varshney, editors, Root Genomics.2011, Springer Berlin Heidelberg, p.179-204.
    86. Tuberosa, R., Salvi, S., Sanguineti, M., Maccaferri, M., Giuliani, S. and Landi, P., Searching for quantitative trait loci controlling root traits in maize:a critical appraisal. Plant and Soil,2003,255:35-54.
    87. Usuda, H. and Shimogawara, K., Phosphate deficiency in maize 111. Changes in enzyme activities during the course of phosphate deprivation. Plant Physiology,1992,99: 1680-1685.
    88. Woll, K., Borsuk, L. A., Stransky, H., Nettleton, D., Schnable, P. S. and Hochholdinger, F., Isolation, characterization, and pericycle-specific transcriptome analyses of the novel maize lateral and seminal root initiation mutant rum. Plant Physiology,2005,139: 1255-1267.
    89. Xu, Y., Skinner, D. J., Wu, H., Palacios-Rojas, N., Araus, J. L., Yan, J., Gao, S., Warburton, M. L. and Crouch, J. H., Advances in maize genomics and their value for enhancing genetic gains from breeding. International Journal of Plant Genomics,2009, 2009:1-30.
    90. Yang, Q., Zhang, D. and Xu, M., A sequential quantitative trait locus fine-mapping strategy using recombinant-derived progeny. Journal of Integrative Plant Biology, 2012,54:228-237.
    91. Yang, X. J. and Finnegan, P. M., Regulation of phosphate starvation responses in higher plants. Annals of Botany,2010,105:513-526.
    92. Yao, Q.-l., Yang, K.-c., Pan, G.-t. and Rong, T.-z., The effects of low phosphorus stress on morphological and physiological characteristics of maize (Zea mays L.) landraces. Agricultural Sciences in China,2007,6:559-566.
    93. Zhang, H., Uddin, M. S., Zou, C., Xie, C., Xu, Y. and Li, W.-X., Meta-analysis and candidate gene mining of low-phosphorus tolerance in maize. Journal of Integrative Plant Biology,2014,56:262-270.
    94. Zhang, Z., Liao, H. and Lucas, W. J., Molecular mechanisms underlying phosphate sensing, signaling and adaptation in plants. Journal of Integrative Plant Biology,2014,56:192-220.
    95. Zhu, J., Brown, K. M. and Lynch, J. P., Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.). Plant, Cell and Environment,2010,33:740-749.
    96. Zhu, J., Kaeppler, S. M. and Lynch, J. P., Mapping of QTL controlling root hair length in maize (Zea mays L.) under phosphorus deficiency. Plant and Soil,2005,270:299-310.
    97. Zhu, J., Kaeppler, S. M. and Lynch, J. P., Mapping of QTLs for lateral root branching and length in maize (Zea mays L.) under differential phosphorus supply. Theoretical and Applied Genetics,2005,111:688-695.
    98. Zhu, J., Kaeppler, S. M. and Lynch, J. P., Topsoil foraging and phosphorus acquisition efficiency in maize(Zea mays). Functional Plant Biology,2005,32:749.
    99. Zhu, J., Mickelson, S. M., Kaeppler, S. M. and Lynch, J. P., Detection of quantitative trait loci for seminal root traits in maize (Zea mays L.) seedlings grown under differential phosphorus levels. Theoretical and Applied Genetics,2006,113:1-10.
    100. Zhu, J., Mickelson, S. M., Kaeppler, S. M. and Lynch, J. P., Detection of quantitative trait loci for seminal root traits in maize (Zea mays L.) seedlings grown under differential phosphorus levels. Theoretical and Applied Genetics,2006,113:1-10.
    101. Zhu, J., Shawn, M., Kaeppler and Lynch, J., Mapping of QTL controlling root hair length in maize (Zea mays L.) under phosphorus deficiency. Plant and Soil,2005,270:299-310.
    102. Zhu, J., Zhang, C. and Lynch, J. P., The utility of phenotypic plasticity of root hair length for phosphorus acquisition. Functional Plant Biology,2010,37:313-322.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700