用户名: 密码: 验证码:
小型毫米波频率合成技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
频率合成源被誉为电子系统的心脏,其性能直接影响到系统的整机性能。随着毫米波理论、器件水平、新型封装技术与电路制作工艺的发展,频率合成源的性能不断提高。另一方面,目前毫米波无线通信、雷达、制导和测试等系统发展迅猛、需求紧迫,这些系统都对频率合成源提出了越来越高的要求。因此,研究毫米波频率合成技术具有重要的意义和紧迫性,也是国内外学者关注的焦点。
     本文的研究内容主要包括以下几个方面:
     1、本文结合频率合成方式的各自优缺点,研究了五种小型混合式频率合成方法,规避了单一频率合成方式的局限,为实现具有小型化、平面化、低相位噪声、低杂散、宽带和捷变频等性能的频率合成器提供了理论基础。研究了两种小型相参频率合成方法,突破了由传统变频-滤波技术实现的相参源的固有缺陷。在此基础上,提出了全平面集成的W波段频率合成源实现方法——采用多级倍频扩展频带的方法对微波频率源进行扩频来实现W波段频率合成源,该方案的构架为W波段频率合成源的实现提供了一种更好方式。
     2、研究了用于扩频的W波段低次倍频技术。首先,对比研究了MMIC式、平衡二极管式、自偏置平衡二极管式三种W波段三倍频技术,利用谐波平衡法对各电路进行了设计、分析与验证。这三种方式中,自偏置平衡二极管倍频具有最佳变频损耗。第二,研究了一种平面集成W波段二倍频技术,采用单管倍频的方案,使用谐波平衡法研究并设计了低成本、小型化和低变频损耗的二倍频器,实验结果与预期吻合。第三,将小型微波频率合成源×4×3扩频得到W波段倍频频率合成源;将小型微波相参频率合成源×2×2×2扩频得到W波段相参频率合成源。验证了两种实现W波段扩频源方法的正确性。
     3、在对W波段频率合成源的应用探索方面,提出了小型3mm导引雷达样机方案。为提高接收机的接收灵敏度,必须突破接收混频器的宽带、低变频损耗和低驻波这三个关键技术指标。本文采用了五端口环形电桥作为平衡混频器的基本单元,提出了一种基于多线紧耦合结构的W波段宽带、低损耗的隔直/滤波器,采用该结构的平衡混频器比传统平衡混频器具有更宽带宽、更低变频损耗和更好的驻波特性。第二,在W波段大功率发射机的研究中,研制了W波段保护开关和W波段脉冲信号检波器,采用了多级注入锁定大功率IMPATT脉冲振荡器的方案,完成了在94.2±0.16GHz内,脉冲输出大于22W的发射机的研究。最后,通过对小型3mm集成导引雷达样机的外场实验验证了方案的可行性。
     4、低温共烧陶瓷(Low Temperature Co-fired Ceramic——LTCC)是微波毫米波高密度集成技术的研究热点与发展趋势之一。本文研究了微波毫米波LTCC电路的关键技术问题,包括层间垂直通孔过渡、层间耦合式过渡、子模块之间互连、不同传输线之间的互连、屏蔽等诸多问题。提出并验证了一种适合于DC~40GHz的层间垂直通孔互连结构;研究并验证了多种LTCC共面波导到矩形波导的过渡结构;提出了一种能够大大降低接地通孔数量的电路屏蔽措施;对LTCC滤波器的综合与设计做了详细的研究,并以实验验证了LTCC埋置滤波器。这部分研究成果为新型封装技术(LTCC)与毫米波电路的结合提供了有利的技术支持。
     5、提出利用LTCC工艺实现毫米波频率合成源。首先,研究了基于混频锁相环的微波LTCC频率合成源,并在LTCC多层基板上完成了制作,用实验结果验证了该方案的可行性;第二,提出了基于混频锁相+倍频的Ka波段LTCC频率合成方案,该方案在LTCC基板内部埋置了微波滤波器滤除混频支路中的谐波分量,在基板内部实现电源、信号、数字连接的分层交叉布线。实验结果与预期吻合很好,首次在毫米波频段报道了LTCC频率合成源。最后还对Ka波段LTCC频率合成器做了小型化设计,使体积和重量都减小了56%以上。
Frequency synthesizer is known as the heart of the electronic system, its performance has a direct impact on the overall system performance. With the rapid development of millimeter-wave theory, performances of device, new packaging technology and manufacturing process of circuits, the performance and integration of frequency synthesizer are constantly improved. On the other hand, with the urgent demanding in millimeter-wave wireless communications, radar, guidance and testing system, the demands on improving the performance of the frequency synthesizer is ever-increasing. Therefore, the research on the millimeter-wave frequency synthesis is of great significance and urgency, and it is also the focus of domestic and foreign researchers.
     The main content of this thesis include five aspects as follow:
     1. Based on the full planar integration circuit technology, the method of frequency synthesis in W-band is proposed, which adopts the frequency-extending scheme. The study begins with the analysis and experimental validation of theoretical and technical features of several frequency synthesis and phase-coherent frequency synthesis schemes. The frequency-extending scheme is a multi-stage cascaded multiplier chain, which can realize the W-band frequency synthesizer with properties of miniature, planar structure, low phase noise, low spurious level and wide bandwidth. This scheme solved the problem of the traditional and frequently-used method——phase locked waveguide Gunn oscillator which is with low integration, low stability and narrow bandwidth. This frequency-extending scheme provides a better way for the synthesis of the W-band frequency synthesizer.
     2. There are several schemes about frequency extending in W-band that are proposed in the section 3. The frequency triplers and doubler in multiplier-chain are studied in detail. The MMIC, balanced diode tripler and balanced diode tripler with self-bias circuit are analyzed, designed and fabricated, the measured results show that the balanced diode tripler with self-bias circuit has the lowest conversion loss in the three types tripler. A planar single diode doubler in W-band is also analyzed, designed and fabricated, the measured performances agree well with the simulation. In section 3, the W-band frequency synthesizer is realized by×4×3 multiplying the microwave source. and the W-band full phase coherent frequency synthesizer is realized by×2×2×2 scheme. These results validate the way of frequency extending scheme for W-band frequency synthesis.
     3. In the application of the W-band frequency synthesizer, a prototype of miniature 3mm radar front-end is proposed. A five ports rat-race ring with a multi-line tight-coupled DC/IF blocking and filtering structure is used as the basic unit of the W-band mixer to improve the sensitivity of the receiver. The measured results show that the novel mixer has a wider bandwidth, lower conversion loss and better VSWR when compared to the traditional mixer. Two types of the W-band SPDTs and detector are studied to protect the receiver and detecting the RF signal. A scheme of multi-stage inject lock pulse IMPATT amplifier is proposed to achieve 22W RF power in W-band, and it is realized and used in the prototype of the 3mm guidance radar successfully.
     4. LTCC has become one of the hot spots and trends as a high-density integration and packaging technology in microwave and millimeter-wave band. The idea of using LTCC to realize the millimeter wave frequency synthesizer is proposed in this thesis first. Based on the process characteristics and key technical problem of LTCC, study on the LTCC multilayer vertical via transition, the LTCC multilayer couple line transition, interconnection between LTCC sub-modules, and transitions between different transmission lines is carried out. A DC to 40GHz LTCC vertical via transition is proposed and validated. Three different CBCPW to waveguide transition are proposed, fabricated and measured. A new via-gate structure is designed for EM shielding, which reduced lots of ground via compared to the traditional structure. On the synthesis and design of the LTCC filter, detailed study is carried out in the last part of the section 4, and a LTCC filter is designed and measured as an example. These results provide a favorable of technical support on the combination of new packaging technology and millimeter-wave circuit.
     5. The idea of design a millimeter wave LTCC frequency synthesizer is proposed in this thesis. Firstly, the scheme of the microwave LTCC frequency synthesizer is researched and verified. Secondly, the Ka-band LTCC frequency synthesizer based on the mixing+PLL+multiplying scheme is researched, fabricated and measured. In the synthesizer, two microwave filters are buried in the multi-layer substrate. Power lines, signal lines and digital lines are in different layers. The measured performances of the synthesizer agree well with the simulation. At last, the Ka-band LTCC frequency synthesizer is redesigned for miniature, its size and weight are reduced by 56%. As far as I know, this is the first LTCC frequency synthesizers in Ka-band.
引文
[1]薛良金.毫米波工程基础.哈尔滨:哈尔滨工业大学出版社, 2004
    [2]甘体国.毫米波工程.成都:电子科技大学出版社, 2006
    [3] F. M. Gardner.锁相环技术.姚剑清译.北京:人民邮电出版社, 2007
    [4]远坂俊昭.锁相环(PLL)电路设计与应用.何希才译.北京:科学出版社, 2007
    [5]白居宪.低噪声频率合成.西安:西安交通大学出版社, 1995
    [6] Z. Galani, R. A. Campbell. An overview of frequency synthesizers for radars. IEEE Transactions on Microwave Theory and Techniques, 1991, 39(5): 782-790
    [7] U. L. Rohode. Microwave and wireless synthesizers. John Wiley & Sons, Inc., 1997
    [8] D. Banerjee. PLL performance simulation and design. National Semiconductor Corporation, 2000
    [9] H. Wang, G. S. Dow, B. R. Allen, et al. Development of low phase noise millimeter-wave sources using MMIC technology. 50th IEEE International Symposium on Frequency Control, 1996, 866-874
    [10] P. Kangaslahti, J. Riska, M. Karkkainen, et al. Low phase noise signal generation circuits for 60 GHz wireless broadband system. IEEE MTT-S International Microwave Symposium Digest, 2000, Vol.1: 43-46
    [11] M. Morgan, S. Weinreb, N. Wadefalk. A MMIC based 75-110 GHz signal source. IEEE MTT-S International Microwave Symposium Digest, 2002, Vol.3: 1859-1862
    [12] S. Kudszus, M. Neumann, T. Berceli. Fully integrated 94GHz subharmonic injection locked PLL circuit. IEEE Microwave and Guided Wave Letters, 2000, 10(2): 70-72
    [13] D. Banerjee. PLL performance simulation and design. National Semiconductor Corporation, 2003
    [14] H. T. Nicholas, H. Samueli, B. Kim. An analysis of the output spectrum of direct digital frequency synthesizer in the presence of phase accumulator truncation. 41st Annual Symposium on Frequency Control, 1987, 495-502
    [15] K. Tajima, Y. Imai, Y. Kanagawa, et al. A 5 to 10 GHz low spurious triple tuned type PLL synthesizer driven by frequency converted DDS unit. IEEE MTT-S International MicrowaveSymposium Digest, 1997, Vol.3: 1217-1220
    [16] A. C. Davidson, F. W. Wise, R. C. Compton, et al. Low phase noise 33-40 GHz signal generation using multi-laser phase-locked loops. IEEE Photonics Technology Letters, 1998, 10(9): 1304-1306
    [17] S. Fukushima, C. F. C Silva, Y. Muramoto, et al. 10 to 110 GHz tunable optic-electronic frequency synthesis using optical frequency comb generator and uni-travelling-carrier photodiode. Electronics Letters, 2001, 37(12): 780-781
    [18] G. Ritzberger, J. Bock, A. L. Scholtz. 45 GHz highly integrated phase-locked loop frequency synthesizer in SiGe bipolar technology. IEEE MTT-S International Microwave Symposium Digest, 2002, Vol.2: 831-834
    [19] J. Jeong, Y. Kwon. A fully integrated V-band PLL MMIC using 0.15-μm GaAs PHEMT technology. IEEE Journal of Solid-State Circuits, 2006, 1042-1050
    [20] S. Kudszus, A. Tessmann, T. Berceli, et al. W-band HEMT oscillator MMICs using subharmonic injection locking. IEEE Transactions on Microwave Theory and Techniques, 2000, 48(12): 2526-2532
    [21] O. Eoin, L. Brendan, L. Sverre. 100 GHz MMIC power source development study. International Journal of Infrared and Millimeter-waves, 2000, 21(11): 1747-1758
    [22] M. Morgan, S. Weinreb. A full waveguide band MMIC tripler for 75-110 GHz. IEEE MTT-S International Microwave Symposium Digest, 2001, Vol.1: 103-106
    [23]张永鸿.W波段频率源技术研究与应用: [博士学位论文].成都:电子科技大学, 2001
    [24]徐锐敏,张文彬.毫米波锁相倍频源小型化研究.微波学报, 2002, 18(3): 75-77
    [25]崔志伟.小型低相位噪声毫米波频率合成源技术研究: [硕士学位论文].成都:电子科技大学, 2005
    [26]姚鸿飞.全相参毫米波频综组件集成技术研究: [硕士学位论文].成都:电子科技大学, 2006
    [27]徐锐敏.毫米波步进调频全相参频率源技术研究: [博士学位论文].成都:电子科技大学, 2008
    [28]马海虹.W波段低相位噪声锁相频综技术研究: [博士学位论文].成都:电子科技大学, 2006
    [29]杨邦朝,张经国.多芯片组件(MCM)技术及其应用.成都:电子科技大学出版社, 2001
    [30]杨邦朝,蒋明,胡以达.LTCC组件及未来发展趋势.混合微电子技术, 2002, 1: 1-10
    [31]盖红星,王静,王宝友.多芯片组件(MCM)技术.信息技术与标准化, 2008, 5: 26-29
    [32] M. Opperman. Multichip modules (MCMs) for microwave and millimeter-wave applications: a challenge. International Conference on Multichip Modules and High Density Packaging, 1998,279-284
    [33] C. C. Weng, C. F. Chang, S. J. Chung. Development of a compact low temperature co-fired ceramic antenna front-end module. IEEE Transactions on Microwave Theory and Techniques, 2008, 56(11): 2483–2492
    [34] J. H. Lee, N. Kidera, S. Pinel, et al. Fully integrated passive front-end solutions for a V-band LTCC wireless system. IEEE Antennas and Wireless Propagation Letters, 2007, Vol.6: 285-288
    [35] J. H. Lee, S. Pinel, J. Laskar, et al. Design and development of advanced cavity based dual mode filters using low temperature co-Fired ceramic technology for V-Band gigabit wireless systems. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(9): 1869
    [36] J. H. Lee, S. Pinel, J. Papapolymerou, et al. Low loss LTCC cavity filters using system on package technology at 60 GHz. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(12): 3817-3824
    [37] C. Block, P. Hagn, C. Hoffmann, et al. LTCC technology for system in package solutions. Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2006, 18-20
    [38] G. Gauthier, J. P. Bertinet, J. Schroth. Low cost Ka-band transmitter for VSAT applications. IEEE MTT-S International Microwave Symposium Digest, 2006, 1398-1401
    [39] D. Drolet, A. Panther, C. J. Verver, et al. Ka-band direct transmitter modules for baseband pre-compensation. European Microwave Conference, 2005, Vol.1: 4-6
    [40] Y. J. ko, J. Y. Park, J. H. Ryu, et al. A miniaturized LTCC multilayered front-end module for dual-band WLAN (802.11a/b/g) applications. IEEE MTT-S International Microwave Symposium Digest, 2004, Vol.2: 563–566
    [41] A. Brokmeier. LTCC technology for miniaturized Ka-band front-ends. European Microwave Conference, 2003, Vol.2: 631-634
    [42] S. F. Alsarawi, D. Abbott, P. D. Franzon. A review of 3-D packaging technology. IEEE Transactions on Advanced Packaging Part B, 1998, 21(1): 2-14
    [43] R. Crowley. Three-dimensional electronics packaging. Technology Search International Inc., Austin, TX, 1993, 112-114
    [44] M. Mita, T. Kumakura, S. Inoue, et al. Advanced TAB/BGA multichip stacked module for high density LSI packages. IEEE Conference on Multi-Chip Module, 1994, 68-76
    [45] R. Kulke. Point to multipoint transceiver in LTCC for 26 GHz. IMAPS-Nordic, Stockholm, 2002, 1-4
    [46] J. H. Lee, G. D. Jean, S. Sarkar, et al. Highly integrated millimeter-wave passive componentsusing 3-D LTCC system on package (SOP) technology. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(6): 2220-2229
    [47] K. Markov, D. Orlenko, P. Heide, et al. Miniature fully integrated WLAN front-end modules based on LTCC technology. IEEE Radio and Wireless Conference, 2004, 139-142
    [48] J. S. Kim, S. G. Byeon, H. S. Song. A dual-band PLL module with inter-modulation signals suppressed using miniature LTCC filter. Asia-Pacific Microwave Conference, 2005
    [49] R. Bagger, T. Hahn, R. Wallace. System in package synthesizer for PCS/DCS application. Microwave Integrated Circuit Conference, 2007, 520-523
    [50] T. Baras, A. F. Jacob. K-band frequency synthesizer with subharmonic signal generation and LTCC frequency tripler. Microwave Integrated Circuit Conference, 2008, 466-469
    [51] T. Baras, A. F. Jacob. Vertically integrated voltage controlled oscillator in LTCC at K-band. IEEE MTT-S International Microwave Symposium Digest, 2008, 359-362
    [52] T. Baras, J. Mueller, A. F. Jacob. K-band LTCC star mixer with broadband IF output network. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(12): 2766-2772
    [53] T. Baras, A. F. Jacob. Integrated LTCC synthesizer and signal converter modules at K-band. IEEE Transactions on Microwave Theory and Techniques, 2009, 57(1): 71-79
    [54] V. Kroupa. Noise properties of PLL systems. IEEE Transactions on Communications, 1982, 30(10): 2244-2252
    [55] A. Hajimiri. Noise in phase locked loops. Southwest Symposium on Mixed Signal Design, 2001, 1-6
    [56] K. V. Puglia. Phase noise analysis of component cascades. IEEE Microwave Magazine, 2002, 3(4): 71-75
    [57] D. B. Leeson. A simplified model of feedback oscillator noise spectrum. Proceedings of the IEEE, 1965, Vol.42: 329-330
    [58] B. G. Goldberg. Digital frequency synthesis demystified: DDS and fractional-N PLLs. LLH Technology Publishing, 1999
    [59] J. Vankka. Methods of mapping from phase to sine amplitude in direct digital synthesis. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1996, 44(2): 526-534
    [60] Analog Device Inc. A technical tutorial on digital signal synthesis, 1999
    [61] H. G. Ryu, Y. Y. Kim, H. M. Yu, et al. A new triple controlled type frequency synthesizer using simplified DDFS driven digital hybrid PLL system. IEEE Transactions on Consumer Electronics, 2002, 48(1): 63-71
    [62] M. T. Faber, J. Chramiec, M. E. Adamski. Microwave and millimeter-wave diode frequency multipliers. Arhech House, 1995
    [63] Hewlett-Packard Corporation. Application note 995: The Schottky diode mixer. 1986
    [64]杨涛.毫米波宽带倍频与下变频技术研究与应用: [博士学位论文].成都:电子科技大学, 2002
    [65] S. A. Mass. Microwave Mixers. Arhech House, 1992
    [66] K. W. Chang, T. H. Chen, H. Wang, et al. Frequency up-conversion behavior of singly balanced diode mixers. Antennas and Propagation Society International AP-S Symposium Digest, 1991, Vol.1: 222-225
    [67] K Chang, R. Tahim, D. English, et al. W-band (75 to 110 GHz) microstrip components. IEEE MTT-S International Microwave Symposium Digest, 1985, 371-374
    [68] D. An, S. C. Kim, J. D. Park, et al. A novel 94-GHz MHEMT resistive mixer using a micro-machined ring coupler. IEEE Microwave and Wireless Components Letters, 2006, 16(8): 467-469
    [69]邹涌泉,甘体国.毫米波宽带鳍线PIN管开关.电讯技术, 2000, 40(1): 8-11
    [70]徐锐敏,谢俊,延波.一种新颖的鳍线单刀双掷开关.红外与毫米波学报, 2001, 20(4): 301-303
    [71] M. Ashok, B. Umesh. Wideband PIN diodes SPST switch in unilateral asymmetric finline. International Journal of Electronics, 2001, 88(4): 499-505
    [72] Micro-semi Corporation. Micro-note series 701: PIN diode fundamentals. Watertown: B. Doherty
    [73] H. Meinel, L. P. Schmidt.High sensitivity millimeter-wave detectors using finline technology. The 5th. International Infrared and Millimeter-waves Conference, 1980, 133-135
    [74] Agilent Technologies. Data sheet: Agilent HSCH-9161 zero bias beamlead detector diode, 2002
    [75]龚克,王激.波导与微带线和共面线的过渡问题.微波学报, 1994, 2: 12-16
    [76]李松.毫米波检波器: [硕士学位论文].成都:电子科技大学, 2008
    [77]马晓星.毫米波接收技术: [硕士学位论文].成都:电子科技大学, 2009
    [78] K. S. Yang, K. Tokuda, Y. H. Kim. A V-band planar narrow bandpass filter using a new type integrated waveguide transition. IEEE Microwave and Wireless Components Letters, 2004, 14(12): 545-547
    [79] Ferro Electronic Materials. Data sheet: LTCC A6 system for wireless solutions, 2002
    [80] R. Valois, D. Baillargeat, S. Verdeyme, et al. High performances of shielded LTCC vertical transitions from DC up to 50 GHz. IEEE Transactions on Microwave Theory and Techniques,2005, 53(6): 2026-2032
    [81] Y. C. Lee, C. S. Park. A novel CPW to stripline vertical via transition using a stagger via structure and embedded air cavities for V-band LTCC SiP applications. Asia-Pacific Microwave Conference, 2005, Vol.2
    [82] T. Baras, A. F. Jacob. Compact vertical bias feed networks for LTCC millimeter-wave circuits. European Microwave Conference, 2006, 60-63
    [83] T. Baras, A. F. Jacob. Advanced broadband 2nd-level interconnects for LTCC multichip modules. German Microwave Conference, 2005, 21-24
    [84]夏雷.8毫米MCM接收前端的研究: [硕士学位论文].成都:电子科技大学, 2004
    [85] L. Xia, R. M. Xu, B. Yan, et al. Broadband transition between air-filled waveguide and substrate integrated waveguide. Electronics Letters, 2006, 42(24): 1403-1405
    [86] Y. Huang, K. Wu. A broadband LTCC integrated transition of laminated waveguide to air-filled waveguide for millimeter-wave applications. IEEE Transactions on Microwave Theory and Techniques, 2003, 51(5): 1613-1617
    [87] H. Y. Lee, D. S. Jun, S. E. Moon, et al. Wideband aperture coupled stacked patch type microstrip to waveguide transition for V-band. Asia-Pacific Microwave Conference, 2006, 360-362
    [88] X. Zhang, D. Kuylenstierna, J. Liu, et al. A compact V-band planar wideband bandpass filter based on liquid crystal polymer substrates. Electronics System-Integration Technology Conference, 2008, 163-168
    [89] W. Menzel, A. Klaassen. On the transition from ridged waveguide to microstrip. European Microwave Conference, 1989, 1265-1269
    [90] L. J. Lavedan. Design of waveguide-to-microstrip transitions specially suited to millimeter-wave applications. Electronics Letters, 1997, 13(20): 604-605
    [91] A. Suntives, A. Khajooeizadeh, R. Abhari. Using via fences for crosstalk reduction in PCB circuits. IEEE International Symposium on Electromagnetic Compatibility, 2006, Vol.1: 34-37
    [92] J. H. Kim, D. C. Park. A simple method of crosstalk reduction by metal filled via hole fence in bent transmission lines on PCBs. 17th International Zurich Symposium on Electromagnetic Compatibility, 2006, 363-366
    [93] G. E. Ponchak, D. H. Chun, J. G. Yook, et al. The use of metal filled via holes for improving isolation in LTCC RF and wireless multichip packages. IEEE Transactions on Advanced Packaging, 2000, 23(1): 88-99
    [94] J. S. Hong, M. J. Lancaster. Microstrip filters for RF/microwave applications. John Wiley & Sons,Inc., 2001
    [95] R. J. Cameron. General coupling matrix synthesis methods for chebyshev filtering functions. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(4) : 433-442
    [96] R. J. Cameron. Advanced coupling matrix synthesis techniques for microwave filters. IEEE Transactions on Microwave Theory and Techniques, 2003, 51(1): 1-10
    [97] R. J. Cameron, A. R. Harish, C. J. Radcliffe. Synthesis of advanced microwave filters without diagonal cross-couplings. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(12): 2862-2872
    [98] L. Rigaudeau, P. Ferrand, D. Baillargeat, et al. LTCC 3-D resonators applied to the design of very compact filters for Q-band applications. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(6): 2620-2627
    [99] Y. H. Cho, D. Y. Jung, Y. C. Lee, et al. A fully embedded LTCC multilayer BPF for 3-D integration of 40 GHz radio. IEEE Transactions on Advanced Packaging, 2007, 30(3): 521-525

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700