用户名: 密码: 验证码:
菊花近缘种属植物抗寒性评价及抗寒分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菊花(Chrysanthemum grandiflorum(Ramat.)Kitarn.),作为世界四大切花和我国十大传统名花之一,具有很高的观赏和经济价值,在花卉生产中占有重要地位。然而,我国长江中下游及长江以北地区的冬季低温严重影响了菊花生长发育,导致观赏品质下降,成为限制我国菊花产业发展的重要因素。开展菊花抗寒育种、培育抗寒新品种,是解决这一问题的根本途径。菊花近缘种属野生种质资源常具有栽培品种缺乏的某些抗逆性,对拓宽菊花种质资源和基因库有重要应用价值。因此,开展菊花近缘种属野生种质资源的抗寒筛选,获得典型抗寒材料,探索其抗寒生理及分子机制,有利于加快推动菊花抗寒种质创新和新品种选育进程。本文的研究内容及主要结论如下:
     1.对45份菊花近缘种属野生资源的抗寒性进行了评价,结合冬季脚芽叶片半致死温度(LT50),将抗寒性进行分类,强抗寒(LT50<-20℃):紫花野菊、沈阳野菊、异色菊、太行菊和北京植物园野菊等;中等抗寒(-20℃≤LT50≤-10℃):黄金艾蒿、成都峰峡野菊、菊花脑等;不抗寒(LT50>-10℃):若峡滨菊、神龙架野菊和达摩菊等。进一步通过脚芽恢复生长试验进行验证,发现脚芽冷冻处理后的存活率与LT50呈显著负相关,表明半致死温度可作为菊花近缘种属抗寒性评价的一个可靠指标。
     2.以强抗寒异色菊和不抗寒若峡滨菊为材料,分析了冷驯化(4℃,1d、7d、14d和21d)条件下的抗寒差异。随着冷驯化时间的延长,两个菊属植物的半致死温度LT50呈现不同程度的下降;其中抗寒性强的异色菊从-7.3℃下降到-23.5℃,而抗寒性弱的若峡滨菊从-2.1℃下降到-7.1℃。测定了冷驯化过程中抗氧化酶(SOD、CAT和APX)活性和脯氨酸含量的变化,根据生物信息学从菊花EST数据库中电子克隆了抗氧化同工酶基因(Cu/Zn SOD、Fe SOD、Mn SOD、CAT和APX)、脯氨酸代谢相关基因(P5CS、OAT和PDH)以及冷调节相关基因(2个DREB家族基因、2个COR413家族基因和2个CSD家族基因),并进行了定量表达分析。结果发现,冷驯化使SOD、CAT和APX活性和脯氨酸含量的提高,其中异色菊提高的幅度显著高于若峡滨菊;基因表达分析显示SOD活性的提高主要来源于Mn SOD的表达增强,CAT和APX表达与其酶活性变化一致,P5CS和PDH表达与脯氨酸含量变化趋势一致;异色菊MnSOD、CAT、APX和P5CS表达的上升幅度显著高于若峡滨菊。冷调节相关基因表达分析结果显示,冷驯化诱导了DREBs、COR413s和CSDs基因表达的上调,其中异色菊的上升幅度均显著高于若峡滨菊。进一步分析发现,冷驯化初期抗寒性的提高来源于抗氧化系统的变化、脯氨酸含量的积累和冷调节基因的表达的综合作用,冷驯化后期抗寒性的提高来源于MnSOD, COR413s和CSDs等抗寒基因的表达的上调。
     3. DREB家族基因在植物抗寒调控中发挥重要作用,为了进一步研究DREB基因的上游调控路径,从异色菊中分离到一个DREB家族基因CdDREBa(?)(?)启动子序列,其位于翻译起始位点上游1474bp的区域,PLACE数据库分析发现启动子中包括很多胁迫相关顺式作用元件(MYC-box, MYB-site, GT-1和W-box).通过启动子融合β-葡萄糖苷酸酶基因在拟南芥中表达分析,发现不同5’缺失的CdDREBa启动子在低温和盐胁迫下的活性存在差异。GUS组织化学染色和定量检测结果显示,启动子中一段80bp(-430~-351bp)的序列同时受低温和盐胁迫响应。将这个80bp的片段与35S mini启动子融合表达,显著促进了盐胁迫下GUS基因的表达。进一步通过内部缺失方法,发现一个低温抑制元件位于-430~-390bp区域和一个盐诱导元件位于-385~-351bp区域。结果显示,启动子中除了已知的MYC-box和GT-1元件受低温和盐胁迫响应外,我们发现的两个响应元件区域在胁迫响应过程中同样发挥着重要作用。
     4.ICE家族基因在冷驯化调控植物抗寒路径中至关重要,以异色菊为材料,分离到一个ICE家族同源基因Cd1CE1,编码471个氨基酸,序列分析与其他物种ICEs具有高度相似性。通过荧光定量表达分析发现,低温、盐和ABA均诱导了Cd1CE1基因的表达;进一步克隆了Cd1CE1启动子,位于翻译起始位点上游1682bp的区域,序列分析发现了很多胁迫相关作用元件。构建35S::Cd1CE1-GFP表达载体,基因枪轰击洋葱表皮细胞进行瞬时表达,发现Cd1CE1定位于细胞核。采用毕赤酵母真核分泌表达系统,对Cd1CE1蛋白进行表达并纯化,凝胶阻滞(EMSA)试验证明Cd1CE1蛋白能与CdDREBa启动子中的MYC元件特异结合;酵母单杂交试验证明Cd1CE1具有转录激活活性。这些初步表明,异色菊中存在ICE1-DREB调节路径。
     5.为了进一步证明Cd1CE16(?)抗寒调控功能,将Cd1CE1基因转到拟南芥中,并进行抗冻表型分析和分子机制探索。结果发现,不同温度驯化均提高了拟南芥抗冻性,异源表达异色菊Cd1CE1基因显著提高了不同温度驯化下抗冻性。23-4℃驯化下,Cd1CE1促进了CBFs及下游COR15a、COR6.6和RD29a三个抗冻基因的表达,与拟南芥At1CE1基因功能相似;而在23-16℃驯化条件下,Cd1CE1促进了三个抗冻基因的小幅上调,而对CBFs表达没有影响。23-16℃驯化诱导了miR398(?)(?)下调,促进了CSD1和CSD2的上调,进一步研究发现miR398负向调控拟南芥抗冻性,而CSDs正向调控抗冻性;miR398-CSDs路径参与了23-16℃驯化诱导的抗冻性调节。Cd1CE1过量表达显著下调了23-16℃驯化后miR398的表达;Cd1CE1介导了miR398-CSDs路径,提高抗冻性。因此,不同温度驯化下,Cd1CE1通过两条不同路径调控拟南芥抗冻性。
     6.大量研究证明ICE1蛋白存在转录后的翻译修饰,为了深入研究Cd1CE1的调控机制,应用酵母双杂交体系对Cd1CE1互作蛋白进行了筛选。结果表明,采用Clontech试剂盒,成功构建了对照和冷驯化下菊花叶片cDNA混合酵母文库,以pGBKT7-Cd1CE1-85为诱饵质粒,筛选了64个候选阳性克隆并测序,在NCBI上进行BLAST比对分析,获得与光合作用、氧化胁迫和翻译修饰等相关的候选蛋白;其功能预测表明Cd1CE1可能参与了多条信号转导途径,在抗逆调控中具有重要作用。
Chrysanthemum(Chrysanthemum grandiflorum (Ramat.) Kitam.), as one of the four most popular cut flower over the world and one of the ten most famous flowers in China, provides very high ornamental and economic value, which possess the important status on flower industry. However, low temperature in winter in the North and Region of Yangtze in China seriously affects growth and development of Chrysanthemum and leads to lower ornamental characteristics, which has become a limitive factor on Chrysanthemum industry development. The research on cold-tolerance and new cultivar breeding is a fundamental approach to solve the problem. Chrysanthemum related genera carrying stress-resistent ability that is in absence in cultivar can play important worthiness for broadening germplasm and gene pool of Chrysanthemum. Therefor, cold-tolerance selection of Chrysanthemum related species is performed to achieve resistant germs based on the further analysis about their physiological and molecular mechanisms for cold-tolerance, which is benefit for pushing forward the germplasm enhancement and new cultivar breeding of Chrysanthemum. The contents and results on this research are as follows:
     1. Evaluation for cold-tolerance of45Chrysanthemum related genera was analyzed based on the method of Semi-lethal temperature (LT50) of rhizomes leaf. Cold tolerance was classified, strong cold tolerance (LT50<-20℃):C.zawadskii, C.indicum (shenyang), C. dichrum, O. taihangensis and C.indicum (beijing); moderate cold tolerance (-20℃-10℃):C.makinoi, C.indicum (shennongjia), A.spathulifolius. Further confirmation via rhizomes recovery growth exhibited negative correlation between survival rate after freezing-treatment and LT50, which indicated that LT50could be a reliable index for cold-tolerance evaluation of Chrysanthemum related genera.
     2. The difference of cold-tolerance between strong cold-tolerant C. dichrum and weak cold-tolerant C.makinoi under cold acclimation was analyzed. The results showed LT50presented different degree decrease under cold acclimation between the two Chrysanthemum species, C. dichrum varing from-7.3℃to-23.5℃and C.makinoi from-2.1℃to-7.1℃. Activities of antioxidant enzymes (SOD, CAT and APX) and proline content were measured, and antioxidant isoenzymes gene (Cu/Zn SOD、Fe SOD、Mn SOD、 CAT and APX), proline related-metabolism gene (P5CS, OAT and PDH) and cold-regulated gene (two DREB family genes, two COR413family gene and two CSD family gene) obtained from Chrysanthemum EST library were used for quantitive expression analysis. The results showed that cold acclimation promoted the activities increase of SOD, CAT and APX and proline accumulation, and C. dichrum presented higher varing degree than C.makinoi. Gene expression assay indicated that SOD activity promotion resulted from Mn SOD expression increase, CAT and APX expression exhibited consistent changes with their enzymes activities, P5CS and PDH expression showed similar alteration with proline content. Higher extent was detected on Mn SOD、CAT、APX and P5CS expression in C. dichrum comparing to in C.makinoi. Cold-regulated gene analysis indicated DREBs, COR413s and CSDs expression up-regulated under cold acclimation, and C. dichrum presented higher increase degree than C.makinoi. Further analysis revealed cold-tolerance improvement during the early days resulted from the functions of antioxidant enzymes, proline content and cold-regulated gene expression, and improvement during the late days origined from Mn SOD, COR413s and CSDs expression.
     3. DREB family genes play important roles in regulating cold-tolerance. To investigate the upstream regulating passway of DREB gene, a1474bp stress-inducible CdDREBa promoter was identified from Chrysanthemum dichrum, revealing several candidate stress-related cis-acting elements (MYC-box, MYB-site, GT-1and W-box) within it. In Arabidopsis leaf tissues transformed with a CdDREBa promoter-β-glucuronidase (GUS) gene fusion, serially5'-deleted CdDREBa promoters were differentially activated by cold and salinity. Histochemical and quantitative assays of GUS expression allowed us to localize a critical part of the promoter located between upstream430and351bp. This80bp fragment enhanced GUS expression under salinity stress when fused to-90/+8CaMV35S minimal promoter. Further promoter internal-deletion assays indicated that a low temperature responsive element was located between positions-430and-390, and a salinity inducible one between-385and-351. Our results showed that there was a novel stress-related critical region except for the known cis-acting element (MYC-box, GT-1) in CdDREBa promoter.
     4. ICE family genes are very important for regulating cold-tolerance passway. An ICE family homologue gene CdICE1was separated from Chrysanthemum dichrum, encoded471amino acids, which showed high similarity with ICE homologues from other species. Quantitive analysis revealed that CdICE1expression was induced under low temperature, salt and ABA treatment. CdICE1promoter within1682bp region upstream translation initiation site was identified, including some stress-responsve elements by sequence analysis. The assay that35S::CdICE1-GFP expression vector was bombarded into onion epidermal cells showed CdICE1was located in nucleus. CdICE1were expressed in Pichia pastoris system and purified, and then the specific binding of CdICE1to MYC element within the CdDREBa promoter was found through EMSA assay. Yeast one-hybrid assay presented that CdICE1had transcriptional activation activity. These data showed ICE1-DREB passway would exist in Chrysanthemum dichrum.
     5. For identifying the cold-regulated functions of CdICE1, CdICE1was transformed to Arabidopsis and freezing-tolerance was detected by phenotype analysis, then molecular mechanism of freezing-tolerance was further explored. The results indicated that Arabidopsis freezing-tolerance was enhanced after different temperature acclimation, and heterologous expression CdICE1improved the freezing-tolerance under cold acclimation. Under4℃acclimation, CdICE1promoted expression of CBFs and their downstream freezing-tolerance gene including COR15a, COR6.6and RD29a, which revealed similar function with Arabidopsis AtICE1. However, under16℃acclimation, CdICE1only increased mildly three freezing-tolerant genes, while no changes on CBFs expression.16℃acclimation downregulated miR398and upregulated CSD1and CSD2expression, miR398negatively modulated freezing-tolerance and CSDs positively regulated freezing-tolerance, which indicated miR398-CSDs pathway played a role in16℃acclimation inducing freezing-tolerance. Overexpression CdICE1plants revealed significant reduction of miR398under16℃acclimation, comparing to WT plants. CdICE1mediated miR398-CSDs passway and then led to freezing-tolerance. Therefor, CdICE1affected freezing-tolerance via two different passway under two different cold acclimation conditions.
     6. ICE1modification was found in previous research. To improve the research on CdICE1regulating mechanism, CdICE1-interacting proteins were screened by yeast two-hybrid system. A cDNA yeast mixture library was successfully constructed according to Clontech kit. A total of64candidate positive clones were sequenced and analyzed through homology analysis using the BLAST in NCBI, which showed that those candidate proteins were related to photosynthesis, oxidative stress and post-translational modification. Function prediction of the candidate proteins suggested that CdICE1was possibly involved in several stress signal transduction pathways and played an important role in regulation stress resistance.
引文
Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008) The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20(8):2117-2129
    Achard P, Renou JP, Berthome R, Harberd NP, Genschik P (2008) Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Current Biology 18(9):656-660
    Agarwal M, Hao Y, Kapoor A, Dong CH, Fujii H, Zheng X, Zhu JK (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. Journal of Biological Chemistry 281(49):37636-37645
    Agarwal P, Agarwal P, Nair S, Sopory S, Reddy M (2007) Stress-inducible DREB2A transcription factor from Pennisetum glaucum is a phosphoprotein and its phosphorylation negatively regulates its DNA-binding activity. Molecular Genetics and Genomics 277(2):189-198
    Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Critical Reviews in Biotechnology 30(3):161-175
    Alcazar R, Cuevas JC, Planas J, Zarza X, Bortolotti C, Carrasco P, Salinas J, Tiburcio AF, Altabella T (2011) Integration of polyamines in the cold acclimation response. Plant Science 180(1):31-38
    Alcazar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines:molecules with regulatory functions in plant abiotic stress tolerance. Planta 231(6):1237-1249
    Alet AI, Sanchez DH, Cuevas JC, Del Valle S, Altabella T, Tiburcio AF, Marco F, Ferrando A, Espasandin FD, Gonzalez ME, Ruiz OA, Carrasco P (2011) Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress. Plant Signal Behavior 6(2):278-86
    Alonso-Blanco C, Gomez-Mena C, Llorente F, Koornneef M, Salinas J, Martinez-Zapater JM (2005) Genetic and molecular analyses of natural variation indicate CBF2 as a candidate gene for underlying a freezing tolerance quantitative trait locus in Arabidopsis. Plant Physiology 139(3):1304-1312
    Alonso-Ramirez A, Rodriguez D, Reyes D, Jimenez J, Nicolas G, Nicolas C (2011) Functional analysis in Arabidopsis of FsPTPl, a tyrosine phosphatase from beechnuts, reveals its role as a negative regulator of ABA signaling and seed dormancy and suggests its involvement in ethylene signaling modulation. Planta 234(3):589-597
    Alonso-Ramirez A, Rodriguez D, Reyes D, Jimenez JA, Nicolas G, Lopez-Climent M, Gomez-Cadenas A, Nicolas C (2009) Cross-talk between gibberellins and salicylic acid in early stress responses in Arabidopsis thaliana seeds. Plant Signal Behavior 4(8):750-751
    Alonso-Ramirez A, Rodriguez D, Reyes D, Jimenez JA, Nicolas Q Lopez-Climent M, Gomez-Cadenas A, Nicolas C (2009) Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiology 150(3):1335-1344
    An FM, Hsiao SR, Chan MT (2011) Sequencing-Based Approaches Reveal Low Ambient Temperature-Responsive and Tissue-Specific MicroRNAs in Phalaenopsis Orchid. PLoS ONE 6(5):e18937
    An Z, Li C, Zu Y, Yejie D, Andreas W, Roland G, Thomas R (2006) Expression of BjMT2, a metallothionein 2 from Brassica juncea, increases copper and cadmium tolerance in Escherichia coli and Arabidopsis thaliana, but inhibits root elongation in Arabidopsis thaliana seedlings. Journal of Experimental Botany 57(14):3575-3582
    Anderson N, Gesick E (2004) Phenotypic markers for selection of winter hardy garden chrysanthemum (Dendranthemaxgrandiflora Tzvelv.) genotypes. Scientia Horticulturae 101 (1-2):153-167
    Antikainen M, Griffith M, Zhang J, Hon WC, Yang D, Pihakaski-Maunsbach K (1996) Immunolocalization of Antifreeze Proteins in Winter Rye Leaves, Crowns, and Roots by Tissue Printing. Plant Physiology 110(3):845-857
    Apel K, Hirt H (2004) Reactive oxygen species:metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55:373-399
    Artus NN, Uemura M, Steponkus PL, Gilmour SJ, Lin C, Thomashow MF (1996) Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proceedings of the National Academy of Sciences 93(23):13404-13409
    Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany 59(2):206-216
    Atlcl O, Nalbantoglu B (2003) Antifreeze proteins in higher plants. Phytochemistry 64(7):1187-1196
    Badawi M, Reddy YV, Agharbaoui Z, Tominaga Y, Danyluk J, Sarhan F, Houde M (2008) Structure and functional analysis of wheat ICE (inducer of CBF expression) genes. Plant Cell Physiology 49(8):1237-1249
    Bae J, Choo Y, Ono K, Sumida A, Hara T (2010) Photoprotective mechanisms in cold-acclimated and nonacclimated needles of Picea glehnii. Photosynthetica 48(1):110-116
    Baek KH, Skinner DZ (2003) Alteration of antioxidant enzyme gene expression during cold acclimation of near-isogenic wheat lines. Plant Science 165(6):1221-1227
    Baker SS, Wilhelm KS, Thomashow MF (1994) The 5'-region of Arabidopsis thaliana corl5a has cis-acting elements that confer cold-, drought-and ABA-regulated gene expression. Plant Molecular Biology 24(5):701-713
    Baldi P, Grossi M, Pecchioni N, Vale G, Cattivelli L (1999) High expression level of a gene coding for a chloroplastic amino acid selective channel protein is correlated to cold acclimation in cereals. Plant Molecular Biology 41(2):233-243
    Banilas G, Moressis A, Nikoloudakis N, Hatzopoulos P (2005) Spatial and temporal expressions of two distinct oleate desaturases from olive (Olea europaea L.). Plant Science 168(2):547-555
    Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The Enigmatic LEA Proteins and Other Hydrophilins. Plant Physiology 148(1):6-24
    Benedict C, Skinner JS, Meng R, Chang Y, Bhalerao R, Huner NPA, Finn CE, Chen THH, Hurry V (2006) The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp. Plant, Cell & Environment 29(7):1259-1272
    Benfey PN, Chua NH (1990) The Cauliflower Mosaic Virus 35S Promoter:Combinatorial Regulation of Transcription in Plants. Science 250(4983):959-966
    Berberich T, Harada M, Sugawara K, Kodama H, Iba K, Kusano T (1998) Two maize genes encoding omega-3 fatty acid desaturase and their differential expression to temperature. Plant Molecular Biology 36(2):297-306
    Bodapati N, Gunawardena T, Fukai S (2005) Increasing Cold Tolerance in Rice by selecting for high polyamine and gibberellic acid content. Rural Industries Research and Development Corporation 1:1-21
    Bravo LA, Griffith M (2005) Characterization of antifreeze activity in Antarctic plants. Journal of Experimental Botany 56(414):1189-1196
    Breton G, Danyluk J, Charron JB, Sarhan F (2003) Expression profiling and bioinformatic analyses of a novel stress-regulated multispanning transmembrane protein family from cereals and Arabidopsis. Plant Physiology 132(1):64-74
    Bruno L, Chiappetta A, Muzzalupo I, Gagliardi C, Iaria D, Bruno A, Greco M, Giannino D, Perri E, Bitonti MB (2009) Role of geranylgeranyl reductase gene in organ development and stress response in olive (Olea europaea) plants. Functional Plant Biology 36(4):370-381
    C ND, Danyluk J, Wilson KE, Pocock T, Huner NP, Sarhan F (2002) Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins. Molecular characterization and functional analyses. Plant Physiology 129(3):1368-1381
    Cansev A, Gulen H, Eris A (2009) Cold-hardiness of olive (Olea europaea L.) cultivars in cold-acclimated and non-acclimated stages:seasonal alteration of antioxidative enzymes and dehydrin-like proteins. The Journal of Agricultural Science 147(1):51-61
    Carapetian J, Yadeghari LZ, Heidari R (2008) Cold pretreatment-induced changes in antioxidant enzyme activities and relative water content and soluble sugars in shoots and roots of soybean seedlings. Research Journal of Biological Sciences 3(1):68-73
    Carpaneto A, Ivashikina N, Levchenko V, Krol E, Jeworutzki E, Zhu JK, Hedrich R (2007) Cold transiently activates calcium-permeable channels in Arabidopsis mesophyll cells. Plant Physiology 143(1):487-494
    Catala R, Santos E, Alonso JM, Ecker JR, Martinez-Zapater JM, Salinas J (2003) Mutations in the Ca2+/H+transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. Plant Cell 15(12):2940-2951
    Chae L, Pandey GK, Luan S, Cheong YH, Kim KN (2010) Protein Kinases and Phosphatases for Stress Signal Transduction in Plants Abiotic Stress Adaptation in Plants 1:123-163
    Abiotic Stress Adaptation in Plants. In:Pareek A, Sopory SK, Bohnert HJ (eds). Springer Netherlands, pp 123-163
    Chaikam V, Karlson D (2008) Functional characterization of two cold shock domain proteins from Oryza sativa. Plant, Cell & Environment 31(7):995-1006
    Champ KI, Febres VJ, Moore GA (2007) The role of CBF transcriptional activators in two Citrus species (Poncirus and Citrus) with contrasting levels of freezing tolerance. Physiologia Plantarum 129(3):529-541
    Chen L, Zhong H, Ren F, Guo QQ, Hu XP, Li XB (2011) A novel cold-regulated gene, COR25 of Brassica napus is involved in plant response and tolerance to cold stress. Plant Cell Reports 30(4):463-471
    Chen M, Wang QY, Cheng XG, Xu ZS, Li LC, Ye XG, Xia LQ, Ma YZ (2007) GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochemical and Biophysical Research Communications 353(2):299-305
    Chen M, Xu Z, Xia L, Li L, Cheng X, Dong J, Wang Q, Ma Y (2009) Cold-induced modulation and functional analyses of the DRE-binding transcription factor gene, GmDREB3, in soybean (Glycine max L.). Journal of Experimental Botany 60(1):121-135
    Chen QF, Xiao S, Chye ML (2008) Overexpression of the Arabidopsis 10-kilodalton acyl-coenzyme A-binding protein ACBP6 enhances freezing tolerance. Plant Physiology 148(1):304-315
    Chen S, Cui X, Chen Y, Gu C, Miao H, Gao H, Chen F, Liu Z, Guan Z, Fang W (2011) CgDREBa transgenic chrysanthemum confers drought and salinity tolerance. Environmental and Experimental Botany DOI,10.1016/j.envexpbot.2011.06.007
    Chen THH, Pino MT, Skinner JS, Park EJ, Jeknic Z, Hayes PM, Thornashow MF (2007) Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield. Plant Biotechnology Journal 5(5):591-604
    Chen WP, Li PH (2002) Membrane stabilization by abscisic acid under cold aids proline in alleviating chilling injury in maize (Zea mays L.) cultured cells. Plant, Cell & Environment 25(8):955-962
    Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003) ICE1:a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Development 17(8):1043-1054
    Cong L, Chai TY, Zhang YX (2008) Characterization of the novel gene BjDREBIB encoding a DRE-binding transcription factor from Brassica juncea L. Biochemical and Biophysical Research Communications 371(4):702-706
    Cook D, Fowler S, Fiehn O, Thomashow MF (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proceedings of the National Academy of Sciences 101 (42):15243-15248
    Cuevas JC, Lopez-Cobollo R, Alcazar R, Zarza X, Koncz C, Altabella T, Salinas J, Tiburcio AF, Ferrando A (2008) Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiology 148(2):1094-1105
    Dai F, Huang Y, Zhou M, Zhang G (2009) The influence of cold acclimation on antioxidative enzymes and antioxidants in sensitive and tolerant barley cultivars. Biologia Plantarum 53(2):257-262
    Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K (2007) Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiology 143(4):1739-1751
    Davletova S, Schlauch K, Coutu J, Mittler R (2005) The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiology 139(2):847-856
    de los Reyes BG, Taliaferro CM, Anderson MP, Melcher U, McMaugh S (2001) Induced expression of the class Ⅱ chitinase gene during cold acclimation and dehydration of bermudagrass (Cynodon sp.). TAG Theoretical and Applied Genetics 103(2):297-306
    Deng Z, Pang Y, Kong W, Chen Z, Wang X, Liu X, Pi Y, Sun X, Tang K (2005) A novel ABA-dependent dehydrin ERD10 gene from Brassica napus. DNA Sequencing 16(1):28-35
    Dhanaraj AL, Slovin JP, Rowland LJ (2005) Isolation of a cDNA clone and characterization of expression of the highly abundant, cold acclimation-associated 14kDa dehydrin of blueberry. Plant Science 168(4):949-957
    Divi U, Krishna P (2010) Overexpression of the Brassinosteroid Biosynthetic Gene AtDWF4 in Arabidopsis Seeds Overcomes Abscisic Acid-induced Inhibition of Germination and Increases Cold Tolerance in Transgenic Seedlings. Journal of Plant Growth Regulation 29(4):385-393
    Divi U, Rahman T, Krishna P (2010) Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biology 10(1):151
    Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21(3):972-984
    Dominguez T, Hernandez ML, Pennycooke JC, Jimenez P, Martinez-Rivas JM, Sanz C, Stockinger EJ, Sanchez-Serrano JJ, Sanmartin M (2010) Increasing omega-3 desaturase expression in tomato results in altered aroma profile and enhanced resistance to cold stress. Plant Physiology 153(2):655-665
    Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK (2006) The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proceedings of the National Academy of Sciences 103(21):8281-8286
    Doxey AC, Yaish MW, Griffith M, McConkey BJ (2006) Ordered surface carbons distinguish antifreeze proteins and their ice-binding regions. Nature Biotechnology 24(7):852-855
    Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt-and cold-responsive gene expression. Plant Journal 33(4):751-763
    Dugas DV, Bartel B (2008) Sucrose induction of Arabidopsis miR398 represses two Cu/Zn superoxide dismutases. Plant Molecular Biology 67(4):403-417
    El Kayal W, Navarro M, Marque G, Keller G, Marque C, Teulieres C (2006) Expression profile of CBF-like transcriptional factor genes from Eucalyptus in response to cold. Journal of Experimental Botany 57(10):2455-2469
    Falcone DL, Gibson S, Lemieux B, Somerville C (1994) Identification of a gene that complements an Arabidopsis mutant deficient in chloroplast omega 6 desaturase activity. Plant Physiology 106(4):1453-1459
    Fotopoulos V, Sanmartin M, Kanellis AK (2006) Effect of ascorbate oxidase over-expression on ascorbate recycling gene expression in response to agents imposing oxidative stress. Journal of Experimental Botany 57(14):3933-3943
    Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14(8):1675-1690
    Fowler SG, Cook D, Thomashow MF (2005) Low temperature induction of Arabidopsis CBF1,2, and 3 is gated by the circadian clock. Plant Physiology 137(3):961-968
    Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiology 155(1):93-100
    Fursova OV, Pogorelko GV, Tarasov VA (2009) Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana. Gene 429(1-2):98-103
    Ganeshan S, Vitamvas P, Fowler DB, Chibbar RN (2008) Quantitative expression analysis of selected COR genes reveals their differential expression in leaf and crown tissues of wheat (Triticum aestivum L.) during an extended low temperature acclimation regimen. Journal of Experimental Botany 59(9):2393-2402
    Gao MJ, Allard G, Byass L, Flanagan AM, Singh J (2002) Regulation and characterization of four CBF transcription factors from Brassica napus. Plant Molecular Biology 49(5):459-471
    Gao SQ, Chen M, Xia LQ, Xiu HJ, Xu ZS, Li LC, Zhao CP, Cheng XG, Ma YZ (2009) A cotton (Gossypium hirsutum) DRE-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat. Plant Cell Reports 28(2):301-311
    Ghelis T (2011) Signal processing by protein tyrosine phosphorylation in plants. Plant Signal Behavior 6(7):942-951
    Giannino D, Condello E, Bruno L, Testone G, Tartarini A, Cozza R, Innocenti AM, Bitonti MB, Mariotti D (2004) The gene geranylgeranyl reductase of peach(Prunus persica [L.] Batsch) is regulated during leaf development and responds differentially to distinct stress factors. Journal of Experimental Botany 55(405):2063-2073
    Gibson S, Arondel V, Iba K, Somerville C (1994) Cloning of a temperature-regulated gene encoding a chloroplast omega-3 desaturase from Arabidopsis thaliana. Plant Physiology 106(4):1615-1621
    Gill SS, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behavior 5(1):26-33
    Gilmour SJ, Artus NN, Thomashow MF (1992) cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana. Plant Molecular Biology 18(1):13-21
    Gilmour SJ, Fowler SG, Thomashow MF (2004) Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Molecular Biology 54(5):767-781
    Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiology 124(4):1854-1865
    Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant Journal 16(4):433-442
    Gong Z, Dong CH, Lee H, Zhu J, Xiong L, Gong D, Stevenson B, Zhu JK (2005) A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis. Plant Cell 17(1):256-267
    Gong Z, Lee H, Xiong L, Jagendorf A, Stevenson B, Zhu JK (2002) RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proceedings of the National Academy of Sciences 99(17):11507-11512
    Griffith M, Lumb C, Wiseman SB, Wisniewski M, Johnson RW, Marangoni AG (2005) Antifreeze proteins modify the freezing process in planta. Plant Physiology 138(1):330-340
    Griffith M, Yaish MWF (2004) Antifreeze proteins in overwintering plants:a tale of two activities. Trends in plant science 9(8):399-405
    Groppa MD, Benavides MP (2008) Polyamines and abiotic stress:recent advances. Amino Acids 34(1):35-45
    Gupta AS, Webb RP, Holaday AS, Allen RD (1993) Overexpression of Superoxide Dismutase Protects Plants from Oxidative Stress (Induction of Ascorbate Peroxidase in Superoxide Dismutase-Overexpressing Plants). Plant Physiology 103(4):1067-1073
    Gusta L, Trischuk R, Weiser CJ (2005) Plant Cold Acclimation:The Role of Abscisic Acid. Journal of Plant Growth Regulation 24(4):308-318
    Gutha LR, Reddy AR (2008) Rice DREB1B promoter shows distinct stress-specific responses, and the overexpression of cDNA in tobacco confers improved abiotic and biotic stress tolerance. Plant Molecular Biology 68(6):533-555
    Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiology 130(2):639-648
    Hamada T, Kodama H, Takeshita K, Utsumi H, Iba K (1998) Characterization of transgenic tobacco with an increased alpha-linolenic acid level. Plant Physiology 118(2):591-598
    Hara M, Terashima S, Fukaya T, Kuboi T (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217(2):290-298
    Harris W, Lynch PT, Hargreave AJ, Bonner PL (2004) Cryopreservation of Helianthus tuberosus cell suspension cultures:the effect of preculture treatments on cytoskeletal proteins and transglutaminase activity. Cryo Letters 25(3):213-217
    He L, Nada K, Kasukabe Y, Tachibana S (2002) Enhanced susceptibility of photosynthesis to low-temperature photoinhibition due to interruption of chill-induced increase of S-adenosylmethionine decarboxylase activity in leaves of spinach (Spinacia oleracea L.). Plant Cell Physiology 43(2):196-206
    Hirotsu N, Makino A, Yokota S, Mae T (2005) The photosynthetic properties of rice leaves treated with low temperature and high irradiance. Plant Cell Physiology 46(8):1377-1383
    Holkova L, Prasil IT, Bradacova M, Vitamvas P, Chloupek O (2009) Screening for frost tolerance in wheat using the expression of dehydrine genes Wcsl20 and Wdhn13 at 17℃. Plant Breeding 128(4):420-422
    Hon WC, Griffith M, Chong P, Yang D (1994) Extraction and Isolation of Antifreeze Proteins from Winter Rye (Secale cereale L.) Leaves. Plant Physiology 104(3):971-980
    Hong B, Tong Z, Ma N, Li J, Kasuga M, Yamaguchi-Shinozaki K, Gao J (2006) Heterologous expression of the AtDREBlA gene in chrysanthemum increases drought and salt stress tolerance. Science China C Life Science 49(5):436-445
    Hong JP, Kim WT (2005) Isolation and functional characterization of the Ca-DREBLP1 gene encoding a dehydration-responsive element binding-factor-like protein 1 in hot pepper (Capsicum annuum L. cv. Pukang). Planta 220(6):875-888
    Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000) Removal of Feedback Inhibition of △1-Pyrroline-5-Carboxylate Synthetase Results in Increased Proline Accumulation and Protection of Plants from Osmotic Stress. Plant Physiology 122(4):1129-1136
    Horvath E, Pal M, Szalai G, Paldi E, Janda T (2007) Exogenous 4-hydroxybenzoic acid and salicylic acid modulate the effect of short-term drought and freezing stress on wheat plants. Biologia Plantarum51(3):480-487
    Horvath DP, McLarney BK, Thomashow MF (1993) Regulation of Arabidopsis thaliana L. (Heyn) cor78 in response to low temperature. Plant Physiology 103(4):1047-1053
    Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY, Wang YC, Chan MT (2002) Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiology 129(3):1086-1094
    Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Molecular Biology 67(1-2):169-181
    Hu W, Song X, Shi K, Xia X, Zhou Y, Yu J (2008) Changes in electron transport, superoxide dismutase and ascorbate peroxidase isoenzymes in chloroplasts and mitochondria of cucumber leaves as influenced by chilling. Photosynthetica 46(4):581-588
    Hu W, Wu Y, Zeng J, He L, Zeng Q (2010) Chill-induced inhibition of photosynthesis was alleviated by 24-epibrassinolide pretreatment in cucumber during chilling and subsequent recovery. Photosynthetica 48(4):537-544
    Huang B, Jin L, Liu JY (2008) Identification and characterization of the novel gene GhDBP2 encoding a DRE-binding protein from cotton(Gossypium hirsutum). Journal of Plant Physiology 165(2):214-223
    Huang B, Liu JY (2006) Cloning and functional analysis of the novel gene GhDBP3 encoding a DRE-binding transcription factor from Gossypium hirsutum. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression 1759(6):263-269
    Hur J, Jung KH, Lee CH, An GH (2004) Stress-inducible OsP5CS2 gene is essential for salt and cold tolerance in rice. Plant Science 167(3):417-426
    Iba K, Gibson S, Nishiuchi T, Fuse T, Nishimura M, Arondel V, Hugly S, Somerville C (1993) A gene encoding a chloroplast omega-3 fatty acid desaturase complements alterations in fatty acid desaturation and chloroplast copy number of the fad7 mutant of Arabidopsis thaliana. Journal of Biological Chemistry 268(32):24099-24105
    Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiology 47(1):141-153
    Jagadeeswaran G, Saini A, Sunkar R (2009) Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta 229(4):1009-1014
    Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280(5360):104-106
    Jaglo KR, Kleff S, Amundsen KL, Zhang X, Haake V, Zhang JZ, Deits T, Thomashow MF (2001) Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol 127(3):910-917
    Janas KM, Cvikrova M, Palagiewicz A, Szafranska K, Posmyk MM (2002) Constitutive elevated accumulation of phenylpropanoids in soybean roots at low temperature. Plant Science 163(2):369-373
    Janda T, Szalai G, Tari I, Paldi E (1999) Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta 208(2):175-180
    Janowiak F, Dorffling K (1995) Chilling-induced changes in the contents of 1-amirtocyclopropane-l-carboxylic acid (ACC) and its N-malonyl conjugate (MACC) in seedlings of two maize inbreds differing in chilling tolerance. Journal of Plant Physiology 147:257-262
    Janowiak F, Maas B, Dorffling K (2002) Importance of abscisic acid for chilling tolerance of maize seedlings. Journal of Plant Physiology 159(6):635-643
    Janska A, Marsik P, Zelenkova S, Ovesna J (2010) Cold stress and acclimation-what is important for metabolic adjustment? Plant Biology 12(3):395-405
    Jia X, Wang WX, Ren L, Chen QJ, Mendu V, Willcut B, Dinkins R, Tang X, Tang G (2009) Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana. Plant Molecular Biology 71(1):51-59
    Jiang C, Iu B, Singh J (1996) Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Molecular Biology 30(3):679-684
    Jiang W, Hou Y, Inouye M (1997) CspA, the Major Cold-shock Protein of Escherichia coli, Is an RNA Chaperone. Journal of Biological Chemistry 272(1):196-202
    Jin T, Chang Q, Li W, Yin D, Li Z, Wang D, Liu B, Liu L (2010) Stress-inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa. Plant Cell, Tissue and Organ Culture 100(2):219-227
    John UP, Polotnianka RM, Sivakumaran KA, Chew O, Mackin L, Kuiper MJ, Talbot JP, Nugent GD, Mautord J, Schrauf GE, Spangenberg GC (2009) Ice recrystallization inhibition proteins (IRIPs) and freeze tolerance in the cryophilic Antarctic hair grass Deschampsia antarctica E. Desv. Plant, Cell & Environment 32(4):336-348
    Jung JH, Seo PJ, Ahn JH, Park CM (2012) The Arabidopsis RNA-binding protein FCA regulates microRNA172 processing in thermosensory flowering. Journal Biological Chemistry doi/10.1074/jbc.M111.337485
    Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P (2007) Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225(2):353-364
    Kanaoka MM, Pillitteri LJ, Fujii H, Yoshida Y, Bogenschutz NL, Takabayashi J, Zhu JK, Torii KU (2008) SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to arabidopsis stomatal differentiation. Plant Cell 20(7):1775-1785
    Kaplan F, Guy CL (2005) RNA interference of Arabidopsis beta-amylase8 prevents maltose accumulation upon cold shock and increases sensitivity of PSII photochemical efficiency to freezing stress. The Plant Journal 44(5):730-743
    Kaplan F, Kopka J, Sung DY, Zhao W, Popp M, Porat R, Guy CL (2007) Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. The Plant Journal 50(6):967-981
    Kargiotidou A, Deli D, Galanopoulou D, Tsaftaris A, Farmaki T (2008) Low temperature and light regulate delta 12 fatty acid desaturases (FAD2) at a transcriptional level in cotton (Gossypium hirsutum). Journal of Experimental Botany 59(8):2043-2056
    Karlson D, Imai R (2003) Conservation of the cold shock domain protein family in plants. Plant Physiology 131(1):12-15
    Karlson D, Nakaminami K, Toyomasu T, Imai R (2002) A cold-regulated nucleic acid-binding protein of winter wheat shares a domain with bacterial cold shock proteins. Journal of Biological Chemistry 277(38):35248-35256
    Kasuga J, Arakawa K, Fujikawa S (2007) High accumulation of soluble sugars in deep supercooling Japanese white birch xylem parenchyma cells. New Phytologist 174(3):569-579
    Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology 17(3):287-291
    Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought-and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiology 45(3):346-350
    Kasukabe Y, He L, Nada K, Misawa S, Ihara Ⅰ, Tachibana S (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiology 45(6):712-722
    Kato N, Esaka M (2000) Expansion of transgenic tobacco protoplasts expressing pumpkin ascorbate oxidase is more rapid than that of wild-type protoplasts. Planta 210(6):1018-1022
    Kerk D, Conley TR, Rodriguez FA, Tran HT, Nimick M, Muench DG, Moorhead GB (2006) A chloroplast-localized dual-specificity protein phosphatase in Arabidopsis contains a phylogenetically dispersed and ancient carbohydrate-binding domain, which binds the polysaccharide starch. Plant Journal 46(3):400-413
    Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819(2):137-148
    Kidokoro S, Maruyama K, Nakashima K, Imura Y, Narusaka Y, Shinwari ZK, Osakabe Y, Fujita Y, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2009) The phytochrome-interacting factor PIF7 negatively regulates DREB1 expression under circadian control in Arabidopsis. Plant Physiology 151(4):2046-2057
    Kim HU, Vijayan P, Carlsson AS, Barkan L, Browse J (2010) A mutation in the LPAT1 gene suppresses the sensitivity of fab 1 plants to low temperature. Plant Physiology 153(3):1135-1143
    Kim JC, Lee SH, Cheong YH, Yoo CM, Lee SI, Chun HJ, Yun DJ, Hong JC, Lee SY, Lim CO, Cho MJ (2001) A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. The Plant Journal 25(3):247-259
    Kim JS, Jung HJ, Lee HJ, Kim KA, Goh CH, Woo Y, Oh SH, Han YS, Kang H (2008) Glycine-rich RNA-binding protein 7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. The Plant Journal 55(3):455-466
    Kim JS, Kim KA, Oh TR, Park CM, Kang H (2008) Functional characterization of DEAD-box RNA helicases in Arabidopsis thaliana under abiotic stress conditions. Plant Cell Physiology 49(10):1563-1571
    Kim JS, Park SJ, Kwak KJ, Kim YO, Kim JY, Song J, Jang B, Jung CH, Kang H (2007) Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli. Nucleic Acids Research 35(2):506-516
    Kim JY, Kim WY, Kwak KJ, Oh SH, Han YS, Kang H (2010) Glycine-rich RNA-binding proteins are functionally conserved in Arabidopsis thaliana and Oryza sativa during cold adaptation process. Journal of Experimental Botany 61(9):2317-2325
    Kim JY, Kim WY, Kwak KJ, Oh SH, Han YS, Kang H (2010) Zinc finger-containing glycine-rich RNA-binding protein in Oryza sativa has an RNA chaperone activity under cold stress conditions. Plant, Cell & Environment 33(5):759-768
    Kim MH, Sasaki K, Imai R (2009) Cold shock domain protein 3 regulates freezing tolerance in Arabidopsis thaliana. Journal of Biological Chemistry 284(35):23454-23460
    Kim SY, Kim BH, Lim CJ, Lim CO, Nam KH (2010) Constitutive activation of stress-inducible genes in a brassinosteroid-insensitive 1 (bril) mutant results in higher tolerance to cold. Physiologia Plantarum 138(2):191-204
    Kim TE, Kim SK, Han TJ, Lee JS, Chang SC (2002) ABA and polyamines act independently in primary leaves of cold-stressed tomato (Lycopersicon esculentum). Physiologia Plantarum 115(3):370-376
    Kim YH, Yang KS, Ryu SH, Kim KY, Song WK, Kwon SY, Lee HS, Bang JW, Kwak SS (2008) Molecular characterization of a cDNA encoding DRE-binding transcription factor from dehydration-treated fibrous roots of sweetpotato. Plant Physiology and Biochemistry 46(2):196-204
    Kim YO, Kang H (2006) The role of a zinc finger-containing glycine-rich RNA-binding protein during the cold adaptation process in Arabidopsis thaliana. Plant Cell Physiology 47(6):793-798
    Kingsley PD, Palis J (1994) GRP2 proteins contain both CCHC zinc fingers and a cold shock domain. Plant Cell 6(11):1522-1523
    Kizis D, Pages M (2002) Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway. The Plant Journal 30(6):679-689
    Klotke J, Kopka J, Gatzke N, Heyer AG (2004) Impact of soluble sugar concentrations on the acquisition of freezing tolerance in accessions of Arabidopsis thaliana with contrasting cold adaptation-evidence for a role of raffinose in cold acclimation. Plant, Cell & Environment 27(11):1395-1404
    Knight H, Zarka DG, Okamoto H, Thomashow MF, Knight MR (2004) Abscisic acid induces CBF gene transcription and subsequent induction of cold-regulated genes via the CRT promoter element. Plant Physiology 135(3):1710-1717
    Knight MR (2002) Signal transduction leading to low-temperature tolerance in Arabidopsis thaliana. Philosophical Transactions of the Royal Society B:Biological Sciences 357(1423):871-875
    Kobayashi F, Maeta E, Terashima A, Kawaura K, Ogihara Y, Takumi S (2008) Development of abiotic stress tolerance via bZIP-type transcription factor LIP19 in common wheat. Journal of Experimental Botany 59(4):891-905
    Kobayashi F, Takumi S, Kume S, Ishibashi M, Ohno R, Murai K, Nakamura C (2005) Regulation by Vrn-1/Fr-1 chromosomal intervals of CBF-mediated Cor/Lea gene expression and freezing tolerance in common wheat. Journal of Experimental Botany 56(413):887-895
    Kobayashi F, Takumi S, Nakamura C (2008) Increased freezing tolerance in an ABA-hypersensitive mutant of common wheat. Journal of Plant Physiology 165(2):224-232
    Kobayashi F, Takumi S, Nakata M, Ohno R, Nakamura T, Nakamura C (2004) Comparative study of the expression profiles of the Cor/Lea gene family in two wheat cultivars with contrasting levels of freezing tolerance. Physiologia Plantarum 120(4):585-594
    Kodama H, Hamada T, Horiguchi G, Nishimura M, Iba K (1994) Genetic Enhancement of Cold Tolerance by Expression of a Gene for Chloroplast [omega]-3 Fatty Acid Desaturase in Transgenic Tobacco. Plant Physiology 105(2):601-605
    Koh S, Lee SC, Kim MK, Koh JH, Lee S, An G, Choe S, Kim SR (2007) T-DNA tagged knockout mutation of rice OsGSKl, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Molecular Biology 65(4):453-466
    Kosova K, Tom Prasil I, Prasilova P, Vitamvas P, Chrpova J (2010) The development of frost tolerance and DHN5 protein accumulation in barley (Hordeum vulgare) doubled haploid lines derived from Atlas 68×Igri cross during cold acclimation. Journal of Plant Physiology 167(5):343-350
    Kosova K, Vitamvas P, Prasil I (2007) The role of dehydrins in plant response to cold. Biologia Plantarum51(4):601-617
    Kosova K, Holkova L, Prasil IT, Prasilova P, Bradacova M, Vitamvas P, Capkova V (2008) Expression of dehydrin 5 during the development of frost tolerance in barley (Hordeum vulgare). Journal of Plant Physiology 165(11):1142-1151
    Kovacs Z, Simon-Sarkadi L, Sovany C, Kirsch K, Galiba G, Kocsy G (2011) Differential effects of cold acclimation and abscisic acid on free amino acid composition in wheat. Plant Science 180(1):61-68
    Kovacs Z, Simon-Sarkadi L, Szucs A, Kocsy G (2010) Differential effects of cold, osmotic stress and abscisic acid on polyamine accumulation in wheat. Amino Acids 38(2):623-631
    Kratsch HA, Wise RR (2000) The ultrastructure of chilling stress. Plant, Cell & Environment 23(4):337-350
    Kurkela S, Borg-Franck M (1992) Structure and expression of kin2, one of two cold-and ABA-induced genes of Arabidopsis thaliana. Plant Molecular Biology 19(4):689-692
    Kurkela S, Franck M (1990) Cloning and characterization of a cold-and ABA-inducible Arabidopsis gene. Plant Molecular Biology 15(1):137-144
    Kushad MM, Yelenosky G (1987) Evaluation of Polyamine and Proline Levels during Low Temperature Acclimation of Citrus. Plant Physiology 84(3):692-695
    Kwak KJ, Park SJ, Han JH, Kim MK, Oh SH, Han YS, Kang H (2011) Structural determinants crucial to the RNA chaperone activity of glycine-rich RNA-binding proteins 4 and 7 in Arabidopsis thaliana during the cold adaptation process. Journal of Experimental Botany 62(11):4003-4011
    Lang V, Palva ET (1992) The expression of a rab-related gene, rab18, is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana (L.) Heynh. Plant Molecular Biology 20(5):951-962
    Lauersen KJ, Brown A, Middleton A, Davies PL, Walker VK (2011) Expression and characterization of an antifreeze protein from the perennial rye grass, Lolium perenne. Cryobiology 62(3):194-201
    Lee BH, Henderson DA, Zhu JK (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17(11):3155-3175
    Lee BH, Kapoor A, Zhu J, Zhu JK (2006) STABILIZED1, a stress-upregulated nuclear protein, is required for pre-mRNA splicing, mRNA turnover, and stress tolerance in Arabidopsis. Plant Cell 18(7):1736-1749
    Lee BH, Lee H, Xiong L, Zhu JK (2002) A mitochondrial complex I defect impairs cold-regulated nuclear gene expression. Plant Cell 14(6):1235-1251
    Lee H, Guo Y, Ohta M, Xiong L, Stevenson B, Zhu JK (2002) LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. The EMBO Journal 21(11):2692-2702
    Lee H, Xiong L, Gong Z, Ishitani M, Stevenson B, Zhu JK (2001) The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo--cytoplasmic partitioning. Genes Development 15(7):912-924
    Lee H, Yoo SJ, Lee JH, Kim W, Yoo SK, Fitzgerald H, Carrington JC, Ahn JH (2010) Genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs in Arabidopsis. Nucleic Acids Research 38(9):3081-3093
    Lee TM, Lur HS, Chu C (1997) Role of abscisic acid in chilling tolerance of rice (Oryza sativa L.) seedlings.:II. Modulation of free polyamine levels. Plant Science 126(1):1-10
    Lei L, Lin SZ, Zheng HQ, Lei Y, Zhang Q, Zhang Z (2007) The role of antioxidant system in freezing acclimation-induced freezing resistance of Populus suaveolens cuttings Forestry studies in China 9(2):107-113
    Lei T, Feng H, Sun X, Dai QL, Zhang F, Liang HG, Lin HH (2010) The alternative pathway in cucumber seedlings under low temperature stress was enhanced by salicylic acid. Plant Growth Regulation 60(1):35-42
    Li C, Junttila O, Heino P, Palva ET (2003) Different responses of northern and southern ecotypes of Betula pendula to exogenous ABA application. Tree Physiology 23(7):481-487
    Li R, Zhang J, Wei J, Wang H, Wang Y, Ma R (2009) Functions and mechanisms of the CBL-CIPK signaling system in plant response to abiotic stress. Progress in Natural Science 19(6):667-676
    Li W, Wang R, Li M, Li L, Wang C, Welti R, Wang X (2008) Differential Degradation of Extraplastidic and Plastidic Lipids during Freezing and Post-freezing Recovery in Arabidopsis thaliana. Journal of Biological Chemistry 283(1):461-468
    Li XP, Tian AG, Luo GZ, Gong ZZ, Zhang JS, Chen SY (2005) Soybean DRE-binding transcription factors that are responsive to abiotic stresses. TAG Theoretical and Applied Genetics 110(8):1355-1362
    Lim CC, Krebs SL, Arora R (1999) A 25-kDa dehydrin associated with genotype-and age-dependent leaf freezing-tolerance in Rhododendron:a genetic marker for cold hardiness? Theoretical and Applied Genetics 99(5):912-920
    Lin C, Thomashow MF (1992) DNA Sequence Analysis of a Complementary DNA for Cold-Regulated Arabidopsis Gene cor 15 and Characterization of the COR 15 Polypeptide. Plant Physiology 99(2):519-525
    Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14(5):836-843
    Liu JG, Zhang Z, Qin QL, Peng RH, Xiong AS, Chen JM, Xu F, Zhu H, Yao QH (2007) Isolated and characterization of a cDNA encoding ethylene-responsive element binding protein (EREBP)/AP2-type protein, RCBF2, in Oryza sativa L. Biotechnology Letters 29(1):165-173
    Liu L, Zhu K, Yang Y, Wu J, Chen F, Yu D (2008) Molecular cloning, expression profiling and trans-activation property studies of a DREB2-like gene from chrysanthemum (Dendranthema vestitum). Journal of Plant Research 121(2):215-226
    Liu LY, Duan LS, Zhang JC, Zhang ZX, Mi GQ, Ren HZ (2010) Cucumber (Cucumis sativus L.) over-expressing cold-induced transcriptome regulator ICE1 exhibits changed morphological characters and enhances chilling tolerance. Scientia Horticulturae 124(1):29-33
    Liu N, Zhong NQ, Wang GL, Li LJ, Liu XL, He YK, Xia GX (2007) Cloning and functional characterization of PpDBF1 gene encoding a DRE-binding transcription factor from Physcomitrella patens. Planta 226(4):827-838
    Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10(8):1391-1406
    Lorkovic ZJ (2009) Role of plant RNA-binding proteins in development, stress response and genome organization. Trends in Plant Science 14(4):229-236
    Lu S, Sun YH, Chiang VL (2008) Stress-responsive microRNAs in Populus.The Plant Journal 55(1):131-151
    Lukoseviciute V, Rugienius R, Sasnauskas A, Stanys V, Bobinas C (2009) Impact of exogenous sucrose, raffinose and proline on cold acclimation of strawberry in vitro. Acta Horticulturae 839:203-208
    Ma YY, Zhang YL, Lu J, Shao HB (2009) Roles of plant soluble sugars and their responses to plant cold stress. African Journal of Biotechnology 8(10):2004-2010
    MacRobbie EA (2002) Evidence for a role for protein tyrosine phosphatase in the control of ion release from the guard cell vacuole in stomatal closure. Proceedings of the National Academy of Sciences 99(18):11963-11968
    Maeda H, Sage TL, Isaac G, Welti R, Dellapenna D (2008) Tocopherols modulate extraplastidic polyunsaturated fatty acid metabolism in Arabidopsis at low temperature. Plant Cell 20(2):452-470
    Mare C, Mazzucotelli E, Crosatti C, Francia E, Stanca Am, Cattivelli L (2004) HvWRKY38:a new transcription factor involved in cold-and drought-response in barley. Plant Molecular Biology 55(3):399-416
    Marian CO, Krebs SL, Arora R (2004) Dehydrin variability among rhododendron species:a 25-kDa dehydrin is conserved and associated with cold acclimation across diverse species. New Phytologist 161(3):773-780
    Martz F, Kiviniemi S, Palva TE, Sutinen ML (2006) Contribution of omega-3 fatty acid desaturase and 3-ketoacyl-ACP synthase II (KASII) genes in the modulation of glycerolipid fatty acid composition during cold acclimation in birch leaves. Journal of Experimental Botany 57(4):897-909
    Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K (2004) Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. The Plant Journal 38(6):982-993
    Mastrangelo AM, Belloni S, Barilli S, Ruperti B, Di Fonzo N, Stanca AM, Cattivelli L (2005) Low temperature promotes intron retention in two e-cor genes of durum wheat. Planta 221(5):705-715
    Mazzucotelli E, Tartari A, Cattivelli L, Forlani G (2006) Metabolism of gamma-aminobutyric acid during cold acclimation and freezing and its relationship to frost tolerance in barley and wheat. Journal of Experimental Botany 57(14):3755-3766
    McKersie BD, Bowley SR, Jones KS (1999) Winter survival of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiology 119(3):839-848
    McKersie BD, Chen Y, de Beus M, Bowley SR, Bowler C, Inze D, D'Halluin K, Botterman J (1993) Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago saliva L.). Plant Physiology 103(4):1155-1163
    Meyer K., Keil M, Naldrett MJ (1999) A leucine-rich repeat protein of carrot that exhibits antifreeze activity. FEBS Letters 447(2-3):171-178
    Middleton AJ, Brown AM, Davies PL, Walker VK (2009) Identification of the ice-binding face of a plant antifreeze protein. FEBS Letters 583(4):815-819
    Mikkilineni V, Rocheford TR (2003) Sequence variation and genomic organization of fatty acid desaturase-2 (fad2) and fatty acid desaturase-6 (fad6) cDNAs in maize. Theoretical and Applied Genetics 106(7):1326-1332
    Miller AK, Galiba G, Dubcovsky J (2006) A cluster of 11 CBF transcription factors is located at the frost tolerance locus Fr-Am2 in Triticum monococcum. Molecular and Genetics Genomics 275(2):193-203
    Mishra AK, Agarwal S, Jain CK, Rani V (2009) High GC content:critical parameter for predicting stress regulated miRNAs in Arabidopsis thaliana. Bioinformation 4(4):151-154
    Miura K, Jin JB, Lee J, Yoo CY, Stirm V, Miura T, Ashworth EN, Bressan RA, Yun DJ, Hasegawa PM (2007) SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19(4):1403-1414
    Miura K, Ohta M, Nakazawa M, Ono M, Hasegawa PM (2011) ICE1 Ser403 is necessary for protein stabilization and regulation of cold signaling and tolerance. The Plant Journal 67(2):269-279
    Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, Eliby S, Shirley N, Langridge P, Lopato S (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnology Journal 9(2):230-249
    Nagao M, Minami A, Arakawa K, Fujikawa S, Takezawa D (2005) Rapid degradation of starch in chloroplasts and concomitant accumulation of soluble sugars associated with ABA-induced freezing tolerance in the moss Physcomitrella patens. Journal of Plant Physiology 162(2):169-180
    Nagao M, Oku K, Minami A, Mizuno K, Sakurai M, Arakawa K, Fujikawa S, Takezawa D (2006) Accumulation of theanderose in association with development of freezing tolerance in the moss Physcomitrella patens. Phytochemistry 67(7):702-709
    Naidu BP, Paleg LG, Aspinall D, Jennings AC, Jones GP (1991) Amino acid and glycine betaine accumulation in cold-stressed wheat seedlings. Phytochemistry 30(2):407-409
    Nakaminami K, Karlson DT, Imai R (2006) Functional conservation of cold shock domains in bacteria and higher plants. Proceedings of the National Academy of Sciences 103(26):10122-10127
    Nakaminami K, Sasaki K, Kajita S, Takeda H, Karlson D, Ohgi K, Imai R (2005) Heat stable ssDNA/RNA-binding activity of a wheat cold shock domain protein. FEBS Letters 579(21):4887-4891
    Nakamura T, Ishikawa M, Nakatani H, Oda A (2008) Characterization of cold-responsive extracellular chitinase in bromegrass cell cultures and its relationship to antifreeze activity. Plant Physiology 147(1):391-401
    Nakashima K, Shinwari ZK, Sakuma Y, Seki M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2000) Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration-and high-salinity-responsive gene expression. Plant Molecular Biology 42(4):657-665
    Nakayama K, Okawa K, Kakizaki T, Honma T, Itoh H, Inaba T (2007) Arabidopsis Corl5am is a chloroplast stromal protein that has cryoprotective activity and forms oligomers. Plant Physiology 144(1):513-523
    Navarro M, Ayax C, Martinez Y, Laur J, El Kayal W, Marque C, Teulieres C (2011) Two EguCBFI genes overexpressed in Eucalyptus display a different impact on stress tolerance and plant development. Plant Biotechnology Journal 9(1):50-63
    Navarro M, Marque G, Ayax C, Keller G, Borges JP, Marque C, Teulieres C (2009) Complementary regulation of four Eucalyptus CBF genes under various cold conditions. Journal of Experimental Botany 60(9):2713-2724
    Nayyar H, Bains T, Kumar S (2005) Low temperature induced floral abortion in chickpea:relationship to abscisic acid and cryoprotectants in reproductive organs. Environmental and Experimental Botany 53(1):39-47
    Niinemets U, Valladares F (2008) Environmental Tolerance. In:Sven Erik J, Brian F (eds) Encyclopedia of Ecology. Academic Press, Oxford, pp 1370-1376
    Nordin K, Vahala T, Palva ET (1993) Differential expression of two related, low-temperature-induced genes in Arabidopsis thaliana (L.) Heynh. Plant Molecular Biology 21(4):641-653
    Novillo F, Alonso JM, Ecker JR, Salinas J (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proceedings of the National Academy of Sciences 101(11):3985-3990
    Novillo F, Medina J, Salinas J (2007) Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proceedings of the National Academy of Sciences 104(52):21002-21007
    Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiology 138(1):341-351
    Okawa K, Nakayama K, Kakizaki T, Yamashita T, Inaba T (2008) Identification and characterization of Cor413im proteins as novel components of the chloroplast inner envelope. Plant, Cell & Environment 31(10):1470-1483
    Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J (1994) Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 6(1):147-158
    Olenichenko N, Ossipov V, Zagoskina N (2006) Effect of cold hardening on the phenolic complex of winter wheat leaves. Russian Journal of Plant Physiology 53(4):495-500
    Orvar BL, Sangwan V, Omann F, Dhindsa RS (2000) Early steps in cold sensing by plant cells:the role of actin cytoskeleton and membrane fluidity. The Plant Journal 23(6):785-794
    Owttrim GW (2006) RNA helicases and abiotic stress. Nucleic Acids Research 34(11):3220-3230
    Palusa SG, Ali GS, Reddy AS (2007) Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins:regulation by hormones and stresses. The Plant Journal 49(6):1091-1107
    Park HC, Kim ML, Kang YH, Jeon JM, Yoo JH, Kim MC, Park CY, Jeong JC, Moon BC, Lee JH, Yoon HW, Lee SH, Chung WS, Lim CO, Lee SY, Hong JC, Cho MJ (2004) Pathogen-and NaCl-Induced Expression of the SCaM-4 Promoter Is Mediated in Part by a GT-1 Box That Interacts with a GT-1-Like Transcription Factor. Plant Physiology 135(4):2150-2161
    Park SJ, Kwak KJ, Oh TR, Kim YO, Kang H (2009) Cold shock domain proteins affect seed germination and growth of Arabidopsis thaliana under abiotic stress conditions. Plant Cell Physiology 50(4):869-878
    Payton P, Webb R, Kornyeyev D, Allen R, Holaday AS (2001) Protecting cotton photosynthesis during moderate chilling at high light intensity by increasing chloroplastic antioxidant enzyme activity. Journal of Experimental Botany 52(365):2345-2354
    Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Current Opinionin Plant Biology 14:1-6
    Pellegrineschi A, Reynolds M, Pacheco M, Brito RM, Almeraya R, Yamaguchi-Shinozaki K, Hoisington D (2004) Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47(3):493-500
    Peng Y, Reyes JL, Wei H, Yang Y, Karlson D, Covarrubias AA, Krebs SL, Fessehaie A, Arora R (2008) RcDhn5, a cold acclimation-responsive dehydrin from Rhododendron catawbiense rescues enzyme activity from dehydration effects in vitro and enhances freezing tolerance in RcDhn5-overexpressing Arabidopsis plants. Physiologia Plantarum 134(4):583-597
    Pennycooke JC, Cheng H, Roberts SM, Yang Q, Rhee SY, Stockinger EJ (2008) The low temperature-responsive, Solanum CBF1 genes maintain high identity in their upstream regions in a genomic environment undergoing gene duplications, deletions, and rearrangements. Plant Molecular Biology 67(5):483-497
    Pennycooke JC, Cox S, Stushnoff C (2005) Relationship of cold acclimation, total phenolic content and antioxidant capacity with chilling tolerance in petunia (Petunia x hybrida). Environmental and Experimental Botany 53(2):225-232
    Pignocchi C, Fletcher JM, Wilkinson JE, Barnes JD, Foyer CH (2003) The function of ascorbate oxidase in tobacco. Plant Physiology 132(3):1631-1641
    Pihakaski-Maunsbach K, Moffatt B, Testillano P, Risueno M, Yeh S, Griffith M, Maunsbach AB (2001) Genes encoding chitinase-antifreeze proteins are regulated by cold and expressed by all cell types in winter rye shoots. Physiologia Plantarum 112(3):359-371
    Pino MT, Skinner JS, Jeknic Z, Hayes PM, Soeldner AH, Thomashow MF, Chen TH (2008) Ectopic AtCBFl over-expression enhances freezing tolerance and induces cold acclimation-associated physiological modifications in potato. Plant, cell & environment 31 (4):393-406
    Polashock JJ, Arora R, Peng Y, Naik D, Rowland LJ (2010) Functional Identification of a C-repeat Binding Factor Transcriptional Activator from Blueberry Associated with Cold Acclimation and Freezing Tolerance. Journal of the American Society for Horticultural Science 135(1):40-48
    Posmyk MM, Bailly C, Szafranska K, Janas KM, Corbineau F (2005) Antioxidant enzymes and isoflavonoids in chilled soybean (Glycine max (L.) Merr.) seedlings. Journal of Plant Physiology 162(4):403-412
    Puhakainen T, Li C, Boije-Malm M, Kangasjarvi J, Heino P, Palva ET (2004) Short-day potentiation of low temperature-induced gene expression of a C-repeat-binding factor-controlled gene during cold acclimation in silver birch. Plant Physiology 136(4):4299-4307
    Qin F, Sakuma Y, Li J, Liu Q, Li YQ, Shinozaki K, Yamaguchi-Shinozaki K (2004) Cloning and Functional Analysis of a Novel DREB1/CBF Transcription Factor Involved in Cold-Responsive Gene Expression in Zea mays L. Plant Cell Physiology 45(8):1042-1052
    Qin F, Sakuma Y, Tran LS, Maruyama K, Kidokoro S, Fujita Y, Fujita M, Umezawa T, Sawano Y, Miyazono K, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2008) Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression. Plant Cell 20(6):1693-1707
    Rahman LN, Chen L, Nazim S, Bamm VV, Yaish MW, Moffatt BA, Dutcher JR, Harauz G (2010) Interactions of intrinsically disordered Thellungiella salsuginea dehydrins TsDHN-1 and TsDHN-2 with membranes-synergistic effects of lipid composition and temperature on secondary structure. Biochemistry and Cell Biology 88(5):791-807
    Rai VK (2002) Role of Amino Acids in Plant Responses to Stresses. Biologia Plantarum 45(4):481-487
    Rajashekar CB, Lafta A (1996) Cell-Wall Changes and Cell Tension in Response to Cold Acclimation and Exogenous Abscisic Acid in Leaves and Cell Cultures. Plant Physiology 111(2):605-612
    Rapacz M, Wolanin B, Hura K, Tyrka M (2008) The effects of cold acclimation on photosynthetic apparatus and the expression of COR 14b in four genotypes of barley (Hordeum vulgare) contrasting in their tolerance to freezing and high-light treatment in cold conditions. Annual of Botany 101(5):689-699
    Rekarte-Cowie I, Ebshish OS, Mohamed KS, Pearce RS (2008) Sucrose helps regulate cold acclimation of Arabidopsis thaliana. Journal of Experimental Botany 59(15):4205-4217
    Robinson NJ, Wilson JR, Turner JS (1996) Expression of the type 2 metallothionein-like gene MT2 from Arabidopsis thaliana in Zn(2+)-metallothionein-deficient Synechococcus PCC 7942:putative role for MT2 in Zn2+metabolism. Plant Molecular Biology 30(6):1169-1179
    Rocak S, Linder P (2004) DEAD-box proteins:the driving forces behind RNA metabolism. Nature Reviews Molecular Cell Biology 5(3):232-241
    Rorat T (2006) Plant dehydrins-Tissue location, structure and function. Cellular & amp; Molecular Biology Letters 11 (4):536-556
    Rudi H, Sandve SR, Opseth LM, Larsen A, Rognli OA (2011) Identification of candidate genes important for frost tolerance in Festuca pratensis Huds. by transcriptional profiling. Plant Science 180(1):78-85
    Ruiz JM, Sanchez E, Garcia PC, Lopez-Lefebre LR, Rivero RM, Romero L (2002) Proline metabolism and NAD kinase activity in greenbean plants subjected to cold-shock. Phytochemistry 59(5):473-478
    Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress:clues from transgenic plants. Plant, Cell & Environment 25(2):163-171
    Sakamoto T, Murata N (2002) Regulation of the desaturation of fatty acids and its role in tolerance to cold and salt stress. Current Opinion in Microbiology 5(2):206-210
    Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-Binding Specificity of the ERF/AP2 Domain of Arabidopsis DREBs, Transcription Factors Involved in Dehydration-and Cold-Inducible Gene Expression. Biochemical and Biophysical Research Communications 290(3):998-1009
    Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18(5):1292-1309
    Sangwan V, Foulds I, Singh J, Dhindsa RS (2001) Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+influx. The Plant Journal 27(1):1-12
    Sanmartin M, Pateraki I, Chatzopoulou F, Kanellis AK (2007) Differential expression of the ascorbate oxidase multigene family during fruit development and in response to stress. Planta 225(4):873-885
    Santner A, Estelle M (2010) The ubiquitin-proteasome system regulates plant hormone signaling. The Plant Journal 61(6):1029-1040
    Sarhadi E, Mahfoozi S, Hosseini SA, Salekdeh GH (2010) Cold Acclimation Proteome Analysis Reveals Close Link between the Up-Regulation of Low-Temperature Associated Proteins and Vernalization Fulfillment. Journal of Proteome Research 9(11):5658-5667
    Sasaki K, Kim MH, Imai R (2007) Arabidopsis COLD SHOCK DOMAIN PROTEIN2 is a RNA chaperone that is regulated by cold and developmental signals. Biochemical and Biophysical Research Communications 364(3):633-638
    Secozawa Y, Sugaya S, Gemma H, Iwahori S (2003) Cold tolerance in'kousui'Japanese pear and possibility for avoiding frost injury by treatment with n-propyl dihydrojasmonate. HortScience 38:288-292
    Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. The Plant Journal 31(3):279-292
    Shao HB, Chu LY, Lu ZH, Kang CM (2008a) Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. International Journal of Biological Sciences 4(1):8-14
    Shao HB, Chu LY, Shao MA, Jaleel CA, Mi HM (2008b) Higher plant antioxidants and redox signaling under environmental stresses. Comptes Rendus Biologies 331(6):433-441
    Shen W, Nada K, Tachibana S (2000) Involvement of polyamines in the chilling tolerance of cucumber cultivars. Plant Physiology 124(1):431-439
    Shen YG, Zhang WK, Yan DQ, Du BX, Zhang JS, Liu Q, Chen SY (2003) Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis. Theoretical and Applied Genetics 107(1):155-161
    Shen YG, Zhang WK, He SJ, Zhang JS, Liu Q, Chen SY (2003) An EREBP/AP2-type protein in Triticum aestivum; was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theoretical and Applied Genetics 106(5):923-930
    Shi Y, An L, Zhang M, Huang C, Zhang H, Xu S (2008) Regulation of the plasma membrane during exposure to low temperatures in suspension-cultured cells from a cryophyte (Chorispora bungeana). Protoplasma 232(3-4):173-181
    Shimamura C, Ohno R, Nakamura C, Takumi S (2006) Improvement of freezing tolerance in tobacco plants expressing a cold-responsive and chloroplast-targeting protein WCOR15 of wheat. Journal of Plant Physiology 163(2):213-219
    Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology 6(5):410-417
    Si J, Wang J, Zhang L, Zhang H, Liu Y, An L (2009) CbCOR15, A Cold-Regulated Gene from Alpine Chorispora bungeana, Confers Cold Tolerance in Transgenic Tobacco. Journal of Plant Biology 52(6):593-601
    Siddiqua M, Nassuth A (2011) Vitis CBF1 and Vitis CBF4 differ in their effect on Arabidopsis abiotic stress tolerance, development and gene expression. Plant, Cell & Environment 34(8):1345-1359
    Smallwood M, Worrall D, Byass L, Elias L, Ashford D, Doucet CJ, Holt C, Telford J, Lillford P, Bowles DJ (1999) Isolation and characterization of a novel antifreeze protein from carrot (Daucus carota). Biochemical Journal 340 (2):385-391
    Steponkus PL, Uemura M, Joseph RA, Gilmour SJ, Thomashow MF (1998) Mode of action of the COR 15a gene on the freezing tolerance of Arabidopsis thaliana. Proceedings of the National Academy of Sciences 95(24):14570-14575
    Stitt M, Hurry V (2002) A plant for all seasons:alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Current Opinion in Plant Biology 5(3):199-206
    Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proceedings of the National Academy of Sciences 94(3):1035-1040
    Strand A, Foyer CH, Gustafsson P, GardestrOM P, Hurry V (2003) Altering flux through the sucrose biosynthesis pathway in transgenic Arabidopsis thaliana modifies photosynthetic acclimation at low temperatures and the development of freezing tolerance. Plant, Cell & Environment 26(4):523-535
    Sun X, Dong JH, Chen M, Xu ZS, Ye XG, Li LC, Qu YY, Ma YZ (2008) Isolation and Regulative Region Analysis of Promoter of Stress-Related Gene GmDREB3 from Soybean Acta Agronomica Sinica 34(8):1475-1479
    Sunkar R, Chinnusamy V, Zhu J, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends in plant science 12(7):301-309
    Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18(8):2051-2065
    Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16(8):2001-2019
    Szalai G, Tari I, Janda T, Pestenacz A, Paldi E (2000) Effects of Cold Acclimation and Salicylic Acid on Changes in ACC and MACC Contents in Maize during Chilling. Biologia Plantarum 43(4):637-640
    Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought-and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. The Plant Journal 29(4):417-426
    Talanova V, Titov A, Topchieva L, Malysheva I, Venzhik Y, Frolova S (2009) Expression of WRKY transcription factor and stress protein genes in wheat plants during cold hardening and ABA treatment. Russian Journal of Plant Physiology 56(5):702-708
    Tanabe N, Yoshimura K, Kimura A, Yabuta Y, Shigeoka S (2007) Differential expression of alternatively spliced mRNAs of Arabidopsis SR protein homologs, atSR30 and atSR45a, in response to environmental stress. Plant Cell Physiology 48(7):1036-1049
    Tang M, Lu S, Jing Y, Zhou X, Sun J, Shen S (2005) Isolation and identification of a cold-inducible gene encoding a putative DRE-binding transcription factor from Festuca arundinacea. Plant Physiology and Biochemistry 43(3):233-239
    Tasgin E, Atici O, Nalbantoglu B (2003) Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves. Plant Growth Regulation 41(3):231-236
    Teige M, Scheikl E, Eulgem T, Doczi R, Ichimura K, Shinozaki K, Dangl JL, Hirt H (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Molecular Cell 15(1):141-152
    Teixeira MC, Coelho N, Olsson ME, Brodelius PE, Carvalho IS, Brodelius M (2009) Molecular cloning and expression analysis of three omega-6 desaturase genes from purslane (Portulaca oleracea L.). Biotechnology Letters 31(7):1089-1101
    Thipyapong P, Melkonian J, Wolfe DW, Steffens JC (2004) Suppression of polyphenol oxidases increases stress tolerance in tomato. Plant Science 167(4):693-703
    Thipyapong P, Stout MJ, Attajarusit J (2007) Functional analysis of polyphenol oxidases by antisense/sense technology. Molecules 12(8):1569-1595
    Thomashow MF (2010) Molecular Basis of Plant Cold Acclimation:Insights Gained from Studying the CBF Cold Response Pathway. Plant Physiology 154(2):571-577
    Tong Z, Hong B, Yang Y, Li Q, Ma N, Ma C, Gao J (2009) Overexpression of two chrysanthemum DgDREBl group genes causing delayed flowering or dwarfism in Arabidopsis. Plant Molecular Biology 71(1-2):115-129
    Tran LS, Nakashima K, Shinozaki K, Yamaguchi-Shinozaki K (2007) Plant gene networks in osmotic stress response:from genes to regulatory networks. Methods Enzymology 428:109-128
    Tremblay K, Ouellet F, Fournier J, Danyluk J, Sarhan F (2005) Molecular Characterization and Origin of Novel Bipartite Cold-regulated Ice Recrystallization Inhibition Proteins from Cereals. Plant and Cell Physiology 46(6):884-891
    Tsonev T, Velikova V, Georgieva K, Hyde PF, Jones HG (2003) Low temperature enhances photosynthetic down-regulation in French bean (Phaseolus vulgaris L.) plants. Annual of Botany 91(3):343-352
    Turan O, Ekmekci Y (2011) Activities of photosystem Ⅱ and antioxidant enzymes in chickpea (Cicer arietinum L.) cultivars exposed to chilling temperatures. Acta Physiologiae Plantarum 33(1):67-78
    Uemura M, Steponkus PL (2003) Modification of the intracellular sugar content alters the incidence of freeze-induced membrane lesions of protoplasts isolated from Arabidopsis thaliana leaves. Plant, Cell & Environment 26(7):1083-1096
    Uemura M, Tominaga Y, Nakagawara C, Shigematsu S, Minami A, Kawamura Y (2006) Responses of the plasma membrane to low temperatures. Physiologia Plantarum 126(1):81-89
    Uemura M, Warren G, Steponkus PL (2003) Freezing sensitivity in the sfr4 mutant of Arabidopsis is due to low sugar content and is manifested by loss of osmotic responsiveness. Plant Physiology 131(4):1800-1807
    Ukaji N, Kuwabara C, Takezawa D, Arakawa K, Fujikawa S (2001) Cold acclimation-induced WAP27 localized in endoplasmic reticulum in cortical parenchyma cells of mulberry tree was homologous to group 3 late-embryogenesis abundant proteins. Plant Physiology 126(4):1588-1597
    Ukaji N, Kuwabara C, Takezawa D, Arakawa K, Yoshida S, Fujikawa S (1999) Accumulation of small heat-shock protein homologs in the endoplasmic reticulum of cortical parenchyma cells in mulberry in association with seasonal cold acclimation. Plant Physiology 120(2):481-490
    Vitamvas P, Saalbach G, Prasil IT, Capkova V, Opatrna J, Ahmed J (2007) WCS120 protein family and proteins soluble upon boiling in cold-acclimated winter wheat. Journal of Plant Physiology 164(9):1197-1207
    Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E, Coraggio I (2004) Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. The Plant Journal 37(1):115-127
    Vergnolle C, Vaultier MN, Taconnat L, Renou JP, Kader JC, Zachowski A, Ruelland E (2005) The cold-induced early activation of phospholipase C and D pathways determines the response of two distinct clusters of genes in Arabidopsis cell suspensions. Plant Physiology 139(3):1217-1233
    Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. The Plant Journal 41(2):195-211
    Wang BB, Brendel V (2006) Genomewide comparative analysis of alternative splicing in plants. Proceedings of the National Academy of Sciences 103(18):7175-7180
    Wang J, Ming F, Pittman J, Han Y, Hu J, Guo B, Shen D (2006) Characterization of a rice (Oryza sativa L.) gene encoding a temperature-dependent chloroplast omega-3 fatty acid desaturase. Biochemical and Biophysical Research Communications 340(4):1209-1216
    Wang LJ, Li SH (2006) Salicylic acid-induced heat or cold tolerance in relation to Ca2+homeostasis and antioxidant systems in young grape plants. Plant Science 170(4):685-694
    Wang L, Yang L, Yang F, Li X, Song Y, Wang X, Hu X (2010) Involvements of H2O2 and metallothionein in NO-mediated tomato tolerance to copper toxicity. Journal of Plant Physiology 167(15):1298-1306
    Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C (2008) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Molecular Biology 67(6):589-602
    Wang WJ, Chen YZ, Liu MQ, Lu CF (2008) Effects of cold-hardening on compatible solutes and antioxidant enzyme activities related to freezing tolerance in Ammopiptanthus mongolicus seedlings. Forestry Studies in China 10(2):101-106
    Wang X, Peng YH, Singer JW, Fessehaie A, Krebs SI, Arora R (2009) Seasonal changes in photosynthesis, antioxidant systems and ELIP expression in a thermonastic and non-thermonastic Rhododendron species:A comparison of photoprotective strategies in overwintering plants. Plant Science 177(6):607-617
    Wang X, Sun X, Liu S, Liu L, Liu X, Tang K (2005) Molecular cloning and characterization of a novel ice gene from Capsella bursapastoris. Molecular Biology (Mosk) 39(1):21-29
    Wang YM, He CF (2007) Isolation and Characterization of a Cold-Induced DREB Gene from Aloe Vera L. Plant Molecular Biology Reporter 25(3):121-132
    Wang Y, Hua J (2009) A moderate decrease in temperature induces COR15a expression through the CBF signaling cascade and enhances freezing tolerance. The Plant Journal 60(2):340-349
    Wang Y, Jiang CJ, Li YY, Wei CL, Deng WW (2012) CsICEl and CsCBF1:two transcription factors involved in cold responses in Camellia sinensis. Plant Cell Reports 31(1):27-34
    Wang YJ, Wisniewski M, Meilan R, Cui MG, Webb R, Fuchigami L(2005) Overexpression of cytosolic ascorbate peroxidase in tomato confers tolerance to chilling and salt stress. Journal of the American Society for Horticultural Science 130(2):167-173
    Wanner LA, Junttila O (1999) Cold-induced freezing tolerance in Arabidopsis. Plant Physiology 120(2):391-400
    Welin BV, Olson A, Nylander M, Palva ET (1994) Characterization and differential expression of dhn/lea/rab-like genes during cold acclimation and drought stress in Arabidopsis thaliana. Plant Molecular Biology 26(1):131-144
    Welling A, Palva ET (2008) Involvement of CBF Transcription Factors in Winter Hardiness in Birch. Plant Physiology 147(3):1199-1211
    White TC, Simmonds D, Donaldson P, Singh J (1994) Regulation of BN115, a low-temperature-responsive gene from winter Brassica napus. Plant Physiology 106(3):917-928
    Wi SJ, Kim WT, Park KY (2006) Overexpression of carnation S-adenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants. Plant Cell Reports 25(10):1111-1121
    Wilhelm KS, Thomashow MF (1993) Arabidopsis thaliana cor15b, an apparent homologue of cor15a, is strongly responsive to cold and ABA, but not drought. Plant Molecular Biology 23(5):1073-1077
    Winfield MO, Lu C, Wilson ID, Coghill JA, Edwards KJ (2010) Plant responses to cold:transcriptome analysis of wheat. Plant Biotechnology Journal 8(7):749-771
    Worrall D, Elias L, Ashford D, Smallwood M, Sidebottom C, Lillford P, Telford J, Holt C, Bowles D (1998) A Carrot Leucine-Rich-Repeat Protein That Inhibits Ice Recrystallization. Science 282(5386):115-117
    Xiang DJ, Hu XY, Zhang Y, Yin KD (2008) Over-Expression of ICE1 Gene in Transgenic Rice Improves Cold Tolerance. Rice Science 15:173-178
    Xiao H, Siddiqua M, Braybrook S, Nassuth A (2006) Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid. Plant, Cell & Environment 29(7):1410-1421
    Xiao H, Tattersall EA, Siddiqua MK, Cramer GR, Nassuth A (2008) CBF4 is a unique member of the CBF transcription factor family of Vitis vinifera and Vitis riparia. Plant, Cell & Environment 31(1):1-10
    Xin Z, Browse J (1998) Eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant. Proceedings of the National Academy of Sciences 95(13):7799-7804
    Xin Z, Mandaokar A, Chen J, Last RL, Browse J (2007) Arabidopsis ESK1 encodes a novel regulator of freezing tolerance. The Plant Journal 49(5):786-799
    Xiong L, Lee B, Ishitani M, Lee H, Zhang C, Zhu JK (2001) FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Genes Development 15(15):1971-1984
    Xiong L, Lee H, Ishitani M, Tanaka Y, Stevenson B, Koiwa H, Bressan RA, Hasegawa PM, Zhu JK (2002) Repression of stress-responsive genes by FIERY2, a novel transcriptional regulator in Arabidopsis. Proceedings of the National Academy of Sciences 99(16):10899-10904
    Xu ZS, Xia LQ, Chen M, Cheng XG, Zhang RY, Li LC, Zhao YX, Lu Y, Ni ZY, Liu L, Qiu ZG, Ma YZ (2007) Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERFl) that increases multiple stress tolerance. Plant Molecular Biology 65(6):719-732
    Xue-Xuan X, Hong-Bo S, Yuan-Yuan M, Gang X, Jun-Na S, Dong-Gang G, Cheng-Jiang R (2010) Biotechnological implications from abscisic acid (ABA) roles in cold stress and leaf senescence as an important signal for improving plant sustainable survival under abiotic-stressed conditions. Critical Reviews in Biotechnology 30(3):222-230
    Xue T, Li X, Zhu W, Wu C, Yang G, Zheng C (2009) Cotton metallothionein GhMT3a, a reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast. Journal of Experimental Botany 60(1):339-349
    Yaish MWF, Doxey AC, McConkey BJ, Moffatt BA, Griffith M (2006) Cold-Active Winter Rye Glucanases with Ice-Binding Capacity. Plant Physiology 141(4):1459-1472
    Yakubov B, Barazani O, Shachack A, Rowland LJ, Shoseyov O, Golan-Goldhirsh A (2005) Cloning and expression of a dehydrin-like protein from Pistacia vera L. Trees-Structure and Function 19(2):224-230
    Yamaguchi-Shinozaki K, Shinozaki K (1994) A Novel cis-Acting Element in an Arabidopsis Gene Is Involved in Responsiveness to Drought, Low-Temperature, or High-Salt Stress. The Plant Cell 6(2):251-264
    Yamaguchi-Shinozaki K, Shinozaki K (2001) Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Novartis Found Symp 236:176-186
    Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends in Plant Science 10(2):88-94
    Yamamoto A, Bhuiyan MN, Waditee R, Tanaka Y, Esaka M, Oba K, Jagendorf AT, Takabe T (2005) Suppressed expression of the apoplastic ascorbate oxidase gene increases salt tolerance in tobacco and Arabidopsis plants. Journal of Experimental Botany 56(417):1785-1796
    Yang J, Wang Y, Liu G, Yang C, Li C (2011) Tamarix hispida metallothionein-like ThMT3, a reactive oxygen species scavenger, increases tolerance against Cd(2+), Zn(2+), Cu(2+), and NaCl in transgenic yeast. Molecular Biology Reports 38(3):1567-1574
    Yang W, Liu XD, Chi XJ, Wu CA, Li YZ, Song LL, Liu XM, Wang YF, Wang FW, Zhang CA, Liu Y, Zong JM, Li HY (2011) Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways. Planta 233(2):219-229
    Yang Y, Wu J, Zhu K, Liu L, Chen F, Yu D (2009) Identification and characterization of two chrysanthemum (Dendronthema x moriforlium) DREB genes, belonging to the AP2/EREBP family. Molecular Biology Reports 36(1):71-81
    Yano R, Nakamura M, Yoneyama T, Nishida Ⅰ (2005) Starch-related alpha-glucan/water dikinase is involved in the cold-induced development of freezing tolerance in Arabidopsis. Plant Physiol 138(2):837-846
    Yao Y, Ni Z, Peng H, Sun F, Xin M, Sunkar R, Zhu JK, Sun Q (2010) Non-coding small RNAs responsive to abiotic stress in wheat (Triticum aestivum L.). Functional & amp; Integrative Genomics 10(2):187-190
    Yeh S, Moffatt BA, Griffith M, Xiong F, Yang DSC, Wiseman SB, Sarhan F, Danyluk J, Xue YQ, Hew CL, Doherty-Kirby A, Lajoie G (2000) Chitinase Genes Responsive to Cold Encode Antifreeze Proteins in Winter Cereals. Plant Physiology 124(3):1251-1264
    Yi SY, Kim JH, Joung YH, Lee S, Kim WT, Yu SH, Choi D (2004) The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in Arabidopsis. Plant Physiology 136(1):2862-2874
    Yordanova R, Popova L (2007) Effect of exogenous treatment with salicylic acid on photosynthetic activity and antioxidant capacity of chilled wheat plants. General and applied plant physiology 33(3-4):155-170
    Yoshikawa H, Honda C, Kondo S (2007) Effect of low-temperature stress on abscisic acid, jasmonates, and polyamines in apples. Plant Growth Regulation 52(3):199-206
    Yu XM, Griffith M, Wiseman SB (2001) Ethylene induces antifreeze activity in winter rye leaves. Plant Physiology 126(3):1232-1240
    Zarka DG, Vogel JT, Cook D, Thomashow MF (2003) Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature. Plant Physiology 133(2):910-918
    Zhang C, Fei SZ, Arora R, Hannapel D (2010) Ice recrystallization inhibition proteins of perennial ryegrass enhance freezing tolerance. Planta 232(1):155-164
    Zhang DQ, Liu B, Feng DR, He YM, Wang JF (2004) Expression, purification, and antifreeze activity of carrot antifreeze protein and its mutants. Protein Expression and Purification 35(2):257-263
    Zhang J, Xu Y, Huan Q, Chong K (2009) Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics 10(1):449
    Zhang S, Cai Z, Wang X (2009) The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proceedings of the National Academy of Sciences 106(11):4543-4548
    Zhang S, Li N, Gao F, Yang A, Zhang J (2010) Over-expression of TsCBFl gene confers improved drought tolerance in transgenic maize. Molecular Breeding 26(3):455-465
    Zhang S, Scheller HV (2004) Photoinhibition of photosystem I at chilling temperature and subsequent recovery in Arabidopsis thaliana. Plant Cell Physiology 45(11):1595-1602
    Zhang X, Ervin EH, Waltz C, Murphy T (2011) Metabolic Changes During Cold Acclimation and Deacclimation in Five Bermudagrass Varieties:II. Cytokinin and Abscisic Acid Metabolism. Crop Science 51(2):847-853
    Zhang X, Fowler SG, Cheng H, Lou Y, Rhee SY, Stockinger EJ, Thomashow MF (2004) Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. The Plant Journal 39(6):905-919
    Zhang XZ, Wang KH, Ervin EH, Waltz C, Murphy T (2011) Metabolic Changes During Cold Acclimation and Deacclimation in Five Bermudagrass Varieties. I. Proline, Total Amino Acid, Protein, and Dehydrin Expression. Crop Science 51(2):838-846
    Zhang Y, Luo Y, Hou YX, Jiang H, Chen Q, Tang HR (2008) Chilling acclimation induced changes in the distribution of H2O2 and antioxidant system of strawberry leaves. Agricultural Journal 3(4):286-291
    Zhang Y, Yin H, Li D, Zhu W, Li Q (2008) Functional analysis of BADH gene promoter from Suaeda liaotungensis K. Plant Cell Reports 27(3):585-592
    Zhang YJ, Yang JS, Guo SJ, Meng JJ, Zhang YL, Wan SB, He QW, Li XG (2011) Over-expression of the Arabidopsis CBF1 gene improves resistance of tomato leaves to low temperature under low irradiance. Plant Biology 13(2):362-367
    Zhao H, Bughrara SS (2008) Isolation and characterization of cold-regulated transcriptional activator LpCBF3 gene from perennial ryegrass (Lolium perenne L.). Molecular and Genetics Genomics 279(6):585-594
    Zhao MG, Chen L, Zhang LL, Zhang WH (2009) Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiology 151(2):755-767
    Zhou B, Guo Z (2009) Calcium is involved in the abscisic acid-induced ascorbate peroxidase, superoxide dismutase and chilling resistance in Stylosanthes guianensis. Biologia Plantarum 53(1):63-68
    Zhu J, Shi H, Lee BH, Damsz B, Cheng S, Stirm V, Zhu JK, Hasegawa PM, Bressan RA (2004) An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proceedings of the National Academy of Sciences 101(26):9873-9878
    Zhu J, Verslues PE, Zheng X, Lee BH, Zhan X, Manabe Y, Sokolchik I, Zhu Y, Dong CH, Zhu JK, Hasegawa PM, Bressan RA (2005) HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proceedings of the National Academy of Sciences 102(28):9966-9971
    Zhu Y, Yang HJ, Mang HQ Hua JA (2011) Induction of BAP1 by a Moderate Decrease in Temperature Is Mediated by ICE1 in Arabidopsis. Plant Physiology 155(1):580-588
    Zou C, Jiang W, Yu D (2010) Male gametophyte-specific WRKY34 transcription factor mediates cold sensitivity of mature pollen in Arabidopsis. Journal of Experimental Botany 61(14):3901-3914
    鲍思伟(2005)自然降温过程中云锦杜鹃抗寒适应性研究—水分、渗透调节物的动态变化与低温半致死温度的关系.福建林业科技32(02):13-16
    曹英萍,石金磊,李钟,明凤(2010)水稻OsFAD2、OsFAD6的克隆及其家族成员对非生物胁迫的响应.遗传32(8):839—847
    陈柏君,孙超,王勇,胡鸢雷,林忠平(2004)锚定PCR(Anchored PCR):一种新的染色体步行方法.科学通报49(15):1569-1571
    陈年来,王兴虎,安黎哲,王刚(2009)低温对厚皮甜瓜幼苗光合特性的影响.冰川冻土31(5):986-991
    崔国文,马春平(2007)紫花苜蓿叶片形态结构及其与抗寒性的关系.草地学报15(01):70-75
    邓化冰,车芳璐,肖应辉,唐文帮,盘毅,刘志贤,陈立云(2011)开花期低温胁迫对水稻花粉性状及剑叶理化特性的影响.应用生态学报22(1):66-72
    董丽,苏雪痕(2003)常绿阔叶植物越冬期间叶片组织结构的适应性变化.园艺学报30(1):59-64
    杜艳,喻方圆,甘习华,沈永宝(2007)低温胁迫下两种七叶树苗木超微结构的比较.南京林业大学学报(自然科学版)31(3):111-114
    冯斗,榻维言,黄政树,邓付园,谭湘(2009)茉莉酸甲酯对低温胁迫下香蕉幼苗的生理效应.果树学报26(3):390~393
    冯美利(2003)芒果叶片组织的细胞结构与耐寒性的初步研究.热带农业科技26(1):5-7
    管志勇,陈素梅,陈发棣,尹冬梅,刘兆磊,唐娟,杨帆(201 0)32个菊花近缘种属植物耐盐性筛选.中国农业科学43(19):4063-4071
    何俊平,陈发棣,陈素梅,房伟民(2010)不同菊花品种抗蚜虫性鉴定.生态学杂志29(7):1382-1386
    何小勇,柳新红,袁德义,谭晓风,赵思东,张琳,魏来(2007)不同种源翅荚木的抗寒性.林业科学43(4):24-30
    洪波,史春凤,张晓娇,高俊平(2009)菊花观赏性状和农艺性状基因工程改良研究进展.中国农业科学42(4):1348-1358
    胡春梅,侯喜林,王旻(2008)低温胁迫对不结球自菜光合及叶绿素荧光特性的影响.西北植物学报28(12):2478-2484
    胡永红,张启翔,王奎玲,张志芬(2000)低温对切花菊叶片细胞器超微结构的影响.莱阳农学院学报17(1):38~43
    贾思振,房伟民,陈发棣,陈素梅,杨雪萌(2009)夏菊耐热性指标筛选和综合评价.浙江林学院学报26(1):52-57
    李娜,房伟民,陈发棣,陈素梅,陈煜(2010)切花寒菊小花对低温胁迫的生理响应及其抗寒性分析.西北植物学报30(4):0645-0651
    李平聪,周秀琴(2002)龙眼耐寒性与叶片组织结构的关系.福建果树119(1):8-9
    李亚,谢晓金,宣继萍,刘建秀(2003)中国结缕草属(Zoysia spp.)植物抗寒性评价.草地学报11(03):240-245
    李争艳,韩艳,张新芳,安黎哲,徐世健(2008)低温条件下高山离子芥SA的产生及NO对SA质量分数的影响.兰州大学学报(自然科学版)44(6):29-33
    梁李宏,梅新,林锋,夏军,刘术金,王金辉(2009)低温胁迫对腰果幼苗叶片组织结构和生理指标的影响.生态环境学报18(1):317-320
    刘冰浩,徐宁,朱建华,梁文,彭宏祥,黄江流(2006)广西龙眼种质耐寒性的CTR值鉴定.西南农业学报19(4):668-671
    刘立军,陈为峰,张志华,田素娟(2010)叶面喷施脱落酸对高羊茅抗寒性的影响.中国草地学报32(6):94-99
    刘鹏,赵世杰,孟庆伟,魏佑营,邹琦(2002)冷锻炼对甜椒叶片光合作用及其低温光抑制的影响(英文).植物生理与分子生物学学报28(1):51-58
    刘晓静,郭凌飞,李鸣,刘海斌,梁朝旭,徐林,陆建勋(2011)水杨酸对低温胁迫下甘蔗苗期抗寒性的效应.中国农学通报27(05):265-268
    罗立津,徐福乐,翁华钦,洪淑珠,段留生,李召虎(2011)脱落酸对甜椒幼苗抗寒性的诱导效应及其机理研究.西北植物学报31(1):94-100
    马丽,郝文芳,刘德芳,王龙飞,邱松(2010)水杨酸对低温胁迫种子萌发及细胞膜稳定性的影响.西北农林科技大学学报(自然科学版)38(04):183-188
    马向丽,魏小红,龙瑞军,崔文娟,万引琳(2005)外源一氧化氮提高一年生黑麦草抗冷性机制.生态学报25(6):1269-1274
    庞金安,马德华,霍振荣,李淑菊(2000)低温锻炼对黄瓜幼苗光合作用的影响.河南农业大学学报34(1):40-42
    彭伟秀,杨建民,张芹,蒋品(2001)不同抗寒性的杏品种叶片组织结构比较.河北林果研究16(2):145-147
    唐立红(2010)不同品种紫斑牡丹叶片结构与抗寒性关系的初步研究.北方园艺23:95-97
    田丹青,葛亚英,刘晓静,潘刚敏,沈晓岚,张智,郁永明(2011)叶面喷施水杨酸对红掌植株抗寒性的影响.浙江农业学报23(2):304—308
    王静,孙磊,张成军,陈国祥,王萍,施大伟,吕川根,许所扣(2006)杂交稻幼苗期对低温胁迫的生理反应.作物学报32(7):1049-1056
    王强,张其德(2003)光合作用光抑制的研究进展.植物学通报20(5):539~548
    王易振,杨治国,曾祥琼,张廷惠(2010)低温处理对青蒿叶片脯氨酸、SOD和CAT的含量及蛋白质的影响.基因组学与应用生物学29(5):927-930
    王雨水(2011)低温锻炼对冷胁迫下油茶幼苗光合速率与抗氧化酶活性的影响.福建林业科技38(1):41-46
    韦弟,李杨瑞,邸南,闭志强,卜朝阳(2009)乙烯利对香蕉抗寒性的影响.热带作物学报30(12):1789-1792
    吴林,刘海广,刘雅娟,林东慧,李亚东(2005)越橘叶片组织结构及其与抗寒性的关系.吉林农业大学学报27(1):48-50
    许楠,孙广玉(2009)低温锻炼后桑树幼苗光合作用和抗氧化酶对冷胁迫的响应.应用生态学报20(4):761-766
    许瑛,陈发棣(2008)菊花8个品种的低温半致死温度及其抗寒适应性.园艺学报35(4):559-564
    许瑛,陈煜,陈发棣,陈素梅(2009)菊花耐寒特性分析及其评价指标的确定.中国农业科学42(3):974-981
    杨凤仙,董俊梅,杨晓霞(2001)低温胁迫下棉叶叶绿体、液胞超微结构的变化.山西农业大学学报2:116-117
    杨华庚,林位夫(2009)低温胁迫对油棕幼苗光合作用及叶绿素荧光特性的影响.中国农学通报25(24):506-509
    姚远,闵义,胡新文,李开绵,郭建春(2010)低温胁迫对木薯幼苗叶片转化酶及可溶性糖含量的影响.热带作物学报31(4):556-560
    尹冬梅,管志勇,陈素梅,陈发棣(2009)菊花及其近缘种属植物耐涝评价体系建立及耐涝性鉴定.植物遗传资源学报10(3):399-340
    于锡宏,蒋欣梅,刁艳,王丽丽,刘在民,于广建(2010)脱落酸、水杨酸和氯化钙对番茄幼苗抗冷性的影响.东北农业大学学报41(5):42~45
    张常青,洪波,李建科,高俊平(2005)地被菊花幼苗耐旱性评价方法研究.中国农业科学38(04):789-796
    张帆,颉建明,唐大为,郁继华,冯致,潘香梅(2011)亚精胺对辣椒幼苗抗冷性的影响.甘肃农业大学学报46(1):58-62
    张楠,洪永聪,王玉,丁兆堂(2010)脱落酸和水杨酸对越冬期茶树叶片抗寒生理指标的影响.北方园艺2010(22):21-24
    张有福,陈银萍,张满效,陈拓,安黎哲(2006)两种圆柏属植物不同季节显微和超微结构变化与耐寒性的关系.应用生态学报17(8):1393-1397
    赵梅,周瑞莲,刘建芳,钟旭生(2011)冬季融冻过程中白三叶叶片抗氧化酶活力和渗透调节物含量变化与抗冻性的关系.生态学报31(2):306-315
    郑国华,张贺英,钟秀容(2009)低温胁迫下枇杷叶片细胞超微结构及膜透性和保护酶活性的变化.中国生态农业学报17(4):739-745
    郑丽梅,司龙亭,韩贵超(2009)低温处理对不同耐寒性黄瓜幼苗叶片超微结构的影响.西北农业学报18(4):276-279
    郑志勇,石进朝,王德芳(2009)长绿期金银木耐寒性与叶片组织结构的关系.华北农学报24(S1):331-333
    周建,杨立峰,郝峰鸽,尤扬(2009)低温胁迫对广玉兰幼苗光合及叶绿素荧光特性的影响.西北植物学报29(1):136-142
    周明琦,吴丽华,沈忱,林娟(2010)ABA、MeJA和SA诱导下的荠菜CBF途径冷响应相关基因表达调控研究.中国农业科技导报12(6):75-80

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700