用户名: 密码: 验证码:
一体化连续流反硝化同时脱氮除磷工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用一体化连续流同时反硝化脱氮除磷工艺对处理低碳氮比污水进行了研究,实验相关结论如下:
     采用硝态氮作为电子受体的吸磷研究,分别选用10、15、20mmg·L-1硝态氮作为初始浓度时,前两小时的平均吸磷速率分别为4.61、5.46、3.46mg(L·h)-1,最大吸磷速率分别为10.1、10.4、6.57 mg(L·h)-1,过低和过高的硝态氮浓度都不利于实验高效稳定的进行;在缺氧吸磷阶段,吸收12.6mg·L-1磷,最佳硝态氮浓度在1 4.8mg·L-1,消耗硝态氮与吸收总磷的比值为1.17左右,这个比值在3种初始硝态氮条件下基本保持稳定。
     选用亚硝态氮作为电子受体时,发现在亚硝态氮浓度超过11mg·L-1时,会出现明显的吸磷速率减慢现象;亚硝态氮浓度为10mg·L-1时,前2小时吸磷速率平均为2.07 mg·(L·h)-1;亚硝态氮浓度为20 mg·L-1,且实验结束亚硝态氮浓度高于11 mg·L-1时,前2小时吸磷速度平均仅为0.715mg·(L·h)-1;不论吸磷速度是否变化,消耗亚硝态氮和吸收磷的比值基本稳定保持在2.29左右。
     以氧气作为电子受体的对比研究中,发现利用氧气作为电子受体的普通PAOs具有更快的吸磷反应速度;DPB以氧气作为电子受体时,5小时内吸磷量为7.30mg·L-1,前两小时平均吸磷速率为3.27 mg·(L·h)-1;PAOs强化和富集期后期的菌群以氧气作为电子受体时,5小时内吸磷量为12.6mg·L-1,前两小时平均吸磷速率为6.15 mg·(L·h)-1;通过一段时间的培养,DPB以氧气作为电子受体吸磷的能力能够通过培养而加强,在持续2周实验中,DPB的吸磷量增加了3.10mg·L-1。
     无论选用何种电子受体,反应速率最快的是起始的半个小时,随后趋于平缓,至第2小时,吸磷量超过全过程中总吸磷量的84%;选用硝态氮、亚硝态氮和氧气作为电子受体,最佳浓度条件情况下,前2小时吸磷速度由大到小为:PAOs强化和富集期后期的菌群以氧气作为电子受体>DPB利用硝态氮作为电子受体>DPB利用氧气作为电子受体>DPB利用亚硝态氮作为电子受体;但是在第1小时内,低浓度亚硝态氮的反应效率明显高于试验中选用的任何浓度硝态氮的反应效率。
     对连续运行的一体化装置运行进行研究,对影响因素进行分析,得到一体化装置稳定高效运行的合理参数如下:厌氧、好氧和缺氧合适水力停留时间(HRT)分别为2-3h、4-6h和2-4h;厌氧、好氧和缺氧合适DO分别为0.1 mmg·L-1以下、3.0-4.5mg·L-1之间和0.2mg·L-1以下;厌氧、好氧和缺氧合适氧化还原电位(ORP)分别为-256 mV、45 mV和-138 mV;厌氧和缺氧合适超越回流比为35%;DPB合适污泥龄(SRT)为20天;合适硝化温度大约在30℃附近;合适进水pH在6-8之间。
     在连续运行的试验中,控制在以上运行条件下,研究了不同碳氮磷比对反应效果的影响,并得出C/N/P在70:10:(1-1.25)时,出水COD控制在30mg·L-1左右,氨氮测出的浓度仅为0.60mg-L-1,而出水总磷的浓度也能有效控制在0.5 mg·L-1以下,硝态氮和亚硝态氮剩余浓度也非常低,出水总氮浓度被控制在2 mg·L-1以下;COD、氨氮、总磷、总氮的去除率分别达到了91%、98%、90%和90%,满足城镇污水处理厂污染物排放标准GB 18918-2002的一级A标准。
In this paper, sewage with low ratios of carbon (C) to nitrogen (N) was treated with the integrative and continuous flow technology (ICFT) of simultaneous denitrifying nitrogen and phosphorus (P) removal (SDNPR), and the main results were as follows:
     1. In the experiment in which nitrate N was taken as electron acceptor to absorb P,10,15, and 20 mg·L-1 were selected as the initial concentrations of nitrate N, the average P absorption rates within the first two hours were 4.61,5.46,3.46 mg·(L·h)-1, and the maximum P absorption rates were 10.1, 10.4,6.57 mg·(L·h)-1, respectively. Neither lower nor higher concentrations of nitrate N were benefit to the experiment in efficiently and stably. At the stage of anoxic-P absorption,12.6 mg·L-1 of P was absorbed, and the optimal concentration of nitrate N was 14.8 mg·L-1. The ratio of nitrate N consumption to total P absorption was about 1.17, and this ratio remained quite stable under the conditions of the three initial concentrations of nitrate N.
     2. When nitrite N was used as electron acceptor, it was found an obvious slower rate of P absorption when nitrate N was higher than 11 mg·L-1. If nitrite N was 10 mg·L-1, the average rates of P absorption was 2.07 mg·(L·h)-1 in within the first two hours. When initial nitrate N was 20 mg·L-1 and higher than 11 mg·L-1 at the end of experiment, the average rates of P absorption was only 0.715 mg-(L·h)-1 in within the first two hours. Whatever P absorption rates were, the ratios of nitrite N consumption to P absorption were stable as about 2.29.
     3. Oxygen was used as an electron acceptor and a comparison, common PAOs system which using oxygen as an electron acceptor had higher rates of P absorption. There was 7.30 mg-L"1 of P removal in 5 hours in the DPB system using oxygen as electron acceptor, and the average rates of P absorption was 3.27 mg·(L·h)-1 within the first two hours. When the bacteria using oxygen as electron acceptor at final stage of strengthen and enrich in PAOs system, P absorption was 12.6 mg·L-1 in 5 hours and the average rates of P absorption was 6.15 mg·(L·h)-1 within the first two hours. The ability of DPB taking oxygen as an electron acceptor to absorb P was increased after suitable culture. P absorption of the DPB system was increased by 3.10 mg·L-1 in the experiment of two weeks.
     4. No matter what kind of electron acceptor was used, the fastest reaction rate was observed in the half an hour and then reached a gent period. Within the first two hours the P absorption accounted 84% of the total P absorption. In the experiments taking nitrate N, nitrite N, and oxygen as electron acceptor and with the optimal concentrations, the P absorption rates in the first two hours were sequenced as:the bacteria using oxygen as electron acceptor at final stage of strengthen and enrich in PAOs system> DPB system using nitrate N as electron acceptor> DPB system using oxygen as electron acceptor> DPB system using nitrite nitrogen as electron acceptor. However, the reaction efficiency with low concentrations of nitrite N was much higher than that with any concentrations of nitrate N others in the first hour.
     5. In continuous operation of the integrated device, the factors influencing the treatment efficiency were studied, and a set of reasonable parameters keeping the system running efficiently and stably were obtained. The hydraulic retention appropriate time (HRT) in anaerobic, aerobic, and anoxic stages was 2-3 h,4-6 h, and 2-4 h, respectively. The appropriate DO concentrations in anaerobic, aerobic, and anoxic stages was less than 0.1 mg-L-1, between 3.0 and 4.5 mg-L"1, and lower than 0.2 mg-L-1. The appropriate redox potential (ORP) in anaerobic, aerobic, and anoxic stages were-256 mV,45 mV, and-138mV. The suitable reflux ratios in anaerobic and anoxic stages reached 35%,20 days were suitable sludge age (SRT) for DPB system, suitable nitrification temperature was about 30℃, and suitable pH values were in 6-8.
     6. In continuous operation of the integrated device with the parameters described above, effects of different ratios of C:N:P in the initial sewage on the reaction efficiency were studied. The results showed that when C:N:P was70:10:(1~1.25), the effluent COD was about 30 mg·L-1, the ammonia N was only 0.60 mg-L-1, and the effluent total P was lower than 0.5 mg·L Meanwhile, the residual concentrations of nitrate N and nitrite N was very low, and the total N in outlet was lower than 2 mg-L". Under these experimental conditions, the removal efficiencies of COD, ammonia N, total P, and total N reached 91%,98%,90% and 90%, respectively, and the water quality in outlet was satisfied with the emitting standard A in GB 18918-2002 for sewage treatment plants.
引文
[1]任洁,顾国维,杨海真.改良型A2/O工艺处理城市污水的中试研究[J].给水排水,2000,26(6):7-10.
    [2]中华人民共和国环境保护部.2008中国环境状况公报.2009,4-20
    [3]国家环境保护总局,国家质量监督检验检疫总局.GB 18918-2002城镇污水处理厂污染物排放标准.中国环境出版社,2002,3-6.
    [4]中国土木工程学会水工业分会排水委员会等出版社.污水除磷脱氮技术研究与实践,2000,3:124-128.
    [5]周斌.改良型A2/O工艺的除磷脱氮运行效果[J].中国给水排水,2001,17(7):46-48.
    [6]郑兴灿,李亚新.污水除磷脱氮技术[M].中国建筑工业出版社,1998:40-52.
    [7]沈耀良,王宝贞.废水生物处理新技术—理论与应用[M].中国环境科学出版社,1999:157-159.
    [8]张波.城市污水生物脱氮除磷技术工艺与机理研究[D].同济大学博士论文,1996:4-6.
    [9]刘建广,付昆明,杨义飞,等.不同电子受体对反硝化除磷菌缺氧吸磷的影响[J].环境科学,2007,7(28):1472-1476.
    [10]冀琳彦,倪丽耐,王洪昌.城市污水可持续处理技术探讨[J],工业安全与环保,2008,4(34):24-26.
    [11]尹军,王晓玲,吴相会,等.低C/N条件下MUCT工艺的反硝化除磷特性[J].环境科学,2007,11(28):2478-2483.
    [12]刘洪波,李卓等.传统生物除磷脱氮工艺和反硝化除磷工艺对比[J].工业用水与废水,2006,37(6):4-7.
    [13]邓立鸣.反硝化聚磷的生物除磷脱氮[J].国外建材科技,2006,27(3):94-97.
    [14]李勇智,李安安等.A2N-SBR双污泥反硝化生物除磷系统效能分析[J].北京工商大学学报(自然科学版),2007,25(1):10-14.
    [15]王亚宜,王淑莹,彭永臻.反硝化除磷的生物化学代谢模型[J].中国给水排水,2006,22(6):4-7.
    [16]李亚静,孙力平.A/O工艺生物除磷和好氧反硝化效果及影响因素研究[J].环境保护科学,2007,33(4):19-21.
    [17]王晓莲,王淑莹等.A2O工艺中反硝化除磷及过量曝气对生物除磷的影响[J].化工学报,2005,56(8):1655-1660.
    [18].汤兵,王五洲,石太宏.低碳源条件下反硝化同步除磷脱氮的研究[J].工业水处理,2007,27(12):49-51.
    [19]高廷耀,周增炎.一种适合当前国情的城市污水脱氮除磷新工艺[J].同济大学学报,1996,24(6):647-651.
    [20]I Sudiana M, Mino T, Satoh H. Metabolism of Enhanced Biological Phosphorus Removal and Non-Enhanced Biological Phosphorus Removal Sludge with Acetate and Glucose as Carbon Source[J]. Wat Sci & Tech,1999,39:29-35.
    [21]Krist V G, van Loosdrecht M C M, Henze M, et al. Activated Sludge Wastewater Treatment Plant Modelling and Simulation:State of the Art[J]. Environmental Modelling & Software,2004,19:763-783.
    [22]Pijuan M, Guisasola A, Baeza J A, et al. Aerobic Phosphorus Release Linked to Acetate Pptake:Influence of PAO Intracellular Storage Compounds[J]. Biochemical Engineering Journal,2005,26:184-190.
    [23]Jeon C O, Park J M. Enhanced Biological Phosphorous Removal in A Sequencing Batch Reactor Fed with Glucose As A Sole Carbon Source[J]. Wat Res,2000,34:2160-2170.
    [24]Wang N, Peng J, Hill G. Biochemical Model of Glucose Induced Enhanced Biological Phosphorus Removal under Anaerobic Condition[J]. Wat Res,2002,36:49-58.
    [25]Hu J Y, Ong S L, Ng W J, et al. A New Method for Characterizing Denitrifying Phosphorus Removal Bacteria by Using Three Different Types of Electron Acceptors[J]. Wat. Res,2003,37:3463-3471.
    [26]娄金生,谢水波.提高A/O工艺总体处理效果的措施[J].中国给水排水,1998,14(3):27-30.
    [27]Bortone G, Saltarelli R, Alonso V, et al. Biological Anoxic Phosphorus Removal-the Dephanox Process[J]. Wat. Sci. Tech,1996,34(1-2): 119-128.
    [28]刘亚南.不同碳源条件下生物除磷效能及机理的研究[D].哈尔滨工业大学工学博士学位论文[D],2004:39-60.
    [29]罗宁,罗固源,吉方英,等.新型双泥生物反硝化除磷脱氮系统中微生物的组成[J].给水排水,2003,33-35.
    [30]Palleroni N J. Prokaryotic | Diversity and The Importance of Culturing[J]. Antonie Van Leeuwenhoek,1997,72:3-19.
    [31]Amann R. Who Is Out There? Microbial Aspects of Biodiversity[J]. Syst. Appl. Microbiol,2004,23:1-8.
    [32]Bjornsson L, Hugenholtz P, Tyson G W, et al. Filamentous Chloroflexi (Green Non-Sulfur Bacteria) Are Abundant in Wastewater Treatment Processes with Biological Nutrient Removal[J]. Microbiology (UK), 2005,148:2309-2318.
    [33]Kortstee G J J, Appeldoorn K J, Bonting C F C, et al. Ecological Aspects of Biological Phosphorus Removal in Activated Sludge Systems[J]. Adv. Microb. Ecol,2004,16:69-200.
    [34]马勇,王淑莹,曾薇,等.A/O生物脱氮工艺处理生活污水中试(一)短程硝化反硝化的研究[J].环境科学学报,2006,26(5):703-709.
    [35]Preston-Mafham J, Boddy L, Randerson P F. Analysis of Microbial Community Functional Diversity Using Sole-Carbon Source-Utilization Profiles-A Critique. FEMS Microbiol[J]. Ecol, 2002,26:1-14.
    [36]Hollender J, Dreyer U, Kornberger L, et al. Selective Enrichment and Characterization of A Phosphorus-Removing Bacterial Consortium from Activated Sludge[J]. Appl. Microbiol. Biotechnol,2005,58: 106-111.
    [37]杨国靖,李小明等.一体化生物除磷脱氮技术——反硝化除磷[J].环境科学与技术,2005,28(2):107-110.
    [38]Blackall L L, Crocetti G R, Saunders A M, et al. A Review and Update of the Microbiology of Enhanced Biological Phosphorus Removal in Wastewater Treatment Plants[J]. Antonie van Leeuwenhoek,2002,81: 681-691.
    [39]Crocetti G R, Banfield J F, Keller J, et al. Glycogen-Accumulating Organisms in Laboratory-Scale and Full-Scale Wastewater Treatment Processes[J]. Microbiology (UK),2002,148:3353-3364.
    [40]周康群,刘晖,孙彦富,等.A2/O工艺缺氧池中反硝化聚磷菌的比例、特性研究及菌株鉴定[J].环境污染与防治, 2007,6(29):437-442.
    [41]王晓莲,王淑莹,马勇,等.A20工艺中反硝化除磷及过量曝气对生物除磷的影响[J].化工学报,2005,8(56):1565-1570.
    [42]周康群,刘晖,崔英德,等.A2/O厌氧池污泥同步反硝化聚磷菌增殖、特性诱导及单菌株研究[J].化工进展,2007,7(26):999-1005.
    [43]周康群,刘晖,孙彦富,等.A2/O厌氧段聚磷菌的反硝化聚磷特性[J].中南大学学报(自然科学版).2007,4(38):645-651.
    [44]Liu L, Yin J, Cui CW, et al. Pilot ScaleResearch on Combined A2/O and Suspended Carrier Biofilm Process for PhosphorusRemoval[J]. ACTA Scientiarum Naturalium Universitatis Sunyatseni,2007,6, (46):291-292
    [45]郭海娟,马放,沈耀良.C/N比对反硝化除磷效果的影响[J].环境科学学报,2005,3(25):367-371.
    [46]Pereira H, Lemos P C, Reis M A M, et al. Model for Carbon Metabolism in Biological Phosphorus Removal Processes Based on in Vivo 13C-NMR Labeling Experiments[J]. Water Res,1996,30: 2128-2138.
    [47]Wang Y Y, Pan M L, Yan M, et al. Characteristics of anoxic phosphors removal in sequence batch reactor[J]. Journal of Environmental Sciences,2007,19:776-782
    [48]易津湘.污水中生物除磷技术的应用进展[J].黑龙江水利科技,2008,3(36):79-80.
    [49]王亚宜,彭永臻,殷芳芳,等.双污泥SBR工艺反硝化除磷脱氮特性及影响因素[J].2008,29(6):1526-1532
    [50]张龙,肖文德,李伟,等.SBR系统中同时硝化反硝化生物脱氮研究[J].环境工程,2005,23(4):29-32.
    [51]Jorgensen K, Paulii A. Polyphosphate Accumulation among Denitrifying Bacteria in Activated Sludge[J]. Anaerobe,2005,1: 161-168.
    [52]Muyima N Y O, Momba M N B, Colete T E. Biological Methods for the Treatment of Wastewaters. In:! Microbial Community Analysis:The Key to the Design of Biological Wastewater Treatment Systems, T E Cloete, and N.Y.O. Muyima (eds) [J], IAWQ Scientific and Technical, Report No.5:1-24.
    [53]朱怀兰.SBR除磷系统的积磷细菌[J].上海环境科学,1994,(4):16-18.
    [54]吴广华,张耀斌,全燮,等.温度及反硝化聚磷对SBMBBR脱氮除磷的影响[J].环境科学,2007.28(11):2484-2487
    [55]操家顺,杨雪冬,Loosdrecht MV. BCFs—生物除磷新工艺[J].中国给水排水,2002,18(3):23-26.
    [56]Khan M A, Satoh H, Katayama H, et al. Bacteriophages Isolated from Activated Sludge Processes and; Their Polyvalency[J]. Wat. Res,2002, 36:1345-1347.
    [57]Bouchez T, Patureau D, Dabert P, et al. Ecological Study of A Bioaugmentation Failure. Environ[J]. Microbiol,2000,2:179-190.
    [58]Watanabe K, Miyashita M, Harayama S. Starvation Improves Survival of Bacteria Introduced into Activated Sludge[J]. Appl. Environ. Microbiol,2004,66:3905-3910.
    [59]J Cho C, Tiedje J M. Quantitative Detection of Microbial Genes by Using DNA Microarrays[J]. Appl. Environ. Microbiol,2002,68: 1425-1430.
    [60]Loy A, Lehner L, Lee N, et al. Oligonucleotide Microarray for 16S rRNA Gene-Based Detection of All Recognized Lineages of Sulfate-Reducing Prokaryotes in The Environment[J]. Appl. Environ. Microbiol,2002,68:5064-5081.
    [61]Lacko N, Drysdale G D, Bux F. Anoxic Phosphorus Removal by Denitrifying Heterotrophic Bacteria[J]. Wat. Sci. Tech,2003,47(11): 11-22.
    [62]Pijuan M, Guisasola A, Baeza J A, et al. Aerobic Phosphorus Release Linked to Acetate Uptake:Influence of PAO Intracellular Storage Compounds[J]. Biochemical Engineering Journal,2005,26:184-190.
    [63]刘洪波,李卓,缪强强,等.传统生物除磷脱氮工艺和反硝化除磷工艺对比[J].工业用水与废水,2006,37(6):4-7
    [64]Tsuneda S, Ohno T, Soejima K, et al. Simultaneous nitrogen and phosphorus removal using denitrifying phosphate-accumulating organisms in a sequencing batch reactor[J]. Biochemical Engineering Journal,2006,27:191-196.
    [65]郝晓地,戴吉,胡沅胜,等.控制BNR工艺厌氧释磷效果因素的实验研究[J].环境科学学报,2008,9(28):1771-1776.
    [66]Lee N, Janssen J L C, Aspegren H, et al. Population Dynamics in Wastewater Treatment Plants with Enhanced Biological Phosphorus Removal Operated with and Without Nitrogen Removal[J]. Water Sci. Technol,2002,46:163-170.
    [67]刘晓亮,李亚新.生物除磷机理与新工艺[J].山西建筑,2006,1(32):191-192.
    [68]张洁,田立江,张雁秋.反硝化聚磷菌群的培养驯化[J].环境污染治理技术与设备,2006,5(7):74-77.
    [69]杨国靖,李小明,曾光明,等.一体化生物除磷脱氮技术—反硝化除磷[J].环境科学与技术,2005,28(2):107-109.
    [70]周康群,刘晖,孙彦富,等.反硝化聚磷菌的富集及富集污泥活性研究[J].环境科学与技术,2008,4(31):110-115.
    [71]Comeau H, Hall K J, Hancock R E W, et al. Biological Model for Enhanced Biological Phosphorus Removal[J]. Water Res,1986,20: 1511-1521.
    [72]曹海艳,孙云丽,刘必成,等.废水生物除磷技术综述[J].水科学与工程技术,2006,5:25-27.
    [73]张晶莉,文一波,李林宝,等.反硝化除磷脱氮工艺的影响因素探讨[J].安全与环境工程,2007,14(4):67-70
    [74]李相昆,张杰,黄蓉新,等.反硝化聚磷菌的脱氮除磷特性研究[J].中国给水排水,2006,3(22):35-39.
    [75]周岳溪,钱易,顾夏声.废水生物除磷机理的研究[J].环境科学,1992,13(4):1-4.
    [76]Mino T, Van Loosdrecht M C M, Heijnen J J. Microbiology and Biochemistry of the Enhanced Biological Phosphate Removal Process[J]. Water Res,2003,32:3193-3207.
    [77]张捍民,张杰,肖景霓,等.A20-MBR工艺反硝化脱氮除磷研究[J].大连理工大学学报,2008,48(4):490-495
    [78]张传义,张雁秋,袁丽梅,等.MBR-厌氧/缺氧交替工艺处理生活污水的试验研究[J].中国矿业大学学报,2007,3(36):347-350.
    [79]王学江,夏四清,陈玲.DO对MBBR同步硝化反硝化生物脱氮影响研究[J].同济大学学报(自然科学版),2006,34(4):514-517.
    [80]石永,周少奇,张鸿郭.SBR法处理垃圾渗滤液及其同时硝化反硝化生物脱氮研究[J].四川环境,2006,25(2):21-25.
    [81]张召基,夏世斌,汤文斐,等.分置式重力流的反硝化除磷脱氮研究[J].中国给水排水,2007,23(17):11-14
    [82]豆俊峰,罗固源,季铁军.SUFR脱氮除磷系统中反硝化聚磷菌的性能研究[J].水处理技术,2005,31(6):28-31.
    [83]Van Loosdrecht M C M, Hooijmans C M, Brdjanovic D, et al. Biological Phosphorus Removal Processes[J]. Appl. Microbiol. Biotechnol,2003,48:289-296.
    [84]刘小英,赵红梅等.SBR中生物除磷颗粒污泥的反硝化聚磷研究[J].环境科学,2008,29(8):2254-2259
    [85]李捷,熊必永,张杰.电子受体对厌氧/好氧反应器聚磷菌吸磷的影响[J].哈尔滨工业大学学报,2005,5(37):619-622.
    [86]王亚宜,王淑莹,彭永臻.MLSS、pH及N02-N对反硝化除磷的影响[J].中国给水排水,2005,7(21):47-51.
    [87]任南琪,吴永志,王秀蘅.新型反硝化脱氮除磷工艺及其影响因素研究[J].哈尔滨商业大学学报(自然科学版),2006,6(22):20-23.
    [88]Kaewpipat K, Grady C P L. Microbial Population Dynamics in Laboratory-Scale Activated Sudge Reactors[J], Water Sci. Technol. 2002,6:19-27.
    [89]张洁,胡卫新,张雁秋.改进型双泥反硝化除磷脱氮工艺——一种可望从根本上解决脱氮除磷矛盾的新工艺[J].环境污染与防治,2005,27(3):232-234
    [90]荣宏伟,彭永臻,张朝升.低碳城市污水反硝化除磷试验[J].环境 工程,2008,1(26):11-14.
    [91]刘洪波,李卓,缪强强,等.传统生物除磷脱氮工艺和反硝化除磷工艺对比[J].工业用水与废水,2006,37(6):4-7.
    [92]Zhong X J, Zhou S Q. Influence of nitrite on phosphorus uptake by activated sludge from anaerobic-aerobic sequencing batch reactor[J]. Journal of shaanxi university sf science & technology,2006,6(24): 21-27.
    [93]Xia S Q, Liu H B. Operation of three parallel AN/AO processes to enrich denitrifying phosphorus removing bacteria for low strength wastewater treatment[J]. Journal of Environmental Sciences,2006, 3(18):433-438
    [94]令云芳,王淑莹,王亚宜,等.A2N反硝化除磷脱氮工艺的影响因素分析[J].工业用水与废水,2006,37(2):7-11
    [95]杨庆娟,王淑莹,刘莹,等.A2N双污泥反硝化除磷系统微生物的先间歇后连续培养及快速启动[J].环境科学,2008,8(29):2249-2253
    [96]令云芳,王淑莹,王伟,等.厌氧段HRT对A2N工艺反硝化除磷脱氮效果的影响.水处理技术,2006,32(10):44-47
    [97]郝晓地,张向平,曹亚莉.对强化生物除磷机理与工艺认识误区的剖析[J].中国给水排水,2008,6(24):1-5.
    [98]李相昆,张杰,黄荣新,等.反硝化聚磷菌的脱氮除磷特性研究[J].中国给水排水,2006,22(3):35-39
    [99]Huang RX. Positive role of nitrite as electron acceptor on anoxic denitrifying phosphorus removal process[J].科学通报,2007,52(16): 2179-2183.
    [100]张晶莉,文一波,李林宝.反硝化除磷脱氮工艺的影响因素探讨[J].安全与环境工程,2007,4(14):67-92.
    [101]李相昆,周业剑,高美玲,等.亚硝酸根作为电子受体的反硝化吸磷特性[J],吉林大学学报(地球科学版),2008,1(38):117-120.
    [102]周康群,刘晖,孙彦富,等.利用亚硝酸盐为电子受体反硝化聚磷菌的筛选与富集[J].环境工程学报,2007,8(1):126-131.
    [103]任南琪,吴永志,王秀蘅.新型反硝化脱氮除磷工艺及其影响因素研究[J]:哈尔滨商业大学学报(自然科学版),2006,22(6):20-23
    [104]鄢敏林,赵丹,李秀芬,等.基于短程硝化的同步脱氮除磷影响因素研究[J].哈尔滨商业大学学报(自然科学版),2005,6(21):715-720.
    [105]Hesselmann R P X, Von Rummel R, Resnick S M, et al. Anaerobic Metabolism of Bacteria Performing Enhanced Biological Phosphate Removal[J]. Water Res,2005,34:3487-3494.
    [106]Maurer M, Gujer W, Hany R,et al. Intracellular Carbon Flow in Phosphorus Accumulating Organisms from Activated Sludge Systems[J]. Water Res,1997,31:907-917.
    [107]李相昆,姜安玺,于健,等.连续流双污泥反硝化同时除磷系统影响因素[J].沈阳建筑大学学报(自然科学版),2005,5(21):560-563.
    [108]Loy A, Daims H, Wagner M. Activated Sludge-Molecular Techniques for Determining Community Composition[J]. In:Encyclopaedia of Environmental Microbiology(Bitton G, Ed.),2002:26-43. Wiley Scientific, New York.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700