用户名: 密码: 验证码:
具有精馏装置的自动复叠制冷循环试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自动复叠制冷系统是一种采用多元混合工质的制冷系统,采用简单的单级压缩的方法,在高低沸点组分间实现自动复叠,用富含低沸点的制冷工质蒸发来制取低温。由于自动复叠制冷循环具有比较大的工作温区,无论是在普冷领域还是在低温电子、低温医学中的血液、器官保存、食品的冷冻干燥、气体液化等低温领域,都具有较大的实用价值。
     本文的丰要工作如下:
     1、本文综述了自动复叠式制冷技术研究发展史,在自动复叠制冷循环的基础上,研究了具有精馏装置的自动复叠制冷循环。
     2、设计了自动复叠制冷循环实验台,采用环保型非共沸混合工质作制冷剂,利用精馏装置分离具有不同沸点的混合工质的同时,也实现了系统除油效果。分析了循环中变组元和变组分混合工质,主节流阀的开度及精馏柱回流管道上节流阀的开度对循环系统性能的影响。
     本文从实验的角度出发,对具有精馏装置的自动复叠制冷循环进行了深入研究,分析了影响COP的因素,成功地保证系统在-80℃温区稳定运行。为今后的这方面的研究工作打下了基础。
Auto-cascade refrigeration system is a kind of refrigeration method, in which mixture refrigerant is employed and only one-stage compressor is required. Refrigerants with different evaporation temperature are separated by its special structure comparative to traditional systems, which does result to realize low temperature. Auto-cascade refrigeration can be applied in many fields such as cryoelectronics, blood and organ conservation, food freeze-drying and liquefaction and so on.
    The focus of the theis is showed as follows:
    1 The research and development history in the field of Auto Cascade Refrigeration Cycle
    is reviewed. A new one with a rectifying column is studied based on previous auto-cascade
    refrigeration cycle.
    2 An experimental apparatus with rectification column has been set up and experiments
    have been successfully carried out. Environment-friendly non-azeotropic refrigerant
    mixture can be separated by its special rectification column part in the Auto Cascade
    Refrigeration Cycle. As the same time, lubricating oil can be successfully separated from
    refrigerant mixture. The performance of Auto Cascade Refrigeration Cycle is investigated
    under different operation conditions of refrigerant components, compositions, opening of
    main throttle valve and the return fluid extraction ratio of the rectifying column.
    According to a series of experimental data, the Auto Cascade Refrigeration Cycle with rectification column has been detailedly studied in order to improve COP and run smoothly in the refrigeration temperature of -80C. All the experimental data can be used as the base to future research.
引文
[1] Perkins J. Improvements in the apparatus and means for producing ice, and cooling fluids. Great British Patent, 6,662 (1834)
    [2] Karlvon Linde German Patent, 88,84 (1897)
    [3] Hampson W. British Patent, 10,165 (1895)
    [4] 浙江大学制冷与低温研究所.《低温生物工程》.浙江大学讲义,1997
    [5] 吴业正.《制冷原理与设备》.西安交通大学出版社,1987
    [6] 公茂琼,罗二仓等.低温冷冻医疗的新冷源——多元混合工质节流制冷机.低温工程,2000.No2:24-29;
    [7] 莫炳坚等.混合工质与节能.低温与特气,No.4:27-30,1994
    [8] 蒋能照等.CFC限用及其替代剂研究的最新动向.上海机械学院学报,Vol.11,No.4: 93-106.1989
    [9] 陈光明等.CFC12替代物研究进展.制冷技术,No.1:16-20,1993
    [10] 费人杰.关于替代氟里昂制冷剂的最新进展.环境保护,No.11:42-44,1997
    [11] D. J Missimer. Refrigerant conversion of Auto-Refrigeration Cascade(ARC)systems. Int. J. Refri. Vol. 20, No. 3: 201-207, 1997
    [12] 曹丹.一种新型的自动复叠制冷循环研究.硕士学位论文,2003
    [13] 张祉佑.《制冷原理与设备>).机械:工业出版社,1989
    [14] Gosney WB. Principles of refrigeration. Cambridge UK: Cambridge University Press
    [15] 吴业正,韩宝琦.制冷原理与设备.西安交通大学出版社,2002
    [16] Joule JP, Thomson W. Phil Mag 1852;4:481
    [17] 王勤.混合工质节流制冷机的理论与试验研究.博士学位论文,2002
    [18] Hampson W. British Patent, 10,165(1895)
    [19] Karl von Linde German Patent, P84,88(1897)
    [20] 李式模,陈国邦.《低温工程》浙江大学讲义,1995
    [21] Onnes HK. Communications from the physical laboratory, Univ. Of Leiden, 1908;108
    [22] Barron RF. Cryogenic systems. New York: Oxford University press, 1985
    [23] Claude G. Proc Acad Sci Paris 1902;134:1568
    [24] Davies M. The physical principles of gas liquefaction and low temperature rectification. Longmans, London: Green and Co., Ltd., 1949
    [25] Collins SC. Rev Sci Instr 1947;18:157
    [26] Gosney WB. Principles of refrigeration. Cambridge UK: Cambridge University Press
    [27] Molina M J, Rowland FS. Stratospheric sink for chlorofluoromethanes: chlorine atomc-atalysed destruction of ozone. Nature 1974;249(5460):810-2
    [28] 陈曙辉.采用新工质的吸收制冷研究.硕士学位论文,1998
    [29] 华小龙.非工沸混合工质制冷空调循环的发展及应用前景.制冷技术,1991(1),P19-25
    
    
    [30] 李文林.混合制冷剂的研究与进展.《国外科技动态》,6,1982
    [31] 高石吉登.非共沸混合冷媒的研究.开发动向乙,冷冻Vol,57,P662
    [32] Fuderer A. German Patent 1,426,956 (1969)
    [33] Brodiansky VM, Gresin AK, Gromov EM, Yagodin VM, Nicolsky VA, Alpheev VN. The use of mixtures as working gas in throttle (J-T) cryogenic refrigerators. Proc. 13th Int. Congr. Refri., Washington DC, U.S.A. 1971;1:43-6
    [34] Little WA. Design and construction of microminiature cryogenic refrigerators. Future Trends in Superconductive electronics. AIP Conf. Proc., Charlottesville U.S.A. 1977, 421-4
    [35] Little WA. Scaling of miniature cryocoolers to microminiature size. Proc NBS Cryocooler Conference NBS Spec Publ 1978;75:508
    [36] Little WA. Recent development in Joule-Thomson cooling: gases, coolers and compressor. Proc. 5th Int. Cryocooler Conf., 1988:3
    [37] Little WA. Advances in Joule-Thomson cooling. Adv Cryog Engrg 1990;35:1305-1314
    [38] Little WA. Microminiature refrigerators for Joule-Thomson cooling of electronic chips and devices. Adv Cryog Engrg 1990;35:1325-32
    [39] 许名尧,吴沛宜.氮一烃类二元低温混合工质的工作机理分析.西安交大学报,1994,28(6):1-6
    [40] 许名尧,何雅玲,陈钟颀,吴沛宜.氮—氟里昂低温混合工质节流制冷循环特性的分析.低温与超导,1995,23(1):1-5
    [41] 许名尧,何雅玲,陈钟颀,吴沛宜.多元氮—氟里昂混合工质工作机理分析.低温工程,1996,89(1):48-51
    [42] Xu MY, He YL, Chen ZQ. Analysis of binary cryogenic mixtures containing nitrogen and Freon in cryocoolers. Cryogenics 1996;36(4): 243-8
    [43] 胡江武.二元节流制冷工质氮—烃混合物相平衡的计算方法.低温与超导.1996,24(2):18-21
    [44] 罗二仓,周远.采用混合物作工质的J-T节流制冷机.真空与低温,1995,1(3):163-6
    [45] 罗二仓,Yakuba VV,Lobko MP,周远.低工作压力的混合物节流制冷机的实验研究.真空与低温,1995,1(4):215-8
    [46] 罗二仓,周远,Yakuba VV,Lobko MP.一种高效率的混合物工质J-T制冷机的实验研究.低温与超导,1995,1(4):215-8
    [47] 罗二仓,周远,周赞熙,张文全.单级50~80K混合工质J-T节流制冷机的热力学分析及实验研究.真空与低温,1996,2(4):210-3
    [48] Levenduski R, Scarlotti R. Joule-Thomson cryocooler development at ball aerospace. Cryocooler 1995;8:543-6;
    [49] Levenduski R, Scarlotti R. Joule-Thompson cryocooler for space applications. Cryogenics 1996;36(10):859-66
    [50] Longsworth RC. Cryogenic refrigerator with single stage compressor. US Patent 5,337,572
    
    (1994)
    [51] Longsworth RC, Boiarski MJ, Klusmier LA. 80K closed-cycle throttle refrigerator. Cryocooler 1995;8:537-47
    [52] Boiarski M, Yudin B, Mogorychny Vl., Klusmier L. Cryogenic mixed gas refrigerant for operation within temperature ranges of 80K-100K. U.S. Patent 5,441,658 (1995)
    [53] Longsworth RC, Boiarski M J, Khatri A. US Patent 5,579,654 (1996)
    [54] Khatri A. A Throttle cycle refrigerator operating below 77K. Adv Cryog Engrg 1996;41:1291-6
    [55] Khatri A, Boiarski MJ. A throttle cycle cryocooler operating with mixed gas refrigerants in 70K to 120K temperature range. Cryocooler 1997;9:515-20
    [56] Longsworth RC. 80K throttle-cycle refrigerator cost reduction. Cryocooler 1997;9:521-8
    [57] Boiarski M, Longsworth RC, Yudin B, Hill DH, Klusmier LA, Khatri AN, Owoc AL. Closed cycle cryogenic refrigeration system automatic variable flow area throttling device. U.S. Patent 5,595,065 (1997)
    [58] Khatri A, Boiarski M, Nesterov S. Water trap refrigerated by a throttle-cycle cooler using mixed gas refrigerant. Adv Cryog Engrg 1998;43:1693-700
    [59] 罗二仓,周远.混合物节流制冷机的优化原理.低温与超导,1997,18(2):16-20
    [60] 公茂琼,罗二仓,周远.多元混合物节流制冷工质最佳配比计算.真空与低温,1999,5(2):P108-113
    [61] 公茂琼,罗二仓,周远.液氮温区J-T节流制冷机多元低溫混合物工质热力循环优化计算.低温工程,1999,110(4):P13-18
    [62] 公茂琼,罗二仓,周远.中国实用新型专利,专利号:2L97225656.3(1999)
    [63] 罗二仓.节流制冷机用低温混合物制冷工质的液固相平衡特性的热力学分析.中国工程热物理学会工程热力学与能源利用学术会议论文集,镇江,1999:Ⅰ-P41~48
    [64] 公茂琼,罗二仓,周远.用状态方程计算多元混合工质的热导率.低温工程,1997,99(5):18-22
    [65] 公茂琼,罗二仓,周远.多元低温混合物工质迁移物性计算.低温工程,1999,110(4):197-201
    [66] 罗二仓,周远,公茂琼,常兆祯,李懋国,杨家艾.空调压缩机驱动的80K温区的微型JT节流制冷机的试验研究.真空与低温,1997,3(3):137-40
    [67] 罗二仓,公茂琼,石磊,周远,张平生.不同用途的低温混合工质节流制冷系统研究的综合报道.第四届全国低温工程学术会议论文集,低温工程,1999,110(4):43-8
    [68] 公茂琼,罗二仓,周远.用于复叠温区的多元混合工质一次节流制冷系统.工程热物理学报,2000,21(2):147-9
    [69] 杨家艾,常兆祯,李国,王秉戌.工作在液氮温区的闭合循环节流制冷机.低温工程,1999,110(4):9-12
    [70] Podbielniak WJ. US patent ,2041,725 (1936)
    
    
    [71] Ruhemann M. The separation of gases. 2nd edn. London: Oxford University Press, 1949
    [72] Haselden GG., Klimenko L. An experimental study of mixed refrigerants for non-isothermal refrigeration. Proc. Inst Refrig 1958;54:129-54
    [73] Kleemenko AP. One-flow cascade cycle. Proc. 10th Int. Congr. Refri., Copenhagen, Denmark 1959;1:34-9
    [74] Smith H., Kenndey R Ultra-low temperature mechanical refrigeration systems for high-vacuum traps and baffles. Univ. of Calif. Lawrence Radiation Laboratory, Berkeley, CA, U.S.A.-AEC Contract No. W-7405-eng-48 (1959)
    [75] 1963, 1: 9-11
    [76] Fuderer A. Compression process for refrigeration. U.S. Patent 3,203,194 (1965)
    [77] Missimer DJ. Control system for low temperature refrigeration system. U.S. Patent 3,698,202 (1972)
    [78] Missimer DJ. Self-balancing low temperature refrigeration system. U.S. Patent 3,768,275 (1973)
    [79] Cardinne P, Deloche D., Rojey A, Larue J, Vidal J. A new refrigeration cycle using phase separation phenomena. IECE 7, London, England, 1978, p.403-8
    [80] Kruse H, Kuever M, Quast U, Schroeder M, Upmeier B. Theoretical and experimental investigations of advantageous refrigerant mixture applications. ASHRAE Trans 1985;97(1):1383-418
    [81] 李文林,华小龙.混合工质制冷循环的实验研究.低温工程,1987,39(5):49-54
    [82] Missimer DJ. Refrigerant conversion of auto- refrigerating cascade (ARC) systems. Int J Refrig 1997;20(3):201-7
    [83] Little, W.A.. Kleemenko Cycle Coolers: Low cost Refrigeration at Cryogenic Temperatures:ICEC17:1998:pp. 1-9
    [84] Little WA. Self-cleaning low temperature refrigeration system. US Patent 5,617,739 (1997)
    [85] William A.Little, Igor Sapozhnikov. Self-cleaning cryogenic refrigeration system. US Patent 5,724,832 (1998)
    [86] Little WA., Sapozhnikov I. Low cost cryocoolers for cryoelectronics. Cryocooler 1997;9:509-13
    [87] Alfeev, N.A., Brodyandky, V.M., Yagodin,V.M., NIkolsky, V.A., and Ivantsov, A.V., Dutch Patant Application 7106470,1971
    [88] Khatri.A, A Throttle Cycle Refrigerator Operating below 77K. Advances in Cryogenic Engineering,41 : 1291-1296,1996
    [89] 陈光明等.单级蒸汽压缩深度制冷装置.中国专利,99203770.0(1999)
    [90] 张绍志,王剑锋,张红线,陈光明.具有精馏装置的自然复叠制冷循环分析.工程热物理学报,1999,(1);
    
    
    [91] 张红线.具有精馏的自行复叠制冷循环研究.硕士学位论文.2000
    [92] 陈光明,何一坚,季益华,吴杰.一个改进自行复叠制冷循环的试验研究.低温工程,2001(6):28-31
    [93] 张绍志,王剑锋,张红线,陈光明.具有蒸馏装置的自动复叠制冷循环分析.工程热物理学报,2001,22(1):25—27
    [94] 苏长荪.《高等工程热力学》,北京:高等教育出版社,1987
    [95] 朱自强.《流体相平衡原理及其应用》,浙江大学出版社,1990
    [96] Van der Waals, Over de continciteit yon den gasen volcstaftoe-stand, Leidon, 1873.
    [97] Peng, D.Y., and Robison, D.B.. A new two-constant equation of state. Ind. Eng. Chem. Fundam., Vol.15:pp.58-64, 1976
    [98] Patel, N.C,, and Teja, A.S. Chem. Eng. Sci, Vol32:pp.463, 1982
    [99] Soave, G.. Chem. Eng. Sci,1972,Vol.21:pp.1197
    [100] Martin, J.J., and Hou, Y.C.. AIChE J, Vol.1:pp.142, 1955
    [101] Benedict, M., Webb, G.B., Rubin, L.C., J..Chem. Phys., (8): 334, 1942,(10):747, 1940
    [102] 陈光明等.低温流体状态方程研究.低温物理学报,18(1):70-75,1996
    [103] 陈光明等.用改进的PT方程计算低温流体混合物的汽液平衡.低温物理学报,18(5):81-387.1996
    [104] 姚玉英.化工原理.天津科学技术出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700