用户名: 密码: 验证码:
基片集成波导与其它平面结构在滤波器设计中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信日新月异的发展,无线通信系统正趋向于小型化、高可靠性、多功能、低成本方面发展。同时,人们对系统级封装(System in Package,SiP)中各类微波无源元件尤其是滤波器的需求越来越强烈。因此,探索系统级封装中无源元器件的综合方法,解决元器件高性能与高密度集成之间的矛盾,研发系统级封装可集成的多层嵌入式高性能小型化元器件已经变得非常重要。本文针对基片集成波导(Substrate Integrated Waveguide, SIW)和其它平面谐振器(Planar Resonator),以及多种新颖的拓扑结构展开系统的研究,并且实现了多种高性能、小型化的滤波器和双工器等无源器件。
     本文主要的研究工作和创新点归纳如下:
     (1)从窄带滤波器的耦合谐振器理论出发,推导出频变混合电、磁耦合系数的表达形式,可以快速由耦合系数矩阵直接得到理论频率响应;并将其成功运用于微带滤波器的设计中。
     (2)首次将混合耦合的概念引入到SIW滤波器设计中。利用蛇形槽线结构来实现SIW腔之间混合耦合,从而在三阶SIW滤波器中得到准椭圆特性;进而在四阶滤波器中实现额外零点用来抑制第一个寄生通带。为了实现SIW结构的小型化,利用刻蚀在基片集成波导表面的共面波导(Co-Planar Waveguide, CPW)结构来实现混合耦合,同时CPW在结构中被视为谐振器。
     (3)结合基片集成波导与微带谐振器,利用两个开口环谐振器来实现SIW滤波器的混合源和负载耦合,从而在一个三阶SIW滤波器中得到四个传输零点。基于此类耦合拓扑结构,进而利用低温共烧陶瓷(Low Temperature Co-fire Ceramic,LTCC)工艺设计并实现了高性能的双工器。
     (4)提出一类T隔板SIW谐振器,相对于折叠和脊波导结构,具有比较灵活的T隔板宽度和高度;利用横向谐振法分析了T隔板SIW结构基模和高次模的截止频率;基于LTCC工艺成功设计实现一款具有准椭圆特性的T隔板SIW滤波器,具有紧凑的几何尺寸和较为优越的谐波抑制特性。
     (5)基于折叠SIW和消逝模耦合理论,设计并实现了两种SIW双通带滤波器;其两个通带的带宽可以分别进行独立控制;其通带中心频率比可以任意调节,突破了SIW谐振器双通带滤波器的极限,并且元件面积大大减小。
     (6)通过在SIW双模腔体表面金属上刻蚀CPW结构,从而引入非谐振节点的概念,进而间接的实现源和负载耦合,改善了其频率选择特性,且CPW谐振频率远离中心频率,不会对通带性能产生影响。
     (7)针对传统微带双模结构滤波器特性,提出了一种紧凑型的三模谐振器结构。双模滤波器会产生一个在低频或者高频端的传输零点,此处利用三模结构实现准椭圆特性;折叠型的、T型枝节线使得整个滤波器结构更加紧凑;由于输入输出线的抑制作用,该结构拥有更好的谐波特性。
     (8)研究了微带谐振器与基片集成波导之间的耦合机理,在SIW滤波器中引入单模和双模微带谐振器,从而大大减小该类无源器件的面积;提出一种由多个低阶拓扑结构组成的高阶滤波器模型,元件具有陡峭的频率选择特性。
     (9)在SIW谐振腔的底面金属上刻蚀出缺陷地结构(Defected Ground Structure, DGS),充分利用DGS与SIW的几何互补性,设计并实现了一种紧凑的SIW滤波器。此类元件仅仅占据一个SIW腔体的面积,而且具有较好的频率选择性,寄生响应也有所改善。
     在以上研究中,均采用单层PCB和低温共烧陶瓷(LTCC)工艺制作了系列样品,测试、仿真与理论分析结果均较吻合,从而验证了本文研究工作的有效性。
With the rapid development of wireless communication systems, the tendencies of electronic information systems are miniaturization, reliable, multifunctional and low-cost. Meanwhile, there are more and more urgent demands on high-performance and miniaturized microwave passive components for system in package (SiP) technology. Therefore, it is very important to develop synthesized method of passive components, resolve the contradiction between high performance and high density. This dissertation investigates substrate integrated waveguide (SIW) and other planar resonators. Furthermore, some kinds of bandpass filters, diplexers, and other passive components are developed based on them.
     The main academic contributions of this dissertation are as follows.
     (1) Based on the coupled resonator circuit model of narrow bandpass filter, we developed the expression of frequency-dependent mixed coupling coefficients. Then, we can obtain the synthesized S-parameters quickly from the frequency-dependent coupling matrix, and it has been implemented in microstrip filter designs.
     (2) Mixed cross coupling is introduced into SIW filter designs firstly, and it can be achieved by inter-digital slot-lines between SIW cavities. Then, quasi-elliptic function can be obtained in the third-order cross-coupled SIW filter. In the fourth-order topology, an additional transmission zero can be used to suppress the first spurious passband. To achieve miniaturization of such filters, we etched one co-planar waveguide (CPW) on the top metal layer of SIW cavities to realize mixed coupling, meanwhile, the CPW is taken as one resonator.
     (3) Microstrip resonators are introduced to SIW filter designs. Two open-loop resonators are used to realize mixed source-load coupling, then, four transmission zeros can be get in the third-order SIW filter. Based on this coupling scheme, we developed one SIW diplexer in LTCC successfully.
     (4) T-septum SIW (TSSIW) cavity is proposed firstly. In comparison with folded- and ridged-SIW structures, TSSIW has flexible width of T-septum and height of substrates. Transverse resonance method is used to analyze the cutoff frequencies of the fundamental and higher mode. Finally, a fourth-order TSSIW filter with quasi-elliptic function is realized successfully, and wider stopband characteristic can be obtained.
     (5) Two dual-band SIW filters are realized, which are based on folded SIWs and evanescent-mode coupling. Their center frequency ratio of the second to first passband can be adjusted randomly, the size of them are reduced significantly in comparison with conventional dual-band SIW filters.
     (6) Indirect source-load coupling can be achieved by a CPW structure etched on the top metal layer of the dual-mode SIW cavity. Then, better frequency selectivity is obtained. The CPW is taken as non-resonating node (NRN), whose resonant frequency is far away from center frequency.
     (7) Originated from conventional microstrip dual-mode resonator, we proposed a compact three-mode stepped impedance resonator. Then, elliptic response can be achieved in the three-mode filter. Folded T-type stubs are used to make the proposed filter more compact, and the filter has wide stopband.
     (8) The coupling principle between SIW cavity and microstrip resonator is investigated in detail. Compact SIW filters are achieved by introducing single- and dual-mode microstrip resonators into their implementations. Furthermore, one fourth-order coupling scheme is superimposed by two third-order ones, which has better frequency selectivity.
     (9) Utilizing complementarities between SIW cavity and defected ground structure (DGS) etched on the ground plane of SIW cavity, we presented a compact third-order SIW filter. Such kind of filter has just occupied area of one SIW cavity; better frequency selectivity and wide stopband are obtained simultaneously.
     All the samples are fabricated on the single-layered printed circuit board (PCB) and LTCC to validate our proposed works, their measured results agree well with the simulated ones.
引文
[1] A, E. Atia, and Albert E. Williams,“Narrow-bandpass waveguide filters”, IEEE Trans. Microw. Theory Tech., vol. 20, no. 4, pp. 258-265, Apr. 1972.
    [2] A. E. Atia, A. E. Williams, and R. W. Newcomb,“Narrow-band multiple-coupled cavity synthesis”, IEEE Trans. Circuits and Systems, vol. 21, no. 5, pp. 649-655, Sep. 1974.
    [3] G. Pfitzenmaier,“Synthesis and realization of narrow-band canonical microwave bandpass filters exhibiting linear phase and transmission zeros”, IEEE Trans. Circuits and Systems, vol. 30, pp. 1300-1311, Sep. 1982.
    [4] G. Macchiarella,“An original approach to the design of bandpass cavity filters with multiple couplings”, IEEE Trans. Circuits and Systems, vol. 45, no. 2, pp. 179-187, Sep. 1997.
    [5] A. E. Atia, and Albert E. Williams,“Nonminimum-phase optimum-amplitude bandpass waveguide filters”, IEEE Trans. Microw. Theory Tech., vol. 22, pp. 425-431, Apr. 1974.
    [6] R. Lecy,“Filters with single transmission zeros at real or imaginary frequencies”, IEEE Trans. Microw. Theory Tech., vol. 24, pp. 172-181, Apr. 1976.
    [7] J. B. Thomas,“Cross-coupling in coaxial cavity filters - a tutorial overview”, IEEE Trans. Microw. Theory Tech., vol. 51, no. 4, pp. 1368-1376, Apr. 2003.
    [8] S. Amari, Uwe Rosenberg, and Jens Bornemann,“Adaptive synthesis and design of resonator filters with source/load-multiresonator coupling”, IEEE Trans. Microw. Theory Tech., vol. 50, no. 8, pp. 1969-1978, Aug. 2002.
    [9] R. Orta, P. Savi, R. Tascone,“Rectangular waveguide dual-mode filters without discontinuities inside the resonators”, IEEE Microwave and Guided Wave Lett., vol. 5, no. 9, pp. 302-304, Sep. 1995.
    [10] P. Savi, D. Trinchero, R. Tascone,“A new approach to the design of dual-mode rectangular waveguide filters with distributed coupling”, IEEE Trans. Microw. Theory Tech., vol. 45, no. 2, pp. 221-228, Feb. 1997.
    [11] S. Amari, and M. Bekheit,“A new class of dual-mode dual-band waveguide filters”, IEEE Trans. Microw. Theory Tech., vol. 56, no. 8, pp. 1938-1944, Aug. 2008.
    [12] A. E. Williams, and Ali E. Atia,“Dual-mode canonical waveguide filters”, IEEE Trans. Microw. Theory Tech., vol. 25, no. 12, pp. 1021-1026, Dec. 1977.
    [13] M. Gugliclmi, R. Molina, and A. Melcon,“Dual-mode circular waveguide filters without tuning screw”, IEEE Microwave and Guided Wave Lett., vol. 2, pp. 457-458, Nov. 1992.
    [14] K. L. Wu,“An optimal circular-waveguide dual-mode filter without tuningscrews”, IEEE Trans. Microw. Theory Tech., vol. 47, no. 3, pp. 271-276, Mar. 1999.
    [15] M. Guglielmi, P. Jarry, E. Kerherve,“A new family of all-inductive dual-mode filters”, IEEE Trans. Microw. Theory Tech., vol. 49, no. 10, pp. 1764-1769, Oct. 2001.
    [16] L. Zhu and K. Wu,“A joint field/circuit model of line-to-ring coupling structures and its application to the design of microstrip dual-mode filters and ring resonator circuits,”IEEE Trans. Microw. Theory Tech., vol. 47, no. 10, pp. 1938-1948, Oct. 1999.
    [17] R. Lee, J. H. Cho, and S. W. Yun,“New compact bandpass filter using microstripλ/4 resonators with open stub inverter,”IEEE Microw. Guide Wave Lett., vol. 10, no. 12, pp. 526-527, Dec. 2000.
    [18] J. H. Lee, S. Pinel, J. Laskar, and M. M. Tentzeris,“Design and development of advanced cavity-based dual-mode filters using low-temperature co-fired ceramic technology for V-band gigabit wireless systems,”IEEE Trans. Microw. Theory Tech., vol. 55, no. 9, pp. 1869-1879, Sep. 2007.
    [19] S. Shin, and R. V. Snyder,“At least N+1 finite transmission zeros using frequency-variant negative source-load coupling,”IEEE Microw. Wireless Compon. Lett., vol. 13, no. 3, pp. 117-119, Mar. 2003.
    [20] Q. X. Chu, and H. Wang,“A compact open-loop filter with mixed electric and magnetic coupling,”IEEE Trans. Microw. Theory Tech., vol. 56, no. 2, pp. 431-439, Feb. 2008.
    [21] H. Wang, and Q. X. Chu,“An inline coaxial quasi-elliptic filter with controllable mixed electric and magnetic coupling,”IEEE Trans. Microw. Theory Tech., vol. 57, no. 3, pp. 667-673, Mar. 2009.
    [22] H. Wang, and Q. X. Chu,“An EM-coupled triangular open-loop filter with transmission zeros very close to passband,”IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2, pp. 71-73, Feb. 2009.
    [23] K. Ma, J. G. Ma, K. S. Yeo, and M. A. Do,“A compact size coupling controllable filter with separate electric and magnetic coupling paths,”IEEE Trans. Microw. Theory Tech., vol. 54, no. 3, pp. 1113-1119, Mar. 2006.
    [24] M. Hoft, and T. Shimamura,“Design of symmetric trisection filters for compact low-temperature co-fired ceramic realization,”IEEE Trans. Microw. Theory Tech., vol. 58, no. 1, pp. 165-175, Jan. 2010.
    [25] Z. C. Hao, W. Hong, H. Li, and K. Wu,“A broadband substrate integrated waveguide (SIW) filter,”IEEE Antennas and Propagation Society International Symposium, vol 1, pp598-602, Jul, 2005.
    [26] A. J. Piloto, K. A. Leahy, B. A. Flanick, and K. A. Zaki,“Waveguide filters having a layered dielectric structure,”US Patent 5382931, Jan. 1995.
    [27] X. P. Chen, K. Wu, and Z. L. Li,“Dual-band and triple-band substrateintegrated waveguide filters with Chebyshev and quasi-elliptic responses,”IEEE Trans. Microw. Theroy Tech., vol. 55, no. 12, pp. 2569-2578, Dec. 2007.
    [28] J. Hirokawa, and M. Ando,“Single-layer feed waveguide consisting of posts for plane TEM wave excitation in parallel plates,”IEEE Trans. Antennas Propag., vol. 46, no. 5, pp. 625-630, May 1998.
    [29] H. Uchimura, T. Takenoshita, and M. Fujii,“Development of a‘laminated waveguide’,”IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp. 2438-2443, Dec. 1998.
    [30] D. Deslandes, and K.Wu,“Integrated microstrip and rectangular waveguide in planar form,”IEEE Microw. Wireless Compon. Lett., vol. 11, no. 2, pp. 68-70, Feb. 2001.
    [31] Y. J. Cheng, K. Wu, and W. Hong,“Power handling capability of substrate integrated waveguide interconnects and related transmission line systems,”IEEE Trans. Adv. Packag., vol. 31, no. 4, pp. 900-909, Nov. 2008.
    [32] F. Shigeki,“Waveguide line,”Japan Patent 06-053 711, Feb. 1994.
    [33] A. J. Piloto, K. A. Leahy, B. A. Flanick, and K. A. Zaki,“Waveguide filters having a layered dielectric structure,”US Patent 5382931, Jan. 1995.
    [34] Y. Cassivi, L. Perregrini, P. Arcioni,“Dispersion characteristics of substrate integrated rectangular waveguide,”IEEE Microw. Wireless Compon. Lett., vol. 12, no. 9, pp. 333-335, Sep. 2002.
    [35] F. Xu, Y. L. Zhang, W. Hong,“Finite-difference frequency-domain algorithm for modeling guided-wave properties of substrate integrated waveguide,”IEEE Trans. Microw. Theroy Tech., vol. 51, no. 11, pp. 2221-2226, Nov. 2003.
    [36] H. Li, W. Hong, T. J. Cui,“Propagation Characteristics of substrate integrated waveguide based on LTCC,”in IEEE MTT-S Int. Microwave Symp. Dig., pp. 2045-2048, Jun. 2003.
    [37] Y. L. Zhang, W. Hong, F. Xu,“Analysis of guided-wave problems in substrate integrated waveguides numerical simulations and experimental results,”in IEEE MTT-S Int. Microwave Symp. Dig., pp. 2049-2052, Jun. 2003.
    [38] F. Xu, and K. Wu,“Guided-wave and leakage characteristics of substrate integrated waveguide,”IEEE Trans. Microw. Theroy Tech., vol. 53, no. 1, pp. 66-73, Jan. 2005.
    [39] M. Bozzi, L. Perregrini, and K. Wu,“Modeling of conductor, dielectric, and radiation losses in substrate integrated waveguide by the boundary integral-resonant mode expansion method,”IEEE Trans. Microw. Theroy Tech., vol. 56, no. 12, pp. 3153-3161, Dec. 2008.
    [40] D. Deslandes, and K. Wu,“Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide,”IEEE Trans. Microw. Theroy Tech., vol. 54, no. 6, pp. 2516-2526, Jun. 2006.
    [41] D. Deslandes, and K. Wu,“Integrated transition of coplanar to rectangularwaveguides,”in IEEE MTT-S Int. Microwave Symp. Dig., pp. 619-622, Jun. 2001.
    [42] T. Swierczynski, D. A. McNamara, and M. Clenet,“Via-walled cavities as vertical transitions in multilayer millimeter-wave circuits”, Electron. Lett., vol. 39, no. 25, Dec. 2003.
    [43] T. H. Yang, C. F. Chen, T. Y. Huang,“A 60 GHz LTCC transition between microstrip line and substrate integrated waveguide,”in APMC’05 Proceedings, 2005.
    [44] J. H. Lee, S. Pinel, J. Papapolymerou,“Comparative study of feeding techniques for three-dimensional cavity resonators at 60GHz,”IEEE Trans. On Advanced Package, vol. 30, no. 1, pp. 115-123, Feb. 2007.
    [45] A. Suntives, and R. Abhari,“Transition structures for 3-D integration of substrate integrated waveguide interconnects,”IEEE Microw. Wireless Compon. Lett., vol. 17, no. 10, pp. 697-699, Oct. 2007.
    [46] Y. Ding, and K. Wu,“Substrate integrated waveguide-to-microstrip transition in multilayer substrate,”IEEE Trans. Microw. Theroy Tech., vol. 55, no. 12, pp. 2839-2844, Dec. 2007.
    [47] Y. Rong, K. A. Zaki, J. Gipprich, M. Hageman, and D. Stevens,“LTCC wide-band ridge-waveguide bandpass filters,”IEEE Trans. Microw. Theory Tech., vol. 47, no. 9, pp. 1836–1840, Sep. 1999.
    [48] Y. Rong, K. A. Zaki, M. Hageman, D. Stevens, and J. Gipprich,“Low-temperature cofired ceramic (LTCC) ridge waveguide bandpass chip filters,”IEEE Trans. Microw. Theory Tech., vol. 47, no. 12, pp. 2317–2324, Dec. 1999.
    [49] J. A. Ruiz-Cruz, M. A. El Sabbagh, K. A. Zaki, J. M. Rebollar, and Y.- C. Zhang,“Canonical ridge waveguide filters in LTCC or metallic resonators,”IEEE Trans. Microw. Theroy Tech., vol. 53, no. 1, pp. 174-182, Jan. 2005.
    [50] J. A. Ruiz-Cruz, Y. C. Zhang, K. A. Zaki, A. J. Piloto, and J. Tallo,“Ultra-wideband LTCC ridge waveguide filters,”IEEE Microw. Wireless Compon. Lett., vol. 17, no. 2, pp. 115-117, Feb. 2007.
    [51] Y. D. Dong, T. Yang, and T. Itoh,“Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filters,”IEEE Trans. Microw. Theory Tech., vol. 57, no. 9, pp. 2211-2223, Sep. 2009.
    [52] M. Ito, K. Maruhashi, K. Ikuina, T. Hashiguchi, S. Iwanaga, and K. Ohata,“A 60-GHz-band planar dielectric waveguide filter for flip-chip modules,”IEEE Trans. Microw. Theroy Tech., vol. 49, no. 12, pp. 2431-2436, Dec. 2001.
    [53] C. Y. Chang, and W. C. Hsu,“Novel planar, square-shaped, dielectric-waveguide, single-, and dual-mode filters,”IEEE Trans. Microw. Theroy Tech., vol. 50, no. 11, pp. 2527-2536, Nov. 2002.
    [54] T. M. Shen, C. F. Chen, T. Y. Huang, R. B. Wu,“Design of vertically stacked waveguide filters in LTCC,”IEEE Trans. Microw. Theroy Tech., vol. 55, no. 8, pp. 1771-1779, Aug. 2007.
    [55] B. J. Chen, T. M. Shen, and R. B. Wu,“Dual-band vertically stacked laminated waveguide filter design in LTCC technology,”IEEE Trans. Microw. Theroy Tech., vol. 57, no. 6, pp. 1554-1562, Jun. 2009.
    [56] D. Deslandes, and K. Wu,“Single-substrate integration technique of planar circuits and waveguide filters,”IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 593-596, Feb. 2003.
    [57] Z. C. Hao, W. Hong, X. P. Chen, J. X. Chen, K. Wu, and T. J. Cui,“Multilayered substrate integrated waveguide (MSIW) elliptic filter,”IEEE Microw. Wireless Compon. Lett., vol. 15, no. 2, pp. 95-97, Feb. 2005.
    [58] X. P. Chen, W. Hong, T. J. Cui, Z. C. Hao, and K. Wu,“Substrate integrated waveguide elliptic filter with transmission line inserted inverter,”Electron. Lett., vol. 41, no. 15, pp. 851-852, Jul. 2005.
    [59] X. P. Chen, and K. Wu,“Substrate integrated waveguide cross-coupled filter with negative coupling structure,”IEEE Trans. Microw. Theroy Tech., vol. 56, no. 1, pp. 142-149, Jan. 2008.
    [60] X. P. Chen, W. Hong, T. J. Cui, J. X. Chen, and K. Wu,“Substrate integrated waveguide (SIW) linear phase filter,”IEEE Microw. Wireless Compon. Lett., vol. 15, no. 11, pp. 787-789, Nov. 2005.
    [61] X. P. Chen, K. Wu, and D. Drolet,“Substrate integrated waveguide filter with improved stopband performance for satellite ground terminal,”IEEE Trans. Microw. Theroy Tech., vol. 57, no. 3, pp. 674-683, Mar. 2009.
    [62] Y. L. Zhang, W. Hong, K. Wu, J. X. Chen, and H. J. Tang,“Novel substrate integrated waveguide cavity filter with defected ground structure,”IEEE Trans. Microw. Theroy Tech., vol. 53, no. 4, pp. 1280-1287, Apr. 2005.
    [63] Z. C. Hao, W. Hong, J. X. Chen, X. P. Chen, and K. Wu,“Compact super-wide bandpass substrate integrated waveguide (SIW) filters,”IEEE Trans. Microw. Theroy Tech., vol. 53, no. 9, pp. 2968-2977, Sep. 2005.
    [64] Z. C. Hao, W. Hong, J. X. Chen, X. P. Chen, and K. Wu,“Planar diplexer for microwave integrated circuits,”IEE Microw. Antennas Propagat., vol. 152, no. 6, pp. 455-459, Dec. 2005.
    [65] H. J. Tang, W. Hong, J. X. Chen, G. Q. Luo, and K. Wu,“Development of millimeter-wave planar diplexers based on complementary characters of dual-mode substrate integrated waveguide filters with circular and elliptic cavities,”IEEE Trans. Microw. Theroy Tech., vol. 55, no. 4, pp. 776-782, Apr. 2007.
    [66] J. H. Lee, S. Pinel, J. Papapolymerou, J. Laskar, and M. M. Tentzeris,“Low-loss LTCC cavity filters using system-on-package technology at60GHz,”IEEE Trans. Microw. Theroy Tech., vol. 53, no. 12, pp. 3817-3824, Dec. 2005.
    [67] R. Q. Li, X. H. Tang, and F. Xiao,“Design of substrate integrated waveguide transversal filter with high selectivity,”IEEE Microw. Wireless Compon. Lett., vol. 20, no. 6, pp. 328-330, Jun. 2010.
    [68] B. Potelon, J. F. Favennec, C. Quendo, E. Rius, C. Person, and J. C. Bohorquez,“Design of a substrate integrated waveguide (SIW) filter using a novel topology of coupling,”IEEE Microw. Wireless Compon. Lett., vol. 18, no. 9, pp. 596-598, Sep. 2008.
    [69] F. Mira, J. Mateu, S. Cogollos, and V. E. Boria,“Design of ultra-wideband substrate integrated waveguide (SIW) filters in zigzag topology,”IEEE Microw. Wireless Compon. Lett., vol. 19, no. 5, pp. 281-283, May. 2009.
    [70] B. Potelon, J. C. Bohorquez, J. F. Favennec, C. Quendo, E. Rius, and C. Person,“Design of Ku band filters based on Substrate integrated circular cavities (SICCs),”in IEEE MTT-S Int. Micro. Symp. Dig., Jun. 2006, pp. 1237-1240.
    [71] D. Stephens, P. R. Young, and I. D. Robertson,“Millimeter-wave substrate integrated waveguides and filters in photoimageable thick-film technology,”IEEE Trans. Microw. Theroy Tech., vol. 53, no. 12, pp. 3832-3838, Dec. 2005.
    [72] K. S. Yang, S. Pinel, I. K. Kim, and J. Laskar,“Low-loss integrated-waveguide passive circuits using liquid-crystal polymer system-on-Package (SoP) technology for millimeter-wave applications,”IEEE Trans. Microw. Theroy Tech., vol. 54, no. 12, pp. 4572-4579, Dec. 2006.
    [73] X. Gong, T. Smyth, E. Ghaneie, and W. J. Chappell,“High-Q resonators and filters inside advanced low-temperature co-fired ceramic substrates using fine-scale periodicity,”IEEE Trans. Microw. Theroy Tech., vol. 56, no. 4, pp. 922-930, Apr. 2008.
    [74] C. Lugo, and J. Papapolymerou,“Planar realization of a triple-mode bandpass filter using a multilayer configuration,”IEEE Trans. Microw. Theory Tech., vol. 55, no. 2, pp. 296-301, Feb. 2007.
    [75] S. T. Choi, K. S. Yang, K. Tokuda, and Y. H. Kim,“A V-band planar narrow bandpass filter using a new type integrated waveguide transition,”IEEE Microw. Wireless Compon. Lett., vol. 14, no. 12, pp. 545-547, Dec. 2004.
    [76] L. S. Wu, X. L. Zhou, and W. Y. Yin,“Evanescent-mode bandpass filters using folded and ridge substrate integrated waveguides (SIWs),”IEEE Microw. Wireless Compon. Lett., vol. 19, no. 3, pp. 161-163, Mar. 2009.
    [77] L. S. Wu, X. L. Zhou, and W. Y. Yin,“A novel multilayer partial H-plane filter implemented with folded substrate integrated waveguide (FSIW),”IEEE Microw. Wireless Compon. Lett., vol. 19, no. 8, pp. 494-496, Aug. 2009.
    [78] L. S. Wu, L. Zhou, X. L. Zhou, and W. Y. Yin,,“Bandpass filter using substrate integrated waveguide cavity loaded with dielectric rod,”IEEE Microw. WirelessCompon. Lett., vol. 19, no. 8, pp. 491-493, Aug. 2009.
    [79] L. S. Wu, X, L. Zhou, Q. F. Wei, and W. Y. Yin,“An extended doublet substrate integrated waveguide (SIW) bandpass filter with a complementary split ring resonator (CSRR),”IEEE Microw. Wireless Compon. Lett., vol. 19, no. 12, pp. 777-779, Dec. 2009.
    [80] B. Liu, W. Hong, Y. Zhang,“Half mode substrate integrated waveguide (HMSIW) doublet-slot coupler,”Electron. Lett., vol.43, no. 2, pp. 113-114, Jan. 2007.
    [81] B. Liu, W. Hong, Y. Q. Wang,“Half mode substrate integrated waveguide (HMSIW) 3-dB coupler,”IEEE Microw. Wireless Compon. Lett., vol. 17, no. 1, pp. 22-24, Jan. 2007.
    [82] G. H. Zhai, W. Hong, K. Wu,“Folded half mode substrate integrated waveguide 3dB coupler,”IEEE Microw. Wireless Compon. Lett., vol. 18, no. 8, pp. 512-514, Aug. 2008.
    [83] Z. C. Hao, W. Hong, J. X. Chen,“Single-layer substrate integrated waveguide directional couplers,”IEE Microw. Antennas and Propagationst., vol. 153, no. 5, pp. 436-431, May. 2006.
    [84] J. X. Chen, W. Hong, Z. C. Hao,“Development of a low cost microwave mixer using a broad-band substrate integrated waveguide (SIW) coupler,”IEEE Microw. Wireless Compon. Lett., vol. 16, no. 2, pp. 84-86, Feb. 2006.
    [85] T. Ejerafi, and K. Wu,“Super-compact substrate integrated waveguide cruciform directional coupler,”IEEE Microw. Wireless Compon. Lett., vol. 17, no. 11, pp. 757-759, Nov. 2007.
    [86] A. Patrovsky, M. Daigle, and K. Wu,“Coupling mechanism in hybrid SIW-CPW forward couplers for millimeter-wave substrate integrated circuits,”IEEE Trans. Microw. Theroy Tech., vol. 56, no. 11, pp. 2594-2601, Nov. 2008.
    [87] A. A. M. Ali, H. B. Shaarawy, and H. Aubert,“Compact wideband double layer half mode substrate integrated waveguide 90 deg coupler,”Electron. Lett., vol.47, no. 10, pp. 598-599, Oct. 2011.
    [88] Y. Q. Wang, W. Hong, Y. D. Dong,“Half mode substrate integrated waveguide (HMSIW) bandpass filter,”IEEE Microw. Wireless Compon. Lett., vol. 17, no. 4, pp. 265-267, Apr. 2007.
    [89] Y. J. Cheng, W. Hong, and K. Wu,“Half mode substrate integrated waveguide (HMSIW) directional filter,”IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 504-506, Jul. 2007.
    [90] H. Jin, and G. Wen,“A novel four-way Ka-band spatial power combiner based on HMSIW,”IEEE Microw. Wireless Compon. Lett., vol. 18, no. 8, pp. 515-517, Aug. 2008.
    [91] A. E. Tager, J. Bray, and L. Roy,“High-Q LTCC resonators for millimeter wave applications,”in IEEE MTT-S Int. Micro. Symp. Dig., pp. 2257-2260, 2003.
    [92] A. E. Tager, and L. Roy,“Novel cylindrical high-Q LTCC resonators for millimeter wave applications,”in in IEEE MTT-S Int. Micro. Symp. Dig., pp. 637-640, 2004.
    [93] X. Gong, T. Smyth, E. Ghaneie,“High-Q resonators and filters inside advanced low-temperature co-fired ceramic substrates using fine-scale periodicity,”IEEE Trans. Microw. Theroy Tech., vol. 56, no. 4, pp. 922-930, Apr. 2008.
    [94] K. J. Song, Y. Fan, and X. Zhou,“X-band broadband substrate integrated rectangular waveguide power divider,”Electron. Lett., vol. 44, no. 3, pp. 211-213, Jan. 2008.
    [95] K. J. Song, Y. Fan, and Y. H. Zhang,“Eight-way substrate integrated waveguide power divider with low insertion loss,”IEEE Trans. Microw. Theroy Tech., vol. 56, no. 6, pp. 1473-1477, Jun. 2008.
    [96] W. J. Feng, W. Q. Che, and K. Deng,“Compact planar magic-T using E-plane substrate integrated waveguide (SIW) power divider and slotline transition,”IEEE Microw. Wireless Compon. Lett., vol. 20, no. 6, pp. 331-333, Jun. 2010.
    [97] D. S. Eom, J. D. Byun, and H. Y. Lee,“Multilayer substrate integrated waveguide four way out of phase power divider,”IEEE Trans. Microw. Theroy Tech., vol. 57, no. 12, pp. 3469-3476, Dec. 2009.
    [98] Z. Y. Zhang, and K. Wu,“A broadband substrate integrated waveguide (SIW) planar balun,”IEEE Microw. Wireless Compon. Lett., vol. 17, no. 12, pp. 843-845, Dec. 2007.
    [99] L. S. Wu, Y. X. Guo, J. F. Mao, and W. Y. Yin,“Design of substrate integrated waveguide balun filter based on three port coupled resonator circuit model,”IEEE Microw. Wireless Compon. Lett., vol. 21, no. 5, pp. 252-254, Dec. 2011.
    [100] G. Q. Luo, W. Hong, Z. C. Hao, B. Liu, W. D. Li, J. X. Chen, H. X. Zhou, and K. Wu,“Theory and experiment of novel frequency selective surface based on substrate integrated waveguide technology,”IEEE Trans. Antennas Propag., vol. 53, no. 12, pp. 4035-4043, Dec. 2005.
    [101] G. Q. Luo, W. Hong, H. J. Tang, J. X. Chen, and L. L. Sun,“Triband frequency selective surface with periodic cell perturbation,”IEEE Microw. Wireless Compon. Lett., vol. 17, no. 6, pp. 436-438, Jun. 2007.
    [102] G. Q. Luo, W. Hong, Q. H. Lai, K. Wu, and L. L. Sun,“Design and experimental verification of compact frequency-selective surface with quasi-elliptic bandpass response,”IEEE Trans. Microw. Theroy Tech., vol. 55, no. 12, pp. 2481-2487, Dec. 2007.
    [103] G. Q. Luo, W. Hong, Q. H. Lai, and L. L. Sun,“Frequency-selective surfaces with two sharp sidebands realised by cascading and shunting substrate integrated waveguide cavities,”IET Microw. Antennas Propag., vol. 2, no. 1, pp. 23-27, Jan. 2008.
    [104] G. Q. Luo, W. Hong, H. J. Tang, J. X. Chen and K. Wu,“Dualbandfrequency selective surfaces using substrate integrated waveguide technology,”IET Microw. Antennas Propag., vol. 1, no. 2, pp. 408-413, Feb. 2007.
    [105] G. Q. Luo, W. Hong, H. J. Tang, and K. Wu,“High performance frequency selective surface using cascading substrate integrated waveguide cavities,”IEEE Microw. Wireless Compon. Lett., vol. 16, no. 12, pp. 648-650, Dec. 2006.
    [106] G. Q. Luo, W. Hong,“Filtenna consisting of horn antenna and substrate integrated waveguide cavity FSS,”IEEE Trans. Antennas Propag., vol. 55, no. 1, pp. 92-98, Jan. 2007.
    [107] S. A. Winkler, W. Hong, M. Bozzi, and K. Wu,“Polarization rotating frequency selective surface based on substrate integrated waveguide techonology,”IEEE Trans. Antennas Propag., vol. 58, no.4, pp. 1202-1213, Jan. 2010.
    [108] L. Yan, W. Hong, G. Hua, J. X. Chen, K. Wu, and T. J. Cui,“Simulation and experiment on SIW slot array antennas,”IEEE Microw. Wireless Compon. Lett., vol. 14, no. 9, pp. 446-448, Sep. 2004.
    [109] D. Stephens, P. R. Young, and I. D. Robertson,“W-band substrate integrated waveguide slot antenns,”Electron. Lett., vol. 41, no. 4, pp. 165-167, Feb. 2005.
    [110] G. Q. Luo, Z. F. Hu, L. X. Dong, and L. L. Sun,“Planar slot antenna backed by substrate integrated waveguide cavity,”IEEE Antennas Wireless Propagat. Lett., vol. 7, pp. 236-239, 2008.
    [111] Y. J. Cheng, W. Hong, K. Wu, Z. Q. Kuai, C. Yu, J. X. Chen, J. Y. Zhou, and H. J. Tang,“Substrate integrated waveguide (SIW) Rotman lens and its Ka-band multibeam array antenna applications,”IEEE Trans. Antennas Propag., vol. 56, no. 8, pp. 2504-2513, Aug. 2008.
    [112] Y. J. Cheng, W. Hong, and K. Wu,“Design of a monopulse antenna using a dual V-type linearly tapered slot antenna (DVLTSA),”IEEE Trans. Antennas Propag., vol. 56, no. 9, pp. 2903-2909, Sep. 2008.
    [113] Y. J. Cheng, W. Hong, and K. Wu,“Millimeter-wave substrate integrated waveguide multibeam antenna based on the parabolic reflector principle,”IEEE Trans. Antennas Propag., vol. 56, no. 9, pp. 3055-3058, Sep. 2008.
    [114] S. Cheng, H. Yousef, and H. Kratz,“79 GHz slot antennas based on substrate integrated waveguides (SIW) in a flexible printed circuit board,”IEEE Trans. Antennas Propag., vol. 57, no. 1, pp. 64-71, Jan. 2009.
    [115] B. Liu, W. Hong, Z. Q. Kuai, X. X. Yin, G. Q. Luo, J. X. Chen, H. J. Tang, and K. Wu,“Substrate integrated waveguide (SIW) monopulse slot antenna array,”IEEE Trans. Antennas Propag., vol. 57, no. 1, pp. 275-279, Jan. 2009.
    [116] M. Henry, C. E. Free, B. S. Izqueirdo, J. Batchelor, and P. R. Young,“Millimeter wave substrate integrated waveguide antennas: design and fabrication analysis,”IEEE Trans. Adv. Packag., vol. 32, no. 1, pp. 93-100, Feb. 2009.
    [117] M. Kaboli, H. S. Farahani, M. S. Abrishamian, and S. A. Mirtaheri,“Low profile high gain and broadband array of corner cube reflector antenna based on substrate integrated waveguide,”Electron. Lett., vol. 47, no. 6, pp. 363-364, Jun. 2011.
    [118] D. Y. Kim, J. W. Lee, T. K. Lee, and C. S. Cho,“Design of SIW cavity backed circular polarized antennas using two different feeding transitions,”IEEE Antennas Wireless Propagat. Lett., vol. 59, no. 4, pp. 1398-1403, Apr. 2011.
    [119] Y. J. Cheng, W. Hong, K. Wu, and Yong Fan,“Millimeter-wave Substrate integrated waveguide long slot leaky-wave antennas and two dimensional multibeam applications,”IEEE Trans. Antennas Propag., vol. 59, no. 1, pp. 40-47, Jan. 2011.
    [120] J. F. Xu, Z. N. Chen X. M. Qing, and W. Hong,“Bandwidth enhancement for a 60 GHz substrate integrated waveguide fed cavity array antenna on LTCC,”IEEE Trans. Antennas Propag., vol. 59, no. 3, pp. 826-832, Mar. 2011.
    [121] M. Ettorre, R. Sauleau, and L. C. Le,“Multi-beam multi-layer leaky wave SIW pillbox antenna for millimeter wave applications,”IEEE Trans. Antennas Propag., vol. 59, no. 4, pp. 1093-1100, Apr. 2011.
    [122] D. Y. Kim, W. Chung, C. H. Park, S. Lee, and S. W. Nam,“Design of a 45 inclined SIW resonant series slot array antenna for Ka band,”IEEE Antennas Wireless Propagat. Lett., vol. 10, pp. 318-321, 2011.
    [123] Y. Ding, and K. Wu,“T-type folded substrate integrated waveguide (TFSIW) slot array antenna,”IEEE Trans. Antennas Propag., vol. 58, no. 5, pp. 1792-1795, May. 2010.
    [124] M. Ohira, A. Miura, and M. Ueba,“60 GHz wideband substrate integrated waveguide slot array using closely spaced elements for planar multisector antenna,”IEEE Trans. Antennas Propag., vol. 58, no. 3, pp. 993-998, Mar. 2010.
    [125] Y. J. Chen, W. Hong, and K. Wu,“Millimeter wave half mode substrate integrated waveguide frequency scanning antenna with quadric-polarization,”IEEE Trans. Antennas Propag., vol. 58, no. 6, pp. 1848-1855, Jun. 2010.
    [126] G. H. Zhai, W. Hong, K. Wu, and Z. Q. Kuai,“Wideband substrate integrated printed log-periodic dipole array antenna,”IET Microw. Antennas Propag., vol. 4, no. 7, pp. 899-905, Jul. 2010.
    [127] X. P. Chen, K. Wu, L. Han, and F. F. He,“Low cost high gain planar array for 60 GHz band applications,”IEEE Trans. Antennas Propag., vol. 58, no. 6, pp. 2126-2129, Jun. 2010.
    [128] Y. D. Dong, and T. Itoh,“Miniaturized substrate integrated waveguide slot antennas based on negative order resonance,”IEEE Trans. Antennas Propag., vol. 58, no. 2, pp. 3856-3864, Feb. 2010.
    [129] H. Wang, D. G. Fang, B. Zhang, and W. Q. Che,“Dielectric loaded substrate integrated waveguide (SIW) H-plane horn antennas,”IEEE Trans. Antennas Propag., vol. 58, no. 3, pp. 640-647, Mar. 2010.
    [130] F. Xu, K. Wu, and X. P. Zhang,“Periodic leaky-wave antenna for millimeter wave applications based on substrate integrated waveguide,”IEEE Trans. Antennas Propag., vol. 58, no. 2, pp. 340-347, Feb. 2010.
    [131] Y. Cassivi and K. Wu,“Low cost microwave oscillator using substrate integrated waveguide cavity,”IEEE Microw. Wireless Compon. Lett., vol. 13, no. 2, pp. 48-50, Feb. 2003.
    [132] N. Yang, C. Caloz, and K. Wu,“TE210 mode balanced oscillator using substrate integrated waveguide resonator,”IET Microw. Antennas Propag., vol. 5, no. 10, pp. 1188-1194, Oct. 2011.
    [133] Z. Y. Zhagn, K. Wu, and N. Yang,“A millimeter wave sub harmonic self oscillating mixer using dual mode substrate integrated waveguide cavity,”IEEE Trans. Microw. Theroy Tech., vol. 58, no. 5, pp. 1151-1158, May. 2010.
    [134] F. Giuppi, A. Georgiadis, A. Collado, M. Bozzi, and L. Perregrini,“Tunable SIW cavity backed active antenna oscillator,”Electronics. Letter., vol. 46, no. 15, pp. 1053-1055, Aug. 2010.
    [135] F. F. He, K. Wu, W. Hong, L. Han, and X. P. Chen,“A low phase noise VCO using a electronically tunable substrate integrated waveguide resonator,”IEEE Trans. Microw. Theroy Tech., vol. 58, no. 12, pp. 3452-3458, Dec. 2010.
    [136] C. L. Zhong, J. Xu, Z. Y. Yu, and Y. Zhu,“Ka band substrate integrated waveguide gunn oscillator,”IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp. 461-463, Jul. 2008.
    [137] J. X. Chen, W. Hong, Z. C. Hao, H. J. Tang, and K. Wu,“High isolation sub harmonic up converter using substrate integrated waveguide,”Electron. Lett., vol. 41, no. 22, pp. 1225-1226, Nov. 2005.
    [138] K. K. Samanta, D. Stephens, and I. D. Robertson,“60 GHz multi-chip-module receiver with substrate integrated waveguide antenna and filter,”Electron. Lett., vol. 42, no. 12, pp. 701-702, Jun. 2006.
    [139] W. D. Orazio, and K. Wu,“Substrate-integrated-waveguide circulators suitable for millimeter-wave integration,”IEEE Trans. Microw. Theroy Tech., vol. 54, no. 10, pp. 3675-3680, Oct. 2006.
    [140]郝张成,基片集成波导技术的研究,东南大学博士学位论文,2005.
    [141] M. Makimoto, and S. Yamashita,“Bandpass filters using parallel coupled stripline stepped impedance resonators,”IEEE Trans. Microw. Theroy Tech., vol. 28, no. 12, pp. 1413-1417, Dec. 1980.
    [142] M. Makimoto, and S. Yamashita,“Compact bandpass filters using stepped impedance resonators,”Proceedings of the IEEE, vol. 67, no. 1, pp. 16-19, Jan, 1979.
    [143] S. Chaimool, and P. Akkaraekthalinl,“Resonator-embedded four-pole cross-coupled dual-band microstrip bandpass filters,”International Symposium on Communications and Information Technologies, pp. 1076-1079, 2006.
    [144] J. L. Li, J. X. Chen, J. P. Wang,“Miniaturized microstrip bandpass filter using stepped impedance ring resonators,”Electronics Letters, vol. 40, no. 22, pp. 1420-1421, Nov, 2004.
    [145] I. Wolff,“Microstrip bandpass filter using degenerate modes of a microstrip ring resonator,”Electron. Lett., vol. 8, no. 12, pp. 29-30, Jun. 1972.
    [146] J. S. Hong, H. Shaman, and Y. H. Chun,“Dual-mode microstrip open-loop resonators and filters,”IEEE Trans. Microw. Theory Tech., vol. 55, no. 8, pp. 1764-1770, Aug. 2007.
    [147] C. K. Liao, P. L. Chi, and C. Y. Chang,“Microstrip realization of generalized Chebyshev filters with box-like coupling schemes,”IEEE Trans. Microw. Theory Tech., vol. 55, no. 1, pp. 147-153, Jan. 2007.
    [148] X. C. Zhang, Z. Y. Yu, and J. Xu,“Design of microstrip dual-mode filters based on source-load coupling,”IEEE Microw. Wireless Compon. Lett., vol. 18, no. 10, pp. 677-679, Oct. 2008.
    [149] K. J. Song, and Q. Xue,“Novel broadband bandpass filters using Y-shaped dual-mode microstrip resonators,”IEEE Microw. Wireless Compon. Lett., vol. 19, no. 9, pp. 548-550, Sep. 2009.
    [150] R. J. Mao, X. H. Tang, and F. Xiao,“Miniaturized dual-mode ring bandpass filters with patterned ground plane,”IEEE Trans. Microw. Theory Tech., vol. 55, no. 7, pp. 1539-1547, Jul. 2007.
    [151] A. Gorur, C. Karpuz, and M. Akpinar,“A reduced-size dual-mode bandpass filter with capacitively loaded open-loop arms,”IEEE Microw. Wireless Compon. Lett., vol. 13, no. 9, pp. 385-387, Sep. 2003.
    [152] Y. W. Kong, and S. T. Chew,“EBG-based dual mode resonator filter,”IEEE Microw. Wireless Compon. Lett., vol. 14, no. 3, pp. 124-126, Mar. 2004.
    [153] L. Zhu and W. Menzel,“Compact microstrip bandpass filter with two transmission zeros using a stub-tapped half-wavelength line resonator,”IEEE Microw. Wireless Compon. Lett., vol. 13, no. 1, pp. 16-18, Jan. 2003.
    [154] A. Balalem, A. R. Ali, S. Amari, J. Machac, and A. Omar,“Realization of a triple-mode bandpass filter using a square-loop resonator,”in IEEE MTT-S Int. Micro. Symp. Dig. Jun. 2009, pp. 849-852.
    [155] Q. X. Chu, F. C. Chen, Z. H. Tu, H. Wang, ''A novel crossed resonator and its applications to bandpass filters.'' IEEE Trans. Microw. Theory Tech., vol. 57, no. 7, Jul. 2009.
    [156] J. I. Park, C. S. Kim, J. Kim, J. S. Park, Y. X. Qian, D. Ahn, and T. Itoh,“Modeling of a photonic bandgap and its application for the low-passfilter design,”in Proc. Asia-Pacific Microw. Conf. Dig., Singapore, Dec. 1999, pp.331-334.
    [157] D. Ahn, J. S. Park, C. S. Kim, J. Kim, Y. X. Qian, and T. Itoh,“A design of the low-pass filter using the novel microstrip defected ground structure,”IEEE Trans. Microw. Theory Tech., vol. 49, no. 1, pp. 86-93, Jan. 2001.
    [158] H. M. Kim, and B. S. Lee,“Bandgap and slow/fast-wave characteristics of defected ground structures (DGSs) including left-handed features,”IEEE Trans. Microw. Theroy Tech., vol. 54, no. 7, pp. 3113-3120, Jul. 2006.
    [159] C. S. Kim, J. S. Park, D. Ahn, and J. B. Lim,“A novel 1-D periodic defected ground structure for planar circuits,”IEEE Microw. Guided Wave Lett., vol. 10, no. 4, pp. 131-133, Apr. 2000.
    [160] A. Boutejdar, A. Batmanov, M. H. Awida, E. P. Burte, and A. Omar,“Design of a new bandpass filter with sharp transition band using multilayer technique and U-defected ground structure,”IET Microw. Antennas Propag., vol. 4, no. 9, pp. 1415-1420, Sep. 2010.
    [161] Q. Chen, and J. Xu,“DGS resonator with two transmission zeros and its application to lowpass filter design,”Electronic. Lett., vol. 46, no. 21, pp. 1447-1449, Nov. 2010.
    [162] H. W. Liu, Z. F. Li, X. W. Sun, and J. F. Mao,“An improved 1-D periodic defected ground structure for microstrip line,”IEEE Microw. Wireless Compon. Lett., vol. 14, no. 4, pp. 180-182, Apr. 2004.
    [163] J. S. Lim, S. W. Lee, C. S. Kim, J. S. Park, D. Ahn, and S. W. Nam,“A 4:1 unequal Wilkinson power divider,”IEEE Microw. Wireless Compon. Lett., vol. 11, no. 3, pp. 124-126, Mar. 2001.
    [164] D. J. Woo, and T. K. Lee,“Suppression of harmonic in Wilkinson power divider using dual band rejection by asymmetric DGS,”IEEE Trans. Microw. Theory Tech., vol. 53, no. 6, pp. 2139-2144, Jun. 2005.
    [165] J. S. Lim, H. S. Kim, J. S. Park, D. Ahn, and S. W. Nam,“A power amplifier with efficiency improved using defected ground structure,”IEEE Microw. Wireless Compon. Lett., vol. 11, no. 4, pp. 170-172, Apr. 2001.
    [166] Y. C. Jeong, S. G. Jeong, J. S. Lim, and S. W. Nam,“A new method to suppress harmonics usingλ/4 bias line combined by defected ground structure in power amplifiers,”IEEE Microw. Wireless Compon. Lett., vol. 13, no. 12, pp. 538-540, Dec. 2003.
    [167] Y. K. Chung, S. S. Jeon, S. H. Kim, D. Ahn, J. I. Choi, and T. Itoh,“Multifunctional microstrip transmission lines integrated with defected ground structure for RF front-end application,”IEEE Trans. Microw. Theory Tech., vol. 52, no. 5, pp. 1425-1432, May 2004.
    [168] J. S. Park, J. S. Yun, and D. Ahn,“A design of the novel coupled-line bandpass filter using defected ground structure with wide stopband performance,”IEEE Trans. Microw. Theory Tech., vol. 50, no. 9, pp. 2037-2043,Sep. 2002.
    [169] A. A. Rahman, A. K. Verma, A. Boutejdar, and A. S. Omar,“Compact stub type microstrip bandpass filter using defected ground plane,”IEEE Microw. Wireless Compon. Lett., vol. 14, no. 4, pp. 136-138, Apr. 2004.
    [170] J. Shi, J. X. Chen, and Q. Xue,“A quasi-elliptic function dual-band bandpass filter stacking spiral-shaped CPW defected ground structure and back-side coupled strip lines,”IEEE Microw. Wireless Compon. Lett., vol. 17, no. 6, pp. 430-432, Jun. 2007.
    [171] W. Shen, W. Y. Yin, and X. W. Sun,“Compact microstrip tri-section bandpass filters with mixed couplings,”Journal of Electromagnetic Waves and Applications, vol. 24, no. 13, page 1807-1816, 2010.
    [172] W. Shen, X. W. Sun, and W. Y. Yin,“A Novel Nth-Order Microstrip Dual-Mode Bandpass Filter with N+2 Transmission Zeros,”in International Conf. on Material and Manuf. Tech., ChengDu, May. 2010.
    [173] W. Shen, X. W. Sun, and W. Y. Yin,“A New Wide Stopband Microstrip Bandpass Filter with Miniaturized Interdigital Capacitor Resonator,”in Electrical Design of Advanced Pack. & Systems, Hong Kong, Dec. 2009.
    [174] W. Shen, L. S. Wu, X. W. Sun, W. Y. Yin, and J. F. Mao,“Novel substrate integrated waveguide filters with mixed cross coupling (MCC),”IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 11, 701-703, Nov. 2009.
    [175] W. Shen, W. Y. Yin, and X. W. Sun,“Compact coplanar waveguide-incorporated substrate integrated waveguide (SIW) filter,”Journal of Electromagnetic Waves and Applications, vol. 24, no. 7, page 871-879, 2010.
    [176] W. Shen, X. W. Sun, and W. Y. Yin,“N+1 Transmission Zeros in Nth-order Cross Coupled Filter with Mixed Source and Load Coupling (MSLC),”in Proc. Asia-Pacific Microw. Conf. Dig., Singapore, Dec. 2009.
    [177] W. Shen, W. Y. Yin, and X. W. Sun,“Design of Multilayer Triangular Substrate Integrated Waveguide Filter in LTCC,”Microwave and Optical Technology Letters, vol. 51, no. 11, pp. 2582-2585, Nov. 2009.
    [178] W. Shen, W. Y. Yin, and X. W. Sun,“A Novel LTCC Multilayer SIW Linear Phase Filter,”Microwave and Optical Technology Letters, vol. 51, no. 10, pp. 2357-2360, Oct. 2009.
    [179] W. Shen, X. W. Sun, and W. Y. Yin,“Miniaturized dual-band substrate integrated waveguide filter with controllable bandwidths,”IEEE Microw. Wirel. Compon. Lett., vol. 21, no. 8, pp. 418-420, Aug. 2011.
    [180] W. Shen, X. W. Sun, and W. Y. Yin,“A novel microstrip filter using three-mode stepped impedance resonator (TSIR),”IEEE Microw. Wirel. Compon. Lett., vol. 19, no. 12, pp. 774-776, Dec, 2009.
    [181] W. Shen, X. W. Sun, W. Y. Yin, J. F. Mao, and Q. F. Wei,“A novel single-cavity dual mode substrate integrated waveguide filter withnon-resonating node,”IEEE Microw. Wireless Compon. Lett., vol. 19, no. 6, pp. 368-370, Jun. 2009.
    [182] W. Shen, X. W. Sun, and W. Y. Yin,“Compact Substrate Integrated Waveguide (SIW) Filter with Defected Ground Structure,”IEEE Microw. Wirel. Compon. Lett., vol. 21, no. 2, pp. 83-85, Feb. 2011.
    [183] W. Shen, W. Y. Yin, and X. W. Sun,“Compact substrate integrated waveguide transversal filter with microstrip dual-mode resonator,”Journal of Electromagnetic Waves and Applications, vol. 24, no. 14, page 1887-1896, 2010.
    [184] W. Shen, X. W. Sun, and W. Y. Yin,“Compact Substrate Integrated Waveguide (SIW) Transversal Filter with Triple Mode Microstrip Resonator,”in Proc. Asia-Pacific Microw. Conf. Dig., Japanese, Dec. 2010.
    [1] R. Levy, R. V. Snyder, and G. Matthaei,“Design of microwave filters’,”IEEE Trans. Microw. Theory Tech., vol. 50, no. 3, pp. 783-793, Mar. 2002.
    [2] A. E. Atia, and A. E. Williams,“Narrow-bandpass waveguide filters,”IEEE Trans. Microw. Theory Tech., vol. 20, no. 4, pp. 258-265, Apr. 1972.
    [3] A. E. Atia, and A. E. Williams,“Nonminimum-phase optimum-amplitude bandpass waveguide filters,”IEEE Trans. Microw. Theory Tech., vol. 22, no. 4, pp. 425-431, Apr. 1974.
    [4] A. E. Atia, A. E. Williams, and R. W. Newcomb,“Narrow-band multiple-coupled cavity synthesis,”IEEE Trans. Circuits Syst., vol. 21, no. 5, pp. 649-655, Sep. 1974.
    [5] S. Amari,“Synthesis of cross-coupled resonator filters using an analytical gradient-based optimization technique,”IEEE Trans. Microw. Theory Tech., vol. 48, no. 9, pp. 1559-1564, Sep. 2000.
    [6] H. Uchimura, T. Takenoshita, and M. Fujii,“Development of a‘laminated waveguide’”, IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp. 2438-2443, Dec. 1998.
    [7] X. P. Chen, K. Wu, and Z. L. Li,“Dual-band and triple-band substrate integrated waveguide filters with Chebyshev and quasi-elliptic responses,”IEEE Trans. Microw. Theroy Tech., vol. 55, no. 12, pp. 2569-2578, Dec. 2007.
    [8] B. J. Chen, T. M. Shen, and R. B. Wu,“Dual-band vertically stacked laminated waveguide filter design in LTCC technology,”IEEE Trans. Microw. Theroy Tech., vol. 57, no. 6, pp. 1554-1562, Jun. 2009.
    [9] Z. C. Hao, W. Hong, X. P. Chen, J. X. Chen, K. Wu, and T. J. Cui,“Multilayered substrate integrated waveguide (MSIW) elliptic filter,”IEEE Microw. Wireless Compon. Lett., vol. 15, no. 2, pp. 95-97, Feb. 2005.
    [10] B. N. Das,“Excitation of waveguide by stripline- and microstrip-line-fed slots”, IEEE Trans. Microw. Theory Tech., vol. 34, no. 3, pp. 321-327, Mar. 1986.
    [11] S. Amari, U. Rosenberg, and J. Bornemann,“Adaptive synthesis and design of resonator filters with source/load-multiresonator coupling,”IEEE Trans. Microw. Theory Tech., vol. 50, no. 8, pp. 1969-1978, Aug. 2002.
    [12] S. Amari,“Direct synthesis of folded symmetric resonator filters with source-load coupling,”IEEE Microwave and Guided Wave Lett., vol. 11, no. 6, pp. 264-266, Jun. 2001.
    [13] K. L. Wu, and W. Meng,“A direct synthesis approach for microwave filters with a complex load and its application to direct diplexer design,”IEEE Trans. Microw. Theory Tech., vol. 55, no. 5, pp. 1010 - 1017, 2007.
    [14] W. Meng, and K. L. Wu,“Analytical diagnosis and tuning of narrow-band multi-coupled resonator filters,”IEEE Trans. Microw. Theory Tech., vol. 54, no. 10, pp. 3765-3771, 2006.
    [15] S. Amari and J. Bornemann, "Using frequency-dependent coupling to generate finite attenuation poles in direct-coupled resonator bandpass filters", IEEE Microwave Guided Wave Lett., vol. 9, pp. 404-506, Oct. 1999.
    [16] S. Shin, and R. V. Snyder,“At least N+1 finite transmission zeros using frequency-variant negative source-load coupling,”IEEE Microw. Wireless Compon. Lett., vol. 13, no. 3, pp. 117–119, Mar. 2003.
    [17] S. Amari, "On the maximum number of finite transmission zeros of coupled resonator filters with a given topology", IEEE Microwave Guided Wave Lett., vol. 9, pp. 354-356, Sep. 1999.
    [18] K. Ma, J. G. Ma, K. S. Yeo, and M. A. Do,“A compact size coupling controllable filter with separate electric and magnetic coupling paths,”IEEE Trans. Microw. Theory Tech., vol. 54, no. 3, pp. 1113-1119, Mar. 2006
    [19] Q. X. Chu and H. Wang,“A compact open-loop filter with mixed electric and magnetic coupling,”IEEE Trans. Microw. Theory Tech., vol. 56, no.2, pp. 431-439, Feb. 2008.
    [20] H. Wang, and Q. X. Chu,“An EM-coupled triangular open-loop filter with transmission zeros very close to passband,”IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2, pp. 71-73, Feb. 2009.
    [21] H. Wang, and Q. X. Chu,“An inline coaxial quasi-elliptic filter with controllable mixed electric and magnetic coupling,”IEEE Trans. Microw. Theory Tech., vol. 57, no. 3, pp. 667-673, Mar. 2009.
    [22] J. S. Hong, and M. J. Lancaster,“Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters,”IEEE Trans. Microw. Theory Tech., vol. 44, no. 12, pp. 2099-2109, Dec. 1996.
    [23] W. Shen, W. Y. Yin, and X. W. Sun,“Compact microstrip tri-section bandpass filters with mixed couplings,”Journal of Electromagnetic Waves and Applications, vol. 24, no. 13, pp. 1807-1816, 2010.
    [24] J. S. Hong, and M. J. Lancaster,“Microstrip cross-coupled trisection bandpass filters with asymmetric frequency characteristics,”IEE Proc.-Microw. Antennas Propag., vol. 146, no. 1, pp. 84-90, Feb. 1999.
    [25] J. S. Hong, and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, New York: Wiley, 2001.
    [26] H. L. Zhang, and K. J. Chen,“A tri-section stepped-impedance resonator for cross-coupled bandpass filters,”IEEE Microw. Wireless Compon. Lett., vol. 15,No. 6, 401–403, Jun. 2005.
    [27] C. C. Chen, Y. R. Chen, and C. Y. Chang,,“Miniaturized microstrip cross-coupled filters using quarter-wave or quasi-quarter-wave resonators,”IEEE Trans. Microw Theory Tech., vol. 51, no. 1, pp. 120-131, Jan. 2003.
    [28] D. Packiaraj, M. Ramesh, and A. T. Kalghatgi,“Design of a tri-section folded SIR filter,”IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 317-319, May. 2006.
    [29] J. I. Park, C. S. Kim, J. Kim, J. S. Park, Y. X. Qian, D. Ahn, and T. Itoh,“Modeling of a photonic bandgap and its application for the low-passfilter design,”in Proc. Asia-Pacific Microw. Conf. Dig., Singapore, Dec. 1999, pp. 331-334.
    [30] J. S. Park, J. S. Yun, and D. Ahn,“A design of the novel coupled-line bandpass filter using defected ground structure with wide stopband performance,”IEEE Trans. Microw. Theory Tech., vol. 50, no. 9, pp. 2037-2043, Sep. 2002.
    [31] H. W. Liu, Z. F. Li, X. W. Sun, and J. F. Mao,“An improved 1-D periodic defected ground structure for microstrip line,”IEEE Microw. Wireless Compon. Lett., vol. 14, no. 4, pp. 180-182, Apr. 2004.
    [32] Y. J. Sung, C. S. Ahn, and Y. S. Kim,“Size reduction and harmonic suppression of rat-race hybrid coupler using defected ground structure,”IEEE Microw. Wireless Compon. Lett., vol. 14, no. 1, pp. 7-9, Jan. 2004.
    [33] Z. C. Hao, W. Hong, J. X. Chen, X. P. Chen, and K. Wu,“Compact super-wide bandpass substrate integrated waveguide (SIW) filters,”IEEE Trans. Microw. Theroy Tech., vol. 53, no. 9, pp. 2968-2977, Sep. 2005.
    [34] J. S. Hong, and B. M Karyamapudi,“A general circuit model for defected ground structures in planar transmission lines,”IEEE Microw. Wireless Compon. Lett., vol. 15, no. 10, pp. 706-708, Oct. 2005.
    [35] N. C. Karmakar, S. M. Roy, and I. Balbin,“Quasi-static modeling of defected ground structure,”IEEE Trans. Microw. Theroy Tech., vol. 54, no. 5, pp. 2160-2168, May 2006.
    [36] H. M. Kim, and B. S. Lee,“Bandgap and slow/fast-wave characteristics of defected ground structures (DGSs) including left-handed features,”IEEE Trans. Microw. Theroy Tech., vol. 54, no. 7, pp. 3113-3120, Jul. 2006.
    [37] A. M. E. Safwat, F. Podevin, P. Ferrari, and A. Vilcot,“Tunable bandstop defected ground structure resonator using reconfigurable dumbbell-shaped coplanar waveguide,”IEEE Trans. Microw. Theroy Tech., vol. 54, no. 9, pp. 3559-3564, Sep. 2006.
    [38] J. Shi, J. X. Chen, and Q. Xue,“A quasi-elliptic function dual-band bandpass filter stacking spiral-shaped CPW defected ground structure and back-side coupled strip lines,”IEEE Microw. Wireless Compon. Lett., vol. 17, no. 6, pp. 430-432, Jun. 2007.
    [39] X. H. Wang, B. Z. Wang, H. L. Zhang, and K. J. Chen,“A tunable bandstop resonator based on a compact slotted ground structure,”IEEE Trans. Microw. Theroy Tech., vol. 55, no. 9, pp. 1912-1918, Sep. 2007.
    [40] G. M. Yang, R. H. Jin, C. Vittoria, V. G. Harris, and N. X. Sun,“Small ultra-wideband (UWB) bandpass filter with notched band,”IEEE Microw. Wireless Compon. Lett., vol. 18, no. 3, pp. 176-178, Mar. 2008.
    [41] Y. H. Ryu, J. H. Park, J. H. Lee, J. Y. Kim, and H. S. Tae,“DGS dual composite right/left handed transmission line,”IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp. 434-436, Jul. 2008.
    [42] S. Y. Huang, and Y. H. Lee,“A compact E-shaped patterned ground structure and its applications to tunable bandstop resonator,”IEEE Trans. Microw. Theroy Tech., vol. 57, no. 3, pp. 657-666, Mar. 2009.
    [43] S. J. Wu, C. H. Tsai, T. L. Wu, and T. Itoh,“A novel wideband common-modesuppression filter for gigahertz differential signals using coupled patternedground structure,”IEEE Trans. Microw. Theroy Tech., vol. 57, no. 4, pp. 848-855, Apr. 2009.
    [44] W. Shen, X. W. Sun, and W. Y. Yin,“A Novel Nth-Order Microstrip Dual-Mode Bandpass Filter with N+2 Transmission Zeros,”in International Conf. on Material and Manufac. Tech., ChengDu, May. 2010.
    [45] J. R. Lee, J. H. Cho, and S. W. Yun,“New compact bandpass filter using microstripλ/4 resonators with open stub inverter,”IEEE Microw. Guide Wave Lett., vol. 10, no. 12, pp. 526-527, Dec. 2000.
    [46] X. C. Zhang, Z. Y. Yu, and J. Xu,“Design of microstrip dual-mode filters based on source-load coupling,”IEEE Microw. Wireless Compon. Lett., vol. 18, no. 10, pp. 677-679, Oct. 2008.
    [47] G. D. Alley,“Interdigital capacitor and their application to lumped-element microwave integrated circuits,”IEEE Trans. Microw. Theory Tech, vol. 18, no. 12, pp. 1028-1033, Dec. 1970.
    [48] L. Zhu, and K. Wu,“Accurate circuit model of interdigital capacitor and its application to design of new quasi-lumped miniaturized filters with suppression of harmonic resonance,”IEEE Trans. Microw. Theory Tech, vol. 48, no. 3, pp. 347-356, Mar. 2000.
    [49] J. Zhu and Z. H. Feng,“Microstrip interdigital hairpin resonator with an optimal physical length,”IEEE Microw. Wireless Compon. Lett., vol. 16, no. 12, pp. 672-674, Dec. 2006.
    [50] T. Yu; C. G. Li; F. Li; Q. Zhang; L. Sun; L. Gao; Y. H. Wang; X. Q. Zhang; H. Li; C. J. Jin; J. B. Li, H. F. Liu, C. Z. Gao; J. B. Meng; Y. S. He,“A Wideband Superconducting Filter Using Strong Coupling Resonators for Radio Astronomy Observatory,”IEEE Trans. Microw. Theory Tech, vol. 57, no. 7, pp. 1783-1789, Jul. 2009.
    [51] C. W. Tang, and Y. K. Hsu,“A microstrip bandpass filter with ultra-wide stopband,”IEEE Trans. Microw. Theory Tech, vol. 56, no. 6, pp. 1468-1472, Jun. 2008.
    [52] L. Zhu, V. Devabhaktuni, C.Y, Wang, and M. Yu,“Adjustable bandwidth filter design based on interdigital capacitors,”IEEE Microw. Wireless Compon. Lett, vol. 18, no. 1, pp. 16-18, Jan. 2008.
    [53] W. Shen, X. W. Sun, and W. Y. Yin,“A New Wide Stopband Microstrip Bandpass Filter with Miniaturized Interdigital Capacitor Resonator,”in EDAPS 2009., Hong Kong, Dec. 2009.
    [1] Y. Rong, K. A. Zaki, J. Gipprich, M. Hageman, and D. Stevens,“LTCC wide-band ridge-waveguide bandpass filters,”IEEE Trans. Microw. Theory Tech., vol. 47, no. 9, pp. 1836-1840, Sep. 1999.
    [2] Y. Rong, K. A. Zaki, M. Hageman, D. Stevens, and J. Gipprich,“Low-temperature cofired ceramic (LTCC) ridge waveguide bandpass chip filters,”IEEE Trans. Microw. Theory Tech., vol. 47, no. 12, pp. 2317-2324, Dec. 1999.
    [3] J. A. R. Cruz, M. A. El Sabbagh, K. A. Zaki, J. M. Rebollar, and Y.- C. Zhang,“Canonical ridge waveguide filters in LTCC or metallic resonators,”IEEE Trans. Microw. Theroy Tech., vol. 53, no. 1, pp. 174-182, Jan. 2005.
    [4] J. A. R. Cruz, Y. C. Zhang, K. A. Zaki, A. J. Piloto, and J. Tallo,“Ultra-wideband LTCC ridge waveguide filters,”IEEE Microw. Wireless Compon. Lett., vol. 17, no. 2, pp. 115-117, Feb. 2007.
    [5] Y. D. Dong, T. Yang, and T. Itoh,“Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturizedwaveguide filters,”IEEE Trans. Microw. Theory Tech., vol. 57, no. 9, pp. 2211-2223, Sep. 2009.
    [6] M. Ito, K. Maruhashi, K. Ikuina, T. Hashiguchi, S. Iwanaga, and K. Ohata,“A 60-GHz-band planar dielectric waveguide filter for flip-chip modules,”IEEE Trans. Microw. Theroy Tech., vol. 49, no. 12, pp. 2431-2436, Dec. 2001.
    [7] C. Y. Chang, and W. C. Hsu,“Novel planar, square-shaped, dielectric-waveguide, single-, and dual-mode filters,”IEEE Trans. Microw. Theroy Tech., vol. 50, no. 11, pp. 2527-2536, Nov. 2002.
    [8] D. Deslandes, and K. Wu,“Single-substrate integration technique of planar circuits and waveguide filters,”IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 593-596, Feb. 2003.
    [9] T. M. Shen, C. F. Chen, T. Y. Huang, R. B. Wu,“Design of vertically stacked waveguide filters in LTCC,”IEEE Trans. Microw. Theroy Tech., vol. 55, no. 8, pp. 1771-1779, Aug. 2007.
    [10] B. J. Chen, T. M. Shen, and R. B. Wu,“Dual-band vertically stacked laminated waveguide filter design in LTCC technology,”IEEE Trans. Microw. Theroy Tech., vol. 57, no. 6, pp. 1554-1562, Jun. 2009.
    [11] Z. C. Hao, W. Hong, X. P. Chen, J. X. Chen, K. Wu, and T. J. Cui,“Multilayered substrate integrated waveguide (MSIW) elliptic filter,”IEEE Microw. Wireless Compon. Lett., vol. 15, no. 2, pp. 95-97, Feb. 2005.
    [12] X. P. Chen, W. Hong, T. J. Cui, Z. C. Hao, and K. Wu,“Substrate integrated waveguide elliptic filter with transmission line inserted inverter,”Electron. Lett., vol. 41, no. 15, pp. 851-852, Jul. 2005.
    [13] X. P. Chen, and K. Wu,“Substrate integrated waveguide cross-coupled filter with negative coupling structure,”IEEE Trans. Microw. Theroy Tech., vol. 56, no. 1, pp. 142-149, Jan. 2008.
    [14] B. Potelon, J. F. Favennec, C. Quendo, E. Rius, C. Person, and J. C. Bohorquez,“Design of a substrate integrated waveguide (SIW) filter using a novel topology of coupling,”IEEE Microw. Wireless Compon. Lett., vol. 18, no. 9, pp. 596-598, Sep. 2008.
    [15] X. P. Chen, W. Hong, T. J. Cui, J. X. Chen, and K. Wu,“Substrate integrated waveguide (SIW) linear phase filter,”IEEE Microw. Wireless Compon. Lett., vol. 15, no. 11, pp. 787-789, Nov. 2005.
    [16] X. P. Chen, K. Wu, and D. Drolet,“Substrate integrated waveguide filter with improved stopband performance for satellite ground terminal,”IEEE Trans. Microw. Theroy Tech., vol. 57, no. 3, pp. 674-683, Mar. 2009.
    [17] Y. L. Zhang, W. Hong, K. Wu, J. X. Chen, and H. J. Tang,“Novel substrate integrated waveguide cavity filter with defected ground structure,”IEEE Trans. Microw. Theroy Tech., vol. 53, no. 4, pp. 1280-1287, Apr. 2005.
    [18] Z. C. Hao, W. Hong, J. X. Chen, X. P. Chen, and K. Wu,“Compact super-widebandpass substrate integrated waveguide (SIW) filters,”IEEE Trans. Microw. Theroy Tech., vol. 53, no. 9, pp. 2968-2977, Sep. 2005.
    [19] A. Patrovsky, M. Daigle, and K. Wu,“Coupling mechanism in hybrid SIW-CPW forward couplers for millimeter-wave substrate integrated circuits,”IEEE Trans. Microw. Theroy Tech., vol. 56, no. 11, pp. 2594-2601, Nov. 2008.
    [20] R. Q. Li, X. H. Tang, and F. Xiao,“Design of substrate integrated waveguide transversal filter with high selectivity,”IEEE Microw. Wireless Compon. Lett., vol. 20, no. 6, pp. 328-330, Jun. 2010.
    [21] F. Mira, J. Mateu, S. Cogollos, and V. E. Boria,“Design of ultra-wideband substrate integrated waveguide (SIW) filters in zigzag topology,”IEEE Microw. Wireless Compon. Lett., vol. 19, no. 5, pp. 281-283, May. 2009.
    [22] B. Potelon, J. C. Bohorquez, J. F. Favennec, C. Quendo, E. Rius, and C. Person,“Design of Ku band filters based on Substrate integrated circular cavities (SICCs),”in IEEE MTT-S Int. Micro. Symp. Dig., Jun. 2006, pp. 1237-1240.
    [23] D. Stephens, P. R. Young, and I. D. Robertson,“Millimeter-wave substrate integrated waveguides and filters in photoimageable thick-film technology,”IEEE Trans. Microw. Theroy Tech., vol. 53, no. 12, pp. 3832-3838, Dec. 2005.
    [24] K. S. Yang, S. Pinel, I. K. Kim, and J. Laskar,“Low-loss integrated-waveguide passive circuits using liquid-crystal polymer system-on-Package (SoP) technology for millimeter-wave applications,”IEEE Trans. Microw. Theroy Tech., vol. 54, no. 12, pp. 4572-4579, Dec. 2006.
    [25] X. Gong, T. Smyth, E. Ghaneie, and W. J. Chappell,“High-Q resonators and filters inside advanced low-temperature co-fired ceramic substrates using fine-scale periodicity,”IEEE Trans. Microw. Theroy Tech., vol. 56, no. 4, pp. 922-930, Apr. 2008.
    [26] C. Lugo, and J. Papapolymerou,“Planar realization of a triple-mode bandpass filter using a multilayer configuration,”IEEE Trans. Microw. Theory Tech., vol. 55, no. 2, pp. 296-301, Feb. 2007.
    [27] J. H. Lee, S. Pinel, J. Papapolymerou, J. Laskar, and M. M. Tentzeris,“Low-loss LTCC cavity filters using system-on-package technology at 60GHz,”IEEE Trans. Microw. Theroy Tech., vol. 53, no. 12, pp. 3817-3824, Dec. 2005.
    [28] S. T. Choi, K. S. Yang, K. Tokuda, and Y. H. Kim,“A V-band planar narrow bandpass filter using a new type integrated waveguide transition,”IEEE Microw. Wireless Compon. Lett., vol. 14, no. 12, pp. 545-547, Dec. 2004.
    [29] W. Shen, L. S. Wu, X. W. Sun, W. Y. Yin, and J. F. Mao,“Novel substrate integrated waveguide filters with mixed cross coupling (MCC),”IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 11, 701-703, Nov. 2009.
    [30] W. Shen, W. Y. Yin, and X. W. Sun,“Compact coplanar waveguide-incorporated substrate integrated waveguide (SIW) filter,”Journal of Electromagnetic Waves and Applications, vol. 24, no. 7, page 871-879, 2010.
    [31] W. Shen, X. W. Sun, and Wen- Yan Yin,“N+1 Transmission Zeros in Nth-order Cross Coupled Filter with Mixed Source and Load Coupling (MSLC),”in Proc. Asia-Pacific Microw. Conf. Dig., Singapore, Dec. 2009.
    [1] Y. Rong, K. A. Zaki, J. Gipprich, M. Hageman, and D. Stevens,“LTCC wide-band ridge-waveguide bandpass filters,”IEEE Trans. Microw. Theory Tech., vol. 47, no. 9, pp. 1836-1840, Sep. 1999.
    [2] Y. Rong, K. A. Zaki, M. Hageman, D. Stevens, and J. Gipprich,“Low-temperature cofired ceramic (LTCC) ridge waveguide bandpass chip filters,”IEEE Trans. Microw. Theory Tech., vol. 47, no. 12, pp. 2317-2324, Dec. 1999.
    [3] J. A. Ruiz-Cruz, M. A. E. Sabbagh, K. A. Zaki, J. M. Rebollar, and Y. Zhang,“Canonical ridge waveguide filters in LTCC or metallic resonators,”IEEE Trans. Microw. Theory Tech., vol. 53, no. 1, pp. 174-182, Jan. 2005.
    [4] M. M. Fahmi, J. A. Ruiz-Cruz, K. A. Zaki, and A. J. Piloto,“LTCC wideband canonical ridge waveguide filters,”in IEEE MTT-S Int. Microw. Symp. Dig., 2005, pp. 249-252.
    [5] Y. S. Lin, C. C. Liu, K. M. Li, and C. H. Chen,“Design of an LTCC triband transceiver module for GPRSmobile applications,”IEEE Trans. Microw. Theory Tech., vol. 52, no. 12, pp. 2718-2724, Dec. 2004.
    [6] H. Y. Chien, T. M. Shen, T. Y. Huang, and R. B. Wu,“Miniaturized bandpass filters with double-folded substrate integrated waveguide resonators in LTCC,”IEEE Transactions on Microwave Theory and Techniques, vol. 57, pp. 1774-1782, Jul. 2009
    [7] Q. F. Wei, Z. F. Li, W. J. Zhang,“Three-pole cross-coupled substrate integrated waveguide (SIW) bandpass filters based on PCB process and multilayer LTCC technology,”Microw. Opt. Tech. Lett., vol. 51, no. 1, pp. 71-73, Jan. 2009.
    [8] T. M. Shen, T. Y. Huang, C. F. Chen, and R. B.Wu,“Design of a vertically stacked waveguide filter with novel cross coupling structures in LTCC,”in Asia–Pacific Microw. Conf. Dig., Dec. 2006, pp. 1161-1164.
    [9] J.-H. Lee, S. Pinel, J. Papapolymerou, J. Laskar, and M. M. Tentzeris,“Low-loss LTCC cavity filters using system-on-package technology at 60 GHz,”IEEE Trans. Microw. Theory Tech., vol. 53, no. 12, pp. 3817-3824, Dec. 2005.
    [10] W. Shen, W. Y. Yin, and X. W. Sun,“Design of multilayer triangular substrate integrated waveguide filter in LTCC,”Microwave and Optical Technology Letters, vol. 51, no. 11, pp. 2582-2585, Nov. 2009.
    [11] W. Shen, W. Y. Yin, and X. W. Sun,“A novel LTCC multilayer SIW linear phase filter,”Microwave and Optical Technology Letters, vol. 51, no. 10, pp. 2357-2360, Oct. 2009.
    [12] H. J. Tang, W. Hong, J. X. Chen,“Development of millimeter-wave planar diplexers based on complementary characters of dual-mode substrate integrated waveguide filters with circular and elliptic cavities,”IEEE Trans. Microw. Theory Tech., vol. 55, no. 4, pp. 776-782, Apr. 2007.
    [13] J. H. Lee, S. Pinel, J. Papapolymerou,“Comparative study of feeding techniques for three-dimensional cavity resonators at 60GHz,”IEEE Trans. On Advanced Package, vol. 30, no. 1, pp. 115-123, Feb. 2007.
    [14] X. P. Chen and Ke Wu,“Substrate integrated waveguide cross-coupled filter with negative coupling structure,”IEEE Trans. Microw. Theroy Tech., vol. 56, no. 1, pp. 142-149, Jan. 2008.
    [15] B. Potelon, J.-F. Favennec, C. Wuendo,“Design of a substrate integrated waveguide (SIW) filter using a novel topology of coupling,”IEEE Microw.Wireless Compon. Lett., vol. 18, no. 9, pp. 596-598, Sep. 2008.
    [16] L. Yan, W. Hong, G. Hua, J. X. Chen, K. Wu, and T. J. Cui,“Simulation and experiment on SIW slot array antennas,”IEEE Microw. Wireless Compon. Lett., vol. 14, no. 9, pp. 446-448, Sep. 2004.
    [17] G. Amendola, G. Angiulli, and L. Boccia,“Resonant frequencies of circular substrate integrated resonators,”IEEE Microw. Wireless Compon. Lett., vol. 18, no. 4, pp. 239-241, Apr. 2008.
    [18] G. G. Mazumder and P. K. Saha,“A novel rectangular waveguide with double T-septums,”IEEE Trans. Microw. Theory Tech., vol. 33, no. 11, pp. 1235-1238, Nov. 1985.
    [19] N. Grigoropoulos, and P. R. Young,“Compact folded waveguides,”in Proc. 34th Eur. Microw. Conf., Amsterdam, Netherlands, Oct. 2004, pp. 973-976.
    [20] G. H. Zhai, W. Hong, K. Wu, J. X. Chen, P. Chen, and H. J. Tang,“Substrate integrated folded waveguide (SIFW) narrow-wall directional coupler,”in Proc. Int. Conf. Microw. Millimeter Wave Tech. Dig., Nanjing, China, Apr. 2008, pp. 174-177.
    [21] B. S. Izqueirdo, N. Grigoropoulos, and P. R. Young,“Ultra-wideband multilayer substrate integrated folded waveguides,”in Proc. IEEE MTT-S Int. Microw. Symp. Dig., San Francisco, CA, USA, Jun. 2006, pp. 610-612.
    [22] Y. Zhang and W. T. Joines,“Some properties of T-septum waveguide,”IEEE Trans. Microw. Theory Tech., vol. 35, no. 8, pp. 769-775, Aug. 1987.
    [23] F. J. German and L. S. Riggs,“Bandwidth properties of rectangular T-septum waveguides,”IEEE Trans. Microw. Theory Tech., vol. 37, no. 5, pp. 917-919, May 1989.
    [24] Z. X. Shen, X. M. Lou and S. F. Li,“Transverse resonance method for analyzing T-septum waveguides,”IET Electron. Lett., vol. 26., no. 1, pp. 78-79, Jan. 1990.
    [25] N. Marcuvitz, Waveguide handbook, New York: McGraw-Hill, 1951.
    [1] L. C. Tsai and C. W. Hsue,“Dual-band bandpass filters using equallength coupled-serial-shunted lines and Z-transform technique,”IEEE Trans. Microw. Theory Tech., vol. 52, no. 4, pp. 1111-1117, Apr. 2006.
    [2] J. T. Kuo, T. H. Yeh, and C. C. Yeh,“Design of microstrip bandpass filters with a dual-passband response,”IEEE Trans. Microw. Theory Tech., vol. 53, no. 4, pp. 1331-1336, Apr. 2005.
    [3] C. Quendo, E. Rius, and C. Person,“An original topology of dual-band filter with transmission zeros,”in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2003, pp. 1093-1096.
    [4] G. Macchiarella and S. Tamiazzo,“Design techniques for dual-passband filters,”IEEE Trans. Microw. Theory Tech., vol. 53, no. 11, pp. 3265-3271, Nov. 2005.
    [5] J. Lee, and K. Sarabandi,“Design of triple-passband microwave filters using frequency transformations,”IEEE Trans. Microw. Theory Tech., vol. 56, no. 1, pp. 187-193, Jan. 2008.
    [6] B. J. Chen, T. M. Shen, and R. B. Wu,“Dual band vertically stacked laminated waveguide filter design in LTCC technology,”IEEE Trans. Microw. Theroy Tech., vol. 57, pp. 1554-1562, Jun. 2009.
    [7] X. P. Chen, K. Wu, and Z. L. Li,“Dual-band and triple-band substrate integratedwaveguide filters with Chebyshev and quasi-elliptic responses,”IEEE Trans. Microw. Theroy Tech., vol. 55, no. 12, pp. 2569-2578, Dec. 2007.
    [8] L. S. Wu, X. L. Zhou, and W. Y. Yin,“Evanescent mode bandpass filters using folded and ridge substrate integrated waveguides (SIWs),”IEEE Microw. Wireless Compon. Lett., vol. 19, no. 3, pp. 161-163, Mar. 2009.
    [9] Y. Rong, K. A. Zaki, M. Hageman, D. Stevens, and J. Gipprich,“Low-temperature cofired ceramic (LTCC) ridge waveguide bandpass chip filters,”IEEE Trans. Microw. Theory Tech., vol. 47, no. 12, pp. 2317-2324, Dec. 1999.
    [10] L. S. Wu, X. L. Zhou, and W. Y. Yin,“A substrate integrated evanescent-mode waveguide filter with non-resonating node in low temperature co-fired ceramic,”IEEE Trans. Microw. Theroy Tech., vol. 58, no. 10, pp. 2654-2662, Oct. 2010.
    [11] W. Shen, W. Y. Yin, and X. W. Sun,“Miniaturized dual band substrate integrated filter with controllable bandwidths,”IEEE Microw. Wireless Compon. Lett., vol. 21, no. 8, pp. 418-420, Aug. 2011.
    [1] X. P. Chen and Ke Wu,“Substrate integrated waveguide cross-coupled filter with negative coupling structure,”IEEE Trans. Microw. Theroy Tech., vol. 56, no. 1, pp. 142-149, Jan. 2008.
    [2] L. S. Wu, X. L. Zhou, Q. F. Wei, and W. Y. Yin,“An extended doublet substrate integrated waveguide (SIW) bandpass filter with a complementary split ringresonator (CSRR),”IEEE Microw. Wirel. Compon. Lett., vol. 19, no. 12, pp. 777-779, Dec. 2009.
    [3] Q. Wei, Z. F. Li, W. J. Zhang, and J. F. Mao,“Three-pole cross-coupled substrate integrated waveguide (SIW) bandpass filters based on PCB process and multilayer LTCC technology,”Microw. Opt. Tech. Lett., vol. 51, no. 1, pp. 71-73, Jan. 2009.
    [4] B. Potelon, J.-F. Favennec, C. Quendo, E. Rius, C. Person, and J. C. Bohorquez,“Design of a Substrate integrated waveguide (SIW) filter using a novel topology of coupling,”IEEE Microw. Wirel. Compon. Lett., vol. 18, no. 9, pp. 956-958, Sep. 2008.
    [5] W. Shen, L. S. Wu, X. W. Sun, W. Y. Yin, and J. F. Mao,“Novel substrate integrated waveguide filters with mixed cross coupling,”IEEE Microw. Wirel. Compon. Lett., vol. 19, no. 11, pp. 701-703, Nov. 2009.
    [6] L. S. Wu, X. L. Zhou, and W. Y. Yin,“Evanescent mode bandpass filters using folded and ridge substrate integrated waveguides (SIWs),”IEEE Microw. Wireless Compon. Lett., vol. 19, no. 3, pp. 161-163, Mar. 2009.
    [7] X. P. Chen, W. Hong, T. J. Cui, Z. C. Hao, and K. Wu,“Substrate integrated waveguide elliptic filter with transmission line inserted inverter,”Electron. Lett., vol. 41, no. 15, pp. 851-852, Jul. 2005.
    [8] M. Shen, C. F. Chen, T. Y. Huang, R. B. Wu,“Design of vertically stacked waveguide filters in LTCC,”IEEE Trans. Microwave Theory Tec., vol. 55, no. 8, pp. 1771-1779, Aug, 2007.
    [9] L. S. Wu, X. L. Zhou, and W. Y. Yin,“A substrate integrated evanescent-mode waveguide filter with nonresonating node in low temperature co-fired ceramic,”IEEE Trans. Microw. Theroy Tech., vol. 58, no. 10, pp. 2654-2662, Oct. 2010.
    [10] J. H. Lee, S. Pinel, J. Papapolymerou, J. Laskar, and M. M. Tentzeris,“Low-loss LTCC cavity filters using system-on-package technology at 60 GHz,”IEEE Trans. Microw. Theory Tech., vol. 53, no. 12, pp. 3817-3824, Dec. 2005.
    [11] B. J. Chen, T. M. Shen, and R. B. Wu,“Dual band vertically stacked laminated waveguide filter design in LTCC technology,”IEEE Trans. Microw. Theroy Tech., vol. 57, pp. 1554-1562, Jun. 2009.
    [12] H. Y. Chien, T. M. Shen, T. Y. Huang, and R. B. Wu,“Miniaturized bandpass filters with double-folded substrate integrated waveguide resonators in LTCC,”IEEE Transactions on Microwave Theory and Techniques, vol. 57, pp. 1774-1782, Jul. 2009
    [13] J. H. Lee, S. Pinel, J. Papapolymerou,“Comparative study of feeding techniques for three-dimensional cavity resonators at 60GHz,”IEEE Trans. On Advanced Package, vol. 30, no. 1, pp. 115-123, Feb. 2007.
    [14] Z. C. Hao, W. Hong, X. P. Chen,“Multilayered substrate integrated waveguide (MSIW) elliptic filter,”IEEE Microw. Wireless Compon. Lett., vol. 15, no. 2, pp. 95-97, Feb. 2005.
    [15] J. S. Hong, and M. J. Lancaster,“Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters,”IEEE Trans. Microw. Theory Tech., vol. 44, no. 12, pp. 2099–2109, Dec. 1996.
    [16] Q. X. Chu and H. Wang,“A compact open-loop filter with mixed electric and magnetic coupling,”IEEE Trans. Microw. Theory Tech., vol. 56, no.2, pp. 431-439, Feb. 2008.
    [17] K. Ma, J. G. Ma, K. S. Yeo, and M. A. Do,“A compact size coupling controllable filter with separate electric and magnetic coupling paths,”IEEE Trans. Microw. Theory Tech., vol. 54, no. 3, pp. 1113-1119, Mar. 2006
    [18] I. Wolff,“Microstrip bandpass filter using degenerate modes of a microstrip ring resonator,”Electron. Lett., vol. 8, no. 12, pp. 29-30, June 1972.
    [19] L. Zhu and K. Wu,“A joint field/circuit model of line-to-ring coupling structures and its application to the design of microstrip dual-mode filters and ring resonator circuits,”IEEE Trans. Microw. Theory Tech., vol. 47, no. 10, pp. 1938-1948, Oct. 1999.
    [20] J. S. Hong, H. Shaman, and Y. H. Chun,“Dual-mode microstrip open-loop resonators and filters,”IEEE Trans. Microw. Theory Tech., vol. 55, no. 8, pp. 1764-1770, Aug. 2007.
    [21] J. R. Lee, J. H. Cho, and S. W. Yun,“New compact bandpass filter using microstripλ/4 resonators with open stub inverter,”IEEE Microw. Guide Wave Lett., vol. 10, no. 12, pp. 526-527, Dec. 2000.
    [22] C. K. Liao, P. L. Chi, and C. Y. Chang,“Microstrip realization of generalized Chebyshev filters with box-like coupling schemes,”IEEE Trans. Microw. Theory Tech., vol. 55, no. 1, pp. 147-153, Jan. 2007.
    [23] X. C. Zhang, Z. Y. Yu, and J. Xu,“Design of microstrip dual-mode filters based on source-load coupling,”IEEE Microw. Wireless Compon. Lett., vol. 18, no. 10, pp. 677-679, Oct. 2008.
    [24] L. Zhu and W. Menzel,“Compact microstrip bandpass filter with two transmission zeros using a stub-tapped half-wavelength line resonator,”IEEE Microw. Wireless Compon. Lett., vol. 13, no. 1, pp. 16-18, Jan. 2003.
    [25] R. Li and L. Zhu,“Ultra-wideband (UWB) bandpass filters with hybrid microstrip/slotline structures,”IEEE Microw. Wireless Compon. Lett., vol. 17, no. 11, pp. 778-780, Nov. 2007.
    [26] L. Zhu, and S. Sun,“Ultra-wideband (UWB) bandpass filters using multiple-mode resonator,”IEEE Microw. Wireless Compon. Lett., vol. 15, no. 11, pp. 796-798, Nov. 2005.
    [27] K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, MA: Artech House,1981
    [28] L. Lewin,“Radmtionfrom discontinities in strip. line,’’Proc. IEE ( London), vol. 107, pt. C, pp. 163-170, Feb 1960.
    [29] Y. Kobayashi, and S. Yoshida,“Bandpass filters using TM010 dielectric rod resonators,”in IEEE Microw. Symp. Digest, vol. 78, no. 1, pp. 233-235, Jun. 1978.
    [1] S. B. Cohn,“Slotline on a dielectric substrate,”IEEE Trans. Microw. Theroy Tech., vol. 17, no. 10, pp. 768-778, Oct. 1969.
    [2] S. B. Cohn,“Slotline field components,”IEEE Trans. Microw. Theroy Tech., vol. 20, no. 2, pp. 172-174, Feb. 1972.
    [3] J. Galejs,“Excitation of slots in a conducting screen above a lossy dielectric half space,”IRE Trans. Antemus and Propagation, vol. 10, no. 4, pp. 436-443, Jul. 1962.
    [4] R. Garg, and K. C. Gupta,“Expression for wavelength and impedance of slotline,”IEEE Trans. Microw. Theroy Tech., vol. 24, no. 8, pp. 532, Aug. 1976.
    [5] J. B. Knorr, and K. D. Kuchler,“Analysis of coupled slots and coplanar strips on dielectric substrates,”IEEE Trans. Microw. Theroy Tech., vol. 23, no. 7, pp. 541-548, Jul. 1975.
    [6] T. Itoh, and R. Mittra,“Dispersion characteristics of slotlines,”Electron. Lett, vol.7, no. 7, pp. 364-365, Jul. 1971.
    [7] R. Janaswamy, and D. H. Schaubert,“Dispersion characteristics for wide slotlines on low permittivity substrate,”IEEE Trans. Microw. Theroy Tech., vol. 33, no. 8, pp. 723-726, Aug. 1985.
    [8] R. Janaswamy, and D. H. Schaubert,“Characteristic impedance of a wide slotline on low permittivity substrate,”IEEE Trans. Microw. Theroy Tech., vol. 34, no. 8, pp. 900-902, Aug. 1986.
    [9] T. Itoh, Numerical techniques for microwave and millimeter-wave passive structures, New York: John Wiley, 1989.
    [10] G. G. Liang,“Full wave analysis of coplanar waveguide and slotline using the time domain finite difference method,”IEEE Trans. Microw. Theroy Tech., vol. 37, no. 12, pp. 1949-1957, Dec. 1989.
    [11] R. Jansen,“Hybrid mode analysis of end effects of planar microwave and millimeter wave transmission lines,”Proc. Inst. Elec.Eng., vol. 128, pt. H, pp. 77-86, 1981.
    [12] H. Yang, and N. G. Alexopoulos,“A dynamic model for microstrip slotline transition and related structure,”IEEE Trans. Microw. Theroy Tech., vol. 36, pp. 286-293, Feb. 1988.
    [13] J. B. Knorr, and J. Saenz,“End effect in a shorted slot,”IEEE Trans. Microw. Theroy Tech., vol. 21, pp. 579-580, Sep. 1973.
    [14] J. Chramiec,“Reactances of slotline short and open circuits on alumina substrate,”IEEE Trans. Microw. Theroy Tech., vol. 37, no. 10, pp. 1638-1641, Oct. 1989.
    [15] R. Azadegan, and K. Sarabandi,“Miniature high-Q double spiral slot line resonator filters,”IEEE Trans. Microw. Theroy Tech., vol. 52, no. 5, pp. 1548-1557, May. 2004.
    [16] D. J. Woo, T. K. Lee,“Novel u-slot and v-slot DGSs for bandstop filter with improved Q factor,”IEEE Trans. Microw. Theroy Tech., vol. 54, no. 6, pp.2840-2847, Jun. 2006.
    [17] E. L. Mariani and J. P. Agrios,“Slot-line filters and couplers,”IEEE Trans. Microwave Theory Tech., vol. 18, pp. 1089-1095, Dec. 1970.
    [18] D. F.Williams and S. E. Schwarz,“Design and performance of coplanar waveguide bandpass filters,”IEEE Trans. Microwave Theory Tech., vol. 31, pp. 558-566, July 1983.
    [19] J. K. A. Everard and K. K. M. Cheng,“High-performance direct coupled bandpass filter on coplanar waveguide,”IEEE Trans. Microwave Theory Tech., vol. 41, pp. 1568-1573, Sept. 1993.
    [20] M. Muraguchi, T. Hirota, A. Minakawa, K. Ohwada, and T. Sugeta,“Uniplanar MMIC’s and their applications,”IEEE Trans. Microwave Theory Tech., vol. 36, pp. 1896-1901, Dec. 1988.
    [21] T. Hirota, Y. Tarusawa, and H. Ogawa,“Uniplanar MMIC hybrids: A proposed new MMIC structure,”IEEE Trans. Microwave Theory Tech., vol. MTT-35, pp. 576-581, June 1987.
    [22] T. Tsujiguchi, H. Matsumoto, and T. Nishikawa,“A miniaturized end-coupled bandpass filter using hair-pin coplanar resonators,”in IEEE MTT-S Int. Microwave Symp. Dig., Baltimore, MD, June 1998, pp. 829-832.
    [23] K. Yoshida, K. Sashiyama, S. Nishioka, H. Shimakage, and Z. Wang,“Design and performance of miniaturized superconducting coplanar waveguide filters,”IEEE Trans. Appl. Superconduct., vol. 9, pp. 3905-3908, June 1999.
    [24] T. Tsujiguchi, H. Matsumoto, and T. Nishikawa,“A miniaturized double-surface CPW bandpass filter improved spurious response,”IEEE Trans. Microwave Theory Tech., vol. 49, pp. 879-885, May 2001.
    [25] J. Sor, Y. Qian, and T. Itoh,“Miniature low-loss CPW periodic structures for filter applications,”IEEE Trans. Microwave Theory Tech., vol. 49, pp. 2336-2341, Dec. 2001.
    [26] R. Azadegan and K. Sarabandi,“Miniaturized slot-line and folded-slot bandpass filters,”in IEEE MTT-S Int. Microwave Symp. Dig., Philadelphia, PA, June 2003, pp. 1595-1598.
    [27] R. Azadegan and K. Sarabandi,“A novel approach for miniaturization of slot antennas,”IEEE Trans. Antennas Propagat., vol. 51, pp. 421-429, Mar. 2003.
    [28] R. Azadegan and K. Sarabandi,“A compact planar folded-dipole antenna for wireless applications,”in Proc. IEEE AP-S Int. Symp., vol. 1, Columbus, OH, June 2003, pp. 439-442.
    [29] E. Yuan and S. H. Chao,“Unloaded Q measurement: The critical-point method,”IEEE Trans. Microwave Theory Tech., vol. 43, pp. 1983-1986, Aug. 1995.
    [30] P. Seongmin, S. M. Han,“A slot-loaed composte right/left-handed transmission line for a zeroth-order resonant antenna with improved efficiency,”IEEE Trans. Microwave Theory Tech., vol. 57, pp. 2775-2782, Nov. 2009.
    [31] R. Levy, R. V. Snyder, and G. L. Matthaei,“Design of microwave filters,”IEEE Trans. Microwave Theory Tech., vol. 50, pp. 783-793, Mar. 2002.
    [32] E. Yuan and S. H. Chao,“Unloaded Q measurement: The critical-point method,”IEEE Trans. Microwave Theory Tech., vol. 43, pp. 1983-1986, Aug. 1995.
    [33] B. Potelon, J. F. Favennec, C. Wuendo,“Design of a substrate integrated waveguide (SIW) filter using a novel topology of coupling,”IEEE Microw. Wireless Compon. Lett., vol. 18, no. 9, pp. 596-598, Sep. 2008.
    [34] H. J. Tang, W. Hong, J. X. Chen,“Development of millimeter-wave planar diplexers based on complementary characters of dual-mode substrate integrated waveguide filters with circular and elliptic cavities,”IEEE Trans. Microw. Theory Tech., vol. 55, no. 4, pp. 776-782, Apr. 2007.
    [35] Y. Cassivi and K. Wu,“Low cost microwave oscillator using substrate integratedwaveguide cavity,”IEEE Microw. Wireless Compon. Lett., vol. 13, no. 2, pp. 48-50, Feb. 2003.
    [36] K. Wu, D. Deslandes, and Y. Cassivi,“The substrate integrated circuits-a new concept for high-frequency electronics and optoeletronics,”in Proc. 6th Int. Conf. Telecommunication in Modern Satellite, Cable, Broadcasting Service (TELSIKS’03). vol. 1, pp. P-III-P-X, Oct. 1-3 2003.
    [37] L. S. Wu, X. L. Zhou, and W. Y. Yin,“Evanescent mode bandpass filters using folded and ridge substrate integrated waveguides (SIWs),”IEEE Microw. Wireless Compon. Lett., vol. 19, no. 3, pp. 161-163, Mar. 2009.
    [38] L. S. Wu, X. L. Zhou, and W. Y. Yin,“A substrate integrated evanescent-mode waveguide filter with nonresonating node in low temperature co-fired ceramic,”IEEE Trans. Microw. Theroy Tech., vol. 58, no. 10, pp. 2654-2662, Oct. 2010.
    [39] J. H. Lee, S. Pinel, J. Papapolymerou, J. Laskar, and M. M. Tentzeris,“Low-loss LTCC cavity filters using system-on-package technology at 60 GHz,”IEEE Trans. Microw. Theory Tech., vol. 53, no. 12, pp. 3817-3824, Dec. 2005.
    [40] B. J. Chen, T. M. Shen, and R. B. Wu,“Dual band vertically stacked laminated waveguide filter design in LTCC technology,”IEEE Trans. Microw. Theroy Tech., vol. 57, pp. 1554-1562, Jun. 2009.
    [41] T. M. Shen, T. Y. Huang, C. F. Chen, and R.-B.Wu,“Design of a vertically stacked waveguide filter with novel cross coupling structures in LTCC,”in Asia–Pacific Microw. Conf. Dig., Dec. 2006, pp. 1161-1164.
    [42] Z. C. Hao, W. Hong, X. P. Chen, et al,“Multilayered substrate integrated waveguide (MSIW) elliptic filter,”IEEE Microw. Wireless Compon. Lett., vol. 15, no. 2, pp. 95-97, Feb. 2005.
    [43] J. S. Hong, and M. J. Lancaster,“Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters,”IEEE Trans. Microw. Theory Tech., vol. 44, no. 12, pp. 2099-2109, Dec. 1996.
    [44] W. Shen, W. Y. Yin, and X. W. Sun,“Compact coplanar waveguide-incorporated substrate integrated waveguide (SIW) filter,”Journal of Electromagnetic Waves and Applications, vol. 24, no. 7, page 871-879, 2010.
    [45] W. Shen, X. W. Sun, W. Y. Yin, J. F. Mao, and Q. F. Wei,“A novel single-cavity dual mode substrate integrated waveguide filter with non-resonating node,”IEEE Microw. Wireless Compon. Lett., vol. 19, no. 6, pp. 368-370, Jun. 2009.
    [46] W. Shen, X. W. Sun, and W. Y. Yin,“Compact Substrate Integrated Waveguide (SIW) Filter with Defected Ground Structure,”IEEE Microw. Wirel. Compon. Lett., vol. 21, no. 2, pp. 83-85, Feb. 2011.
    [47] X. P. Chen and K. Wu,“Substrate integrated waveguide cross-coupled filter with negative coupling structure,”IEEE Trans. Microw. Theory Tech., vol. 56, no. 1, pp. 142-149, Jan. 2008.
    [48] W. Shen, L. S. Wu, X. W. Sun, W. Y. Yin, and J. F. Mao,“Novel substrateintegrated waveguide filters with mixed cross coupling (MCC),”IEEE Microw. Wireless Compon. Lett., vol. 19, no. 11, pp. 701-703, Nov. 2009.
    [49] L. S. Wu, X. L. Zhou, Q. F. Wei, and W. Y. Yin,“An extended doublet substrate integrated waveguide (SIW) bandpass filter with a complementary split ring resonator (CSRR),”IEEE Microw. Wireless. Compon. Lett., vol. 19, no. 12, pp. 777-779, Dec, 2009.
    [50] Y. D. Dong, T. Yang, and T. Itoh,“Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide fitlers,”IEEE Trans. Microw. Theory Tech., vol. 57, no. 9, pp. 2211-2223, Sep. 2009.
    [51] Y. L. Zhang, W. Hong, K. Wu, J. X. Chen, and H. J. Tang,“Novel substrate integrated waveguide cavity fitler with defected ground structure,”IEEE Trans. Microw. Theory Tech., vol. 53, no. 4, pp. 1280-1287, Apr. 2005.
    [52]吴林晟,基片集成波导与缺陷地结构及在滤波器设计中的应用研究,上海交通大学。
    [53] Amari, S., and U. Rosenberg,“Characteristics of cross (bypass) coupling through higher/lower order modes and their applications in elliptic filter design,”IEEE Trans. Microw. Theory Tech., vol. 53, no. 10, pp.3135-3141, Oct. 2005.
    [54] I. Wolff,“Microstrip bandpass filter using degenerate modes of a microstrip ring resonator,”Electron. Lett., vol. 8, no. 12, pp. 29-30, June 1972.
    [55] L. Zhu and K. Wu,“A joint field/circuit model of line-to-ring coupling structures and its application to the design of microstrip dual-mode filters and ring resonator circuits,”IEEE Trans. Microw. Theory Tech., vol. 47, no. 10, pp. 1938-1948, Oct. 1999.
    [56] L. Zhu and W. Menzel,“Compact microstrip bandpass filter with two transmission zeros using a stub-tapped half-wavelength line resonator,”IEEE Microw. Wireless Compon. Lett., vol. 13, no. 1, pp. 16-18, Jan. 2003.
    [57] A. Balalem, A. R. Ali, S. Amari, J. Machac, and A. Omar,“Realization of a triple-mode bandpass filter using a square-loop resonator,”in IEEE MTT-S Int. Micro. Symp. Dig. Jun. 2009, pp. 849-852.
    [58] W. Shen, X. W. Sun, and W. Y. Yin,“A novel microstrip filter using three-mode stepped impedance resonator (TSIR),”IEEE Microw. Wirel. Compon. Lett., vol. 19, no. 12, pp. 774-776, Dec, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700