用户名: 密码: 验证码:
LD10铝合金及Ti-1023粉末钛合金的超塑性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金、铝合金等有色合金强度高、重量轻,被广泛应用在结构重量有至关重要意义的航空航天制造业中。研究这些合金的超塑性能,对采用超塑性等温锻造方法制造复杂形状锻件具有重要意义。
     本文对Φ16mmLD10铝合金热轧棒材采用420℃再结晶退火处理,使合金获得更加均匀、细小的晶粒组织,平均延伸率由158.2%提高到223%,该方案为本文推荐的较佳超塑性预处理方案。另外,原棒材经380℃、460℃退火及500℃固溶水冷处理后,也可获得较细的晶粒和较好的超塑性,个别试样的延伸率高达321%。
     超塑性拉伸试验结果表明,经420℃退火处理后,LD10铝合金在460℃~510℃温度范围内,及在1.1×10~(-2)S~(-1)~1.1×10~(-4)S~(-1)应变速率范围内,具有超塑性,平均延伸率在108%~231%范围内变化。本文所得的最佳超塑性温度范围为500℃~510℃,最佳应变速率为3.3×10~(-4)S~(-1),在此温度和应变速率条件下,经420℃退火处理棒材的平均延伸率达到223%~231%,流动应力仅为10.389MPa~12.962MPa。在具有较好超塑性的LD10拉伸断口中,于晶粒表面上产生有大量的丝状金属须。
     本文以具有明显铁偏析的Ti-1023合金棒材为原材料,采用粉末烧结+等温锻造的复合工艺制备Ti-1023粉末合金,使合金相对密度高达99.57%,显微组织异常均匀、细小,初生α相等轴性良好,完全消除了原棒材中的Fe偏析和β斑缺陷,室温拉伸性能大幅度提高,并呈现出了1269%的良好超塑性,个别试样δ值高达1422%,该项复合工艺为制备优质Ti-1023合金、细化合金组织、提高超塑性能的有效方法。
     超塑性拉伸试验结果表明,Ti-1023粉末合金在700℃~820℃温度范围内以及在3.3×10~(-4)s~(-1)~3.3×10~(-2)S~(-1)应变速率范围内都具有超塑性,拉伸延伸率分别在391%~1269%和155%~1422%范围内显著变化。所得最佳超塑性温度为750℃~760℃,最佳初始应变速率为3.3×10~(-4)s~(-1)~3.3×10~(-3)s~(-1),在此温度和初始应变速率条件下,延伸率高达1269%~1422%,流动应力仅为23.6 MPa~62.3MPa。在最佳超塑性条件下Ti-1023粉末合金拉伸试样呈现典型的“点”形式断裂,断口表面起伏很大,晶间断裂特征特别明显。
Titanium and aluminum alloys, which are nonferrous alloys, have considerable strength-to-weight advantage over comparable-strength steels. Therefore, they have been found in wide use in aerospace industry. It is of great significance to research on the superplastic properties of these alloys for using superplastic isothermal forging to manufacture complex forge pieces.
    In this paper, equiaxed fine-grained structure can be obtained when 16mm diameter hot-rolled bars of LD10 alloy are pretreated via proper recrystallization annealing (temperature 420℃). The average elongation is increased from 158.2% to 223%, and the process is the optimal pretreatment in this paper. In addition, equiaxed fine-grained structure and better superplasticity can also be obtained when the hot-rolled bars are pretreated via proper recrystallization annealing (temperature 380℃, 460℃) and solution annealing (temperature 500℃). And the maximum elongation is 321% in individual specimen.
    The tensile specimens through annealing at 420℃ present superplasticity (elongation 108%~231%), in the range of temperature from 460℃ to 510℃ and the strain rate from 1.1x10-2s-1 to 1.1x10-4s-1. The optimal superplastic deformation condition is 500℃~510℃ and 3.3x10-4s-1, on which the average elongation is 223%~232% and the flow stress is only 10.389MPa~12.962MPa. The tensile specimens which show better superplasticity appear filaments fracture.
    The process of powder sintering + isothermal forging is used for Ti-1023 alloy in which the element of Fe is segregated obviously. The relative density can reach 99.57%, homogeneous and fine-grained microstructure can be obtained, the primary a phases are better equiaxed grain and Fe segregation and B spot are completely removed. The tensile property at room temperature get better improved. Therefore the alloy presents excellent superplasticity (elongation 1269%), and the maximum value in individual specimen is 1422%. The process is an effective way to prepare high quality Ti-1023 alloy, to refine the microstructure and improve the superplastic property of the alloy.
    The experimental result of superplastic tensile test indicates that Ti-1023 powder alloy appear superplasticity (elongation 391%~1269% and 155%~1422% ) in the range of temperature from 700℃ to 820℃ and strain rate from 3.3 X10-4s-1to 3.3 X 10-2s-1. The optimal superplastic deformation condition is 750℃~760℃ and 3.3 X 10-4s-1-3.3 X 10-3s-1, in which the elongation can reach 1269%~1422% and the flow
    
    
    
    stress is 23.6Mpa~62.3 Mpa. Under optimal superplastic deformation condition the tensile specimens fracture in the form of point and the fracture surface fluctuates greatly. It shows obvious intergranular fracture.
引文
[1] Pearce R. Sheet Met Ind. 1986, 63(4): 188
    [2] 张保昌.有色金属及其热处理.西安:西北工业大学出版社,1993
    [3] 西北工业大学有色金属锻造编写组.有色金属锻造.北京:国防工业出版社,1979:P118—123
    [4] 郭鸿镇.合金钢与有色合金锻造.西安:西北工业大学,1999
    [5] 邢淑仪,王世洪.铝合金和钛合金.机械工业出版社,1987.10
    [6] [日]草道英武等.金属钛及其应用.冶金工业出版社,1989.8
    [7] 中国航空工业总公司第六二一,六零三研究所.Ti-1023钛合金在歼八Ⅱ型飞机上的应用.1994
    [8] 韩明臣,黄淑梅.钛在美国军工中的应用.钛工业进展,2001,(2)
    [9] 廖际常,姚丽.新技术在钛粉末冶金中的应用.钛工业进展,2000,(4)
    [10] 武宏让.世界钛应用开发现状.钛工业进展,2000,(6)
    [11] 李园春,王淑云.国内粉末高温合金涡轮盘件制造技术的发展现状.稀有金属,2001,25(3):226
    [12] 郑月秋,唐仁波.PREP法Ti-6Al-4V粉末钛合金的显微组织状态.钛科学与工程,1987,(9):196
    [13] 吴引江等.粉末粒度和成形温度对热等静压Ti-5Al-2.5Sn合金的显微组织和性能的影响.金属学报(增刊),1999,(9)
    [14] [苏]索朗宁娜,格拉祖诺夫著.张志方,葛志明译校.热强钛合金.北京:国防工业出版社,1986
    [15] [苏]E. A.鲍利索娃等著.陈石卿译.钛合金金相学.北京:国防工业出版社,1986
    [16] [英]J. D.列克山大等著.贺开运,孙荣科等译.宇航材料的锻造和性能.北京:工业出版社,1986
    [17] 兰芳.Ti-10V-2Fe-3Al合金等温锻造及热处理研究.西北工业大学硕士学位论文,1999.3
    [18] 洪慎章等.超塑性模锻工艺的应用及发展.锻压技术,2000,(1):44-46
    [19] 杨振恒,陈诗荪等.金属超塑性与超塑成形.西安:西北工业大学出版社,1987.6
    [20] 林兆荣等.金属超塑性成形原理及应用.北京:航空工业出版社,1990
    [21] Y. W. Xun et al. Applications of Superplastic Forming and Diffusion Bonding to Hollow Engine Blades. Journal of Material Processing Technology, 2000: 80-85
    [22] 姚锦生等.极具吸引力的等温精锻钛合金.首届留日中国学者21世纪材料科学技术研讨会论文集.北京:冶金工业出版社,2000:118-122
    [23] 刘建宇等.钛合金的超塑性和等温锻造.日中超塑性论文集,1986.11
    
    
    [24] 王哲.飞机结构应用Ti-1023钛合金应注意的问题.钛工业进展,2000,(3)
    [25] G. T. Terlinde, T. W. Duerig and J. C. Williams. The Effect of Heat Treatment on Microstructure and Tenstile Properties of Ti-10V-2Fe-3Al. 1571-1581
    [26] G. Terlinde., H. J. Rathjen and K. H. Schwalbe. Microstructure and Fracture Toughness of the Aged β-Ti Alloy Ti-10V-2Fe-3Al. Metallurgical Transactions A. 1988, 19A: 1037-1049
    [27] 王金友等.显微组织对Ti-1023合金断裂韧性的影响.第六届全国钛及钛合金学术交流会文集,1987:187-192
    [28] 张茜等.Ti-10V一2Fe-3Al合金显微组织对性能的影响.第八届全国钛及钛合金学术交流会文集,1993:431-435
    [29] 肖林等.ω时效组织对Ti-10V-2Fe-3Al疲劳性能的影响.第八届全国钛及钛合金学术交流会文集,1993:426-430
    [30] 王世洪等.Ti-10V-2Fe-3Al合金的应力诱发马氏体转变.第六届全国钛及钛合金学术交流会文集,1987:206-212
    [31] 伍春华.硬质合金顶锤真空烧结新工艺的探讨.硬质合金,1996,(5)
    [32] Eylon D, Froes F H, Parsons L D. Titanium PM components for advanced aerospace applications. Met. Powder Rep., 1983, 38(10): 567~571
    [33] Froes F H. Prealloyed titanium powder metallurgy-barriers to use. Int. J. Powder Metall., 1987, 23(4): 267~269
    [34] 徐润泽编著.粉末冶金结构材料学.长沙:中南工业大学出版社,2002.1
    [35] 丁旭艳,梁星等.真空烧结粉末冶金法制作钛合金试件的物理性能测试.华西口腔医学杂志,2000,(6)
    [36] 陈幼松.热等静压工艺的应用.航空制造工程,1988,(5)
    [37] [苏]A.劳莱,艾伦劳利等著.高性能粉末冶金译文集.北京:国防工业出版社,1982.2
    [38] 任学平,康永林.粉末塑性加工原理及其应用.北京:冶金工业出版社,1998
    [39] 俞淑延,王声宏.国内外热等静压技术的发展及应用.新技术新工艺,1989,(4)
    [40] 李殿魁译.热等静压(HIP)工艺的发展.上海金属,1999,(6)
    [41] 谭文生.热等静压和烧结热等静压对消除硬质合金孔洞的作用.稀有金属与硬质合金,1989,(12)
    [42] 张满等.钛合金铸件的热等静压和氢处理工艺研究.中国铸造装备与技术,2002,(5)
    [43] 陈耀波等.工艺流程对热等静压试样性能的影响.硬质合金,2001,18(3)
    [44] 崔中,梁彤翔,戴红.粉末冶金与超塑性.宇航材料工艺,1991,(6)
    [45] 吴诗淳.金属超塑性变形理论.北京:国防工业出版社,1997
    [46] 陈浦泉.组织超塑性.哈尔滨:哈尔滨工业大学出版社,1988
    [47] Nieh, Tai-Gang et al. Fine-structure Superplasticity in Materials.
    
    Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers, Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 1998, 21: 659-689
    [48] 吕萌福,季文源.ZnAl_(5-0.03)合金超塑性的研究(Ⅳ)—超塑性变形过程中显微组织的变化.上海金属(有色分册),1990,112(1)
    [49] 詹肇麟.HPb59-1铅黄铜超塑性研究.昆明理工大学学报,2000,25(5)
    [50] 李旭红等.温扎态Al一8Mg-O.2Zr合金超塑性变形过程中力学行为和微观组织相关性研究.材料研究学报,1995,9(1)
    [51] 刘志义等.超塑性变形的三维晶粒重排研究.稀有金属材料与工程,1995,24(5)
    [52] M. C. Somani et al. Deformation Processing in Superplasticity Regime-production of Aircraft Engine Compressor Discs out of Titanium Alloys. Materials Science and Engineering A. 1998, 243: 134-139
    [53] G. C. Morgan. British Gas Research and Development Division, Watson House, London SW6 3HN, U. N., C. Hammond, Department of Metallurgy, University of Leeds, Leeds LS29JT, U. N. The Role of Dislocation Climb and Diffusional Creep Mechanisms in the Superplastic Deformation Properties of Metastable βTitanium Alloys
    [54] Shyu, J. S et al. Diffusion Bonding/Superplastic Forming of Ti-6Al-6V-2Sn/SUS 304 Stainless Steel/Ti-6Al-6V-2Sn. Journal of Materials Engineering and Performance, Feb 1996: 84-88
    [55] Hofmann, H. et al. Dislocation-creep-controlled Superplasticity at High Strain Rates in the Ultrafine-grained Quasi-eutectoid Ti-10Co-4Al Alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing. Nov 15 1995. Elsevier Science S. A. 128-133
    [56] 丁黎光,丁伟.金属材料超塑性概述.机械工艺师,2001,(7)
    [57] Kim, Ji SiK et al. Quantitative Analysis on Boundary Sliding and Its Accommodation Mode during Superplastic Deformation of Two-phase Ti-6Al-4V Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. Vol29A. Jan 1998. Minerals, Metals & Materials Soc (TMS): 217-226
    [58] Combres, Y. et al. Modeling of the Flow Behaviour of a Ti-6%Al-4%V Alloy at Isothermal Superplastic Conditions. Scripta Metallurgica et Materialia. 1990, 24: 185-190
    [59] Bai, Bingzhe. Anisotropy of Superplasticity in Hot-rolled Sheet of Ti-10V-2Fe-3Al. Rare Metals Vol9. Apr 1990: 124-130
    [60] Schuh, C. et al. Tensile Fracture during Transformation Superplasticity of Ti-6Al-4V. Journal of Materials Research. March 2001: 865-875
    
    
    [61] Bhattacharya. S. S. et al. Mechanistic Model for Boundary Sliding Controlled Optimal Superplastic Flow: Ⅱ. Experimental verification. Journal of Materials Processing and Manufacturing Science, Oct 1995: 117-161
    [62] 周善佑,张东明.LC4铝合金在恒应变速率超塑性变形过程中的m-δ关系及组织演变.上海金属(有色分册),1990,11(6)
    [63] 张少卿等.Ti-10V-2Fe-3Al与Ti-10V-1Fe-1Cr-3Al合金的淬火相变及微观组织特征研究.第六届全国钛及钛合金学术交流会文集,1987:193-199
    [64] Watanabe H, Mukai T. Kohzu Met al. Low temperature superplasticity in a ZK60 magnesium alloy [J]. Materials Transactions, JIM, 1999, 40(8): 809-814
    [65] Mabuchi M, Iwasaki H, Yanase K et al. Low temperature superplasticity in an AZ91 magnesium alloy processed by ECAC[J]. Scripta Mater, 1997, 36(6): 681-686
    [66] 刘满平,马春江等.工业态AZ31镁合金的超塑性变形行为.中国有色金属学报,2002,12(4)
    [67] 杜忠权等.HVC处理细化Ti-1023合金组织及改善超塑性性能的研究.第八届全国钛及钛合金学术交流会文集,1993:377-383
    [68] 刘伟民等.Ti-10V-2Fe-3Al合金超塑性的研究.第六届全国钛及钛合金学术交流会文集,1987:20-23
    [69] 刘玉文,刘文俊,周大军等.第一届中日超塑性讨论会论文集,1985:54
    [70] 吴庆龄,蒋兴刚等.工业结构铝合金LC4的超塑性研究.日中超塑性86论文集,1986
    [71] 黄明宇,王典钧.供应态LD10铝合金的超塑性试验研究.轻合金加工技术,1998,26(4)
    [72] 郭鸿镇等.快速凝固Nb_3Al-Nb固溶体两相合金的组织与性能.中国有色金属学报,1998,8(3):470-476
    [73] Matuki Kenji, Ueno Yasuhide, and Yamada Masao: J. Jap. Inst. Met. 1974, 3: 219-226
    [74] Prasad, Y. V. RK. et al. Effect of Prior β-grain Size on the Hot Deformation Behavior of Ti-6Al-4V: Coarse vs Coarser. Journal of Materials Engineering and Performance, 2000, 9: 153-160
    [75] 刘润广等.LD10锻铝合金超塑性预处理工艺的研究.宇宙材料工艺,1994,(5)
    [76] 白秉哲.超塑变形中“晶粒群”运动初探.塑性工程学报,1994,(6)
    [77] Bai Bingzhe. Formation and Elimination of Multi-Necking in Superplastic Tension of A Ti-Alloy. Scripta METALLURGICA et MATERIALIA. Vol. 26, 1992: 743
    [78] Jin Quanlin, Bai Bingzhe et al. Grain Refinement by Torsion and Superplasticity in High Strength Ai-Allov, Superplastic Forming, Edited by C. H. Hamilton. 1988: 97
    
    
    [79] 郦定强等.具有大晶粒的FeAl金属间化合物的超塑性现象.机械工程材料,1994,18(6)
    [80] 蒋冬梅等.大晶粒Ni-Al合金的超塑性.上海交通大学学报,2002,36(5)
    [81] 李世伟,刘秀华等.变形温度对2A12铝合金超塑性的影响.轻加工技术,2002,30(7)
    [82] 刘润广等.铝青铜Qal10—3—1.5合金超塑性变形的研究.宇航材料工艺,1991,(3)
    [83] Meier, Mike et al. Strain Hardening Behavior of Superplastic Ti-6Al-4V. Scripta Metallurgica et Materialia. Vol24. Feb 1990. [69] Nakahigashi, J. et al. Ultra-fine Grain Refinement and Tensile Properties of Titanium Alloys Obtained through Protium Treatment. Journal of Alloys and Compounds. Vol330-332. Jan 2002: 384-388
    [84] [苏]C. 3.非格林等.薛永春译.刘建宁校.金属等温变形工艺.北京:国防工业出版社,1982
    [85] A. K. GHosh, R. A. Ayres: Metall. Trans. A., 1976, v. 7 A, pp. 1589-1591
    [86] 张荻,覃继宁等.热轧态TiAl基金属间化合物超塑性变形的组织研究.稀有金属材料与工程,1998,27(4)
    [87] 崔约贤,王长利.金属断口分析.哈尔滨:哈尔滨工业大学出版社,1998
    [88] 龙霓东.LF6超塑性变形断裂研究.航空材料学报,1997,17(2)
    [89] 张立斌等.粉末冶金法制造SiCp/Y12复合材料及SiCp/LY12复合材料超塑性研究.宇航材料工艺,1991,(5)
    [90] 许晓静.SiCp_p/Al复合材料超塑性变形的断口特征.理化检验—物理分册,2002,35(5)
    [91] 陈积伟,郭威等.超塑性变形中的孔洞长大模型.吉林工业大学学报,1991,(3)
    [92] 李秀清,赵友昌.超塑变形锰黄铜的空洞.华中师范大学学报(自然科学版),1993,9(27)
    [93] Hancock JW. Met Sci, 1976, (10): 319
    [94] Miller DA, Landon TG. Scr Metall, 1980, (14): 143
    [95] Stowell MJ. Met Sci, 1980. (14): 267
    [96] 刘腾,刘冰等.Al-Mg合金动态再结晶诱发超塑性时的空洞行为.中国有色金属学报,2000,10(6)
    [97] Zelin M G. Acta Metall Mater, 1997, 45(9): 3533
    [98] 许晓静等.挤压铸造铝基复合材料的高应变速率超塑性.中国有色金属学报,1999,9(2)
    [99] 吴艳青,张克实.粗晶粒LY—12超塑性变形及断裂机制研究.材料科学与工程,2002,20(4)
    [100] Hikosaka, T., Imai, T. High strain rate superplasticity of SiC/6061 aluminum alloy composite made by a vortex method. Materials Science Forum. 1997: 233-234
    [101] 陈培生等.MB2/SiC复合材料的高应变速率超塑性.中国有色金属学报,
    
    2000, 10(2)
    [102] Hikosaka T H, Imai T and T G. High strain rate superplasticity of a SiC particulate reinforced aluminum alloy composite by a vortex method[J]. Scripta Metall Mater., 1994, 31(9): 1181-1186
    [103] 连建设,郭威,刘玉文.LY12CZ铝合金超塑性孔洞长大及其对断裂的影响.材料科学进展,1999,6(3)
    [104] 杜志孝,吴诗淳等.超塑变形过程中的空洞及其对变形后室温机械性能的影响.航空学报,1995,(5)
    [105] 刘马宝,吴诗淳.黄铜超塑变形时的空洞演变及工艺因素的影响.西北工业大学学报,1994,12(3)
    [106] 刘伟民.组织结构对超塑性的影响.航空工艺技术,1990,(2)
    [107] 赵雪盈.Ti-10V-2Fe-3Al合金超塑性研究.西北工业大学硕士学位论文,2003.3
    [108] 袁子洲,杨俊等.LF6防锈铝合金的超塑性实验研究.辽宁工学院学报,1994,14(1)
    [109] 张俊红,黄伯云等.TiM基合金低温超塑性变形的力学行为.中国有色金属学报,2003,13(2)
    [110] Sun J, Wu J, He Y. Improved superplasticity in a TiAl-based alloy subjected to thermo-mechanical processing[J]. Z Metallkd, 2000, 91(6): 472-476
    [111] 何景素,王燕文.金属的超塑性.北京:科学出版社,1986

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700