用户名: 密码: 验证码:
新型铋基低温烧结微波介质陶瓷研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来由于微波技术设备向小型化、集成化以及民用方向发展,国际上展开了大规模的对微波介质材料的研究工作。随着近年来LTCC(低温共烧陶瓷)技术的广泛使用,寻找、制备与研究中高介电常数(εr>10)、低损耗(Qf>5000GHz)、近零谐振频率温度系数(TCF≈0ppm/oC)、低烧结温度(低于Ag、Cu、Au、Al等常用金属的熔点)且跟金属电极烧结匹配、低成本(不含或者含有少量贵重金属)、环保(至少无铅,尽量不含或者含有较少有毒原材料)的新型微波介质陶瓷成为了人们研究的热点。
     考虑到Bi基氧化物陶瓷一般具有较低烧结温度和较高介电常数等优点,本论文紧紧围绕各类Bi基氧化物陶瓷,应用固相反应烧结的方法和高能球磨的方法,通过多种离子取代以及氧化物掺杂的方式,对Bi基氧化物陶瓷的烧结温度、微波介电性能、金属电极匹配性等方面展开了研究,并尝试在陶瓷基板天线和多层共烧电容器等领域进行了原型器件设计和制作,得到了一系列兼具理论和工程应用价值的结果:
     本文的第一章主要从基础介质物理理论出发,首先介绍了介质中最基本的极化现象,然后进一步引申出了在微波频段下(300MHz~300GHz)电介质的介电常数、介电损耗以及温度系数的具体表征以及含义,为后续具体工作提供了有力的理论依据。接下来详细介绍了低温共烧陶瓷(LTCC)技术的发展状况,其中包括常用的导体材料以及介质材料两部分的发展状况。在第一章的结束部分阐述了本文的主要研究内容及其意义。
     本文的第二章主要是对Bi_2O_3-Nb_2O_5二元体系微波介质陶瓷的研究。首先通过V5+、Cu~(2+)、W~(6+)、Ta~(5+)等离子取代的方式,应用固相反应烧结和高能球磨等制备方法,系统研究了BiNbO_4和Bi_3NbO_7配方的相形成以及降温改性,得到了介电常数介于36~45、Qf介于5000~20000GHz、谐振频率温度系数近零的BiNbO_4基陶瓷以及介电常数介于65~95、Qf介于230GHz~560GHz、TCF在-115~-70ppm/oC的Bi_3(Nb,Ta)O_7基陶瓷。首次研究了BiNbO_4陶瓷跟Cu电极的共烧问题,发现在N_2气氛下共烧后并没有发生反应或者渗透的情况,奠定了BiNbO_4陶瓷在LTCC中的应用基础;首次尝试使用低温烧结的BiNbO_4陶瓷作为基板,设计了二维天线阵列,HFSS软件仿真结果跟网络分析仪的实际测量结果基本符合,为高介基板在微波频段的应用做了初步探索。
     本文的第三章主要研究了Bi(Sb_xNb_yTa_z)O_4(x+y+z=1)三元体系的相组成、相变以及微波介电性能等问题。首次系统地研究了Bi(Sb_xNb_yTa_z)O_4(x+y+z=1)三元体系的相组成以及相变问题。将Bi(Sb_xNb_yTa_z)O_4(x+y+z=1)三元体系分为:I-单斜固溶体区域(x>0.78);II-单斜、正交同存的区域(0.78>x>0.55);III-正交三斜相变区域(x<0.55)三个区域(相图不随x和y的取值而发生大的变化)。从晶格结构、晶胞参数的角度出发,较为详细地阐述了三元相图中各个相区转变的过程,重点研究了在正交、三斜相变区域中正交相到三斜相之间的相变问题。发现了高温三斜相β-BiNbO_4向低温正交相α-BiNbO_4相转变现象,并确定了β-BiNbO_4陶瓷不能够稳定存在的温度范围700oC~1020oC。但该结论并不适用于粉末样品。并且在这个三元体系中开发出了一系列具有潜在应用价值的微波介质陶瓷:1080oC烧结的纯单斜相的BiSbO_4陶瓷,介电常数εr≈19.3、Qf≈70000GHz、TCF≈-62ppm/oC,不跟Ag发生明显反应;掺杂0.6wt.% ~1.2wt.%B_2O_3-CuO后930oC烧结的单斜相的BiSbO_4陶瓷,介电常数εr≈19.5、Qf≈45400GHz~33700GHz、TCF≈-65ppm/oC;960oC烧结的Bi(Sb_(0.6)Ta_(0.4))O_4陶瓷,εr≈27、Qf≈35000GHz、TCF=-12ppm/oC;960oC烧结的Bi{Sb_(0.6)(Nb_(0.992)V_(0.008))_(0.4)}O_4陶瓷,εr≈34.7、Qf≈16000GHz、TCF=+16.1ppm/oC。
     在本文的第四章中,开发并研究了Bi_2O_3-MoO_3二元体系超低温烧结微波介质陶瓷的烧结特性、微波介电性能、金属电极烧结匹配问题以及多层电容器具体应用问题。首先,从Bi_2O_3-MoO_3二元体系的相图出发,设计并制备了一系列的二元氧化物,发现在xBi_2O_3-(1-x)MoO_3中,随着x值从0.2增加到0.5,样品的成瓷温度几乎线性地从600oC增加到了750oC。当x=0.875时,其烧结温度稳定在820oC附近。整体来讲,富含MoO_3的区域比富含Bi2O3的区域具有更低的烧结温度。这个体系中有三个具有良好微波介电性能的配方组成:620oC烧结的Bi_2Mo_3O_(12)陶瓷,εr≈19、Qf≈21800GHz、TCF≈-215ppm/oC,跟Ag发生反应但是跟Al不发生反应;640oC烧结的Bi_2Mo_2O_9陶瓷,εr≈38、Qf≈12500GHz、TCF≈+31ppm/oC,跟Ag发生反应但是跟Al不发生反应;750oC烧结的Bi_2MoO_6陶瓷,εr≈31、Qf≈16700GHz、TCF≈-114ppm/oC。使用等价镧系离子La~(3+)和Nd~(3+)对Bi_2Mo_2O_9中的Bi3+进行取代,来调节其微波介电性能,尤其是TCF值,获得的(Bi0.8La0.2)2Mo2O9陶瓷具有近零的温度系数TCF≈-4.6ppm/oC,其介电常数εr≈32.7、Qf≈13490GHz、烧结温度为650oC。在第四章的最后一小节中,初次尝试制备了Bi_2Mo_2O_9基、Al做内电极的超低温烧结多层电容器MLCC,在645oC下成功烧结制备了Bi_2Mo_2O_9多层电容器(共六层,每层厚度约90μm,电极厚度约为12μm)以及单层电容器(层厚约50μm,电极厚度约为12μm),这开拓了Al电极在LTCC领域中的应用。
     在本文的最后一章,总结了全文的重要结论并阐明了进一步的工作方向。
With the rapid development of mobile communication and satellite communication, microwave electronic devices are required to be developed and fabricated for miniaturization and integration. The low temperature co-fired ceramic technology (LTCC) becomes an important fabricating technology that can integrate the passive components within a monolithic bulk module with IC chips mounted on its surface. By this technology, microwave dielectrics are stacked in multilayers and co-fired with internal electrodes, such as Ag, Cu, Au, Al, their alloys etc, in special patterns to fulfill different electrical functions. The microwave dielectric materials used in LTCC field must have a high dielectric permittivity (εr>10), a high Qf value (f=resonant frequency, Q=1/dielectric loss at f, Qf>5000GHz), a near zero temperature coefficient of resonant frequency (TCF≈0ppm/oC), a low sintering temperature (below the melting points of common electrode metals, such as silver, copper, gold, aluminum etc. ) and chemical compatibility with the metal electrodes. Besides that, considering the environment and economic elements, people prefer to explore microwave dielectric ceramics with low price (not contain rare metal oxides) and without toxicity (at least lead free).
     Bismuth-based dielectric ceramics are well-known as low-fired materials and have been investigated in multilayer capacitors application for many years. According to Shanno’ns study, Bi~(3+) has a polarizability of 6.12(?)~3, which could account for the high permittivities in many bismuth based oxides. In this thesis, a series of new bismuth-based oxides prepared by solid state reaction method and high energy ball milling method were explored. Ionic substitution and oxides addition methods were used to lower the sintering temperature, adjust the microwave dielectric properties and their chemical compatibility with metal electrodes. The application of antenna substrate using high permittivity dielectric and the fabrication of multilayers co-fired capacitor using bismuth based oxides were also tried. A series of scientific and engineering results were obtained as follows:
     1. The influence of V~(5+), Cu~(2+), W~(6+) and Ta~(5+) substitution on the sintering temperature, microwave dielectric properties and phase composition of BiNbO_4 and Bi_3NbO_7 compositions in the Bi_2O_3-Nb_2O_5 binary system prepared by solid state reaction method and high energy ball milling method were studied. A series of BiNbO_4 ceramics sintered at 850~960oC withεr≈36~45, Qf≈5000~20000GHz and TCF≈0ppm/oC and Bi_3(Nb,Ta)O_7 ceramics sintered at 900~990oC withεr≈65~95, Qf≈230~560GHz and TCF≈-115~-70ppm/oC were obtained. The co-firing between BiNbO_4 ceramics and copper electrode under N_2 atmosphere was first studied. The SEM and EDS results showed that there was no reaction and diffusion between the ceramic and electrode. This makes it possible for BiNbO4 ceramics to be used in LTCC technology. A two element antennas with centre frequency at 3.07 GHz and bandwidth of 34MHz at -10 dB attenuation were obtained using a BiNbO4 ceramic substrate with size 34mm×34mm×1mm. The primary study of BiNbO_4 ceramic in antenna will broaden the application field for microwave ceramics with high permittivity.
     2. Based on the analysis on a number of Bi(Sb_xNb_yTa_z)O_4 (x+y+z=1) samples, a pseudo-ternary phase diagram of Bi(Sb,Nb,Ta)O_4 system is given below the melting point. It is composed of a monoclinic-phase region (x≥0.78), an orthorhombic-phase region (x≤0.55) and a monoclinic-orthorhombic coexisting phase region (0.55≤x≤0.78). The phase transformation from the monoclinic to orthorhombic structure can be attributed to the decrease of space occupied by the bismuth layers, which is caused by the increase of octahedra volumes when the Nb or Ta amount increases. In orthorhombic phase region, as the sintering temperature increases, the phase transformation to triclinic structure is observed and it is seriously affected by the sintering temperature and the Sb amount in Bi(Sb,Nb,Ta)O_4. Phase transformation fromβ-BiNbO_4 toα-BiNbO_4 in BiNbO_4 bulk samples was first reported and studied. From X-ray diffraction patterns, the transformation fromβtoαphase of BiNbO_4 could be observed by heating the bulk samples ofβ-BiNbO_4 from low temperatures to 700~1030oC. But such a transformation didn’t occur in powder samples and in the cooling course. This phenomenon might be related with associated activation of stress and heat energy in the heating course. Differential thermal analysis, shrinkage and dielectric properties as a function of temperature were carried out and all the results confirmed the transformation fromβtoαphase of BiNbO4. In addition, a series of promising candidates for LTCC were explored in Bi(SbxNbyTaz)O4 system: 1, the BiSbO_4 ceramic sintered at 1080oC withεr≈19.3, Qf≈70000GHz, TCF≈-62ppm/oC and chemical compatibility with silver; 2, the 930oC sintered BiSbO4 ceramics with 0.6wt.% ~1.2wt.%B_2O_3-CuO addition withεr≈19.5, Qf≈45400GHz~33700GHz and TCF≈-65ppm/oC; 3, the 960oC sintered Bi(Sb0.6Ta0.4)O_4 ceramic withεr≈27, Qf≈35000GHz and TCF=-12ppm/oC; 4, the 960oC sintered Bi、O_4 ceramic withεr≈34.7, Qf≈16000GHz, and TCF=+16.1ppm/oC.
     3. The preparation, phase composition, microwave dielectric properties and chemical compatibility with silver and aluminum electrodes were investigated on a series of single phase compounds in the Bi2O3-MoO3 binary system. All materials have ultra low sintering temperatures lower than 820oC. Eight different xBi2O3-(1-x)MoO3 compounds with x value between 0.2≤x≤0.875 were fabricated and the associated microwave dielectric properties were studied. Theβ~Bi_2Mo_2O_9 single phase has a positive temperature coefficient of resonant frequency (TCF) about +31ppm/oC, with a permittivityεr=38 and a Qf=12500GHz at 300K at a frequency of 6.3GHz. Theα~Bi_2Mo_3O_(12) andγ~Bi2MoO6 compounds both have negative temperature coefficient values of TCF~-215ppmo/C and TCF~-114ppm/oC, with permittivities ofεr=19 and 31, Qf=21800GHz and 16700 GHz at 300K measured at resonant frequencies of 7.6 GHz and 6.4 GHz, respectively. Through sintering the B2iO3-2.2MoO3 at 620oC for 2hrs a composite dielectric containing bothαandβphase can be obtained with a near zero temperature coefficient of frequency TCF=-13ppm/oC and a relative dielectric constantεr=35, and a large Qf~12000 GHz is also obtained. Owing to the frequent difficulty of thermochemical interactions between low sintering temperature materials and the electrode materials during the cofiring, preliminary investigations are made to determine any major interactions with possible candidate electrode metals, Ag and Al. The results show thatβ~Bi_2Mo_2O_9 andα~Bi_2Mo_3O_(12) do not react with Al at their sintering temperatures. La and Nd were also used to substitute for the Bi in Bi_2Mo_2O_9. For (Bi_(1-x)Ln_x)_2Mo_2O_9 (Ln=La, Nd) ceramics, as the x value increased, the optimal sintering temperature increased. Substitution of La or Nd could stabilize the monoclinic phase and modify its microwave dielectric properties. The best microwave dielectric properties were obtained in (Bi0.8La0.2)2Mo2O9 ceramic with a permittivity of 32.7, Qf value of 13,490GHz and temperature coefficient about -4.6ppm/oC. From the above results, the low sintering temperature, good microwave dielectric properties, chemical compatibility with Al metal electrode, nontoxicity and price advantage of the Bi2O3-MoO3 binary system, all indicate the potential for a new material system with ultra-low temperature cofirng for multilayer devices application.
     4. Fabrication of a new kind multlayer co-fired capacitor using Bi_2Mo_2O_9 dielectric and aluminum as internal electrode was studied. The Bi_2Mo_2O_9 powders was calcined at 600oC for 4hrs. The calcined powders were vibratory milled for 24hrs to obtain fine powders for tape-casting use. To obtain fine slurry, the milled Bi_2Mo_2O_9 powders (56wt.%) were added into a solution of MEK (Methyl Ethyl Ketone, 19wt.%), ethanol (19wt.%), and PVB (Polyvinyl Butyral, 6wt.%) mixture and ball-milled for 24hrs. Tape casting was performed on a laboratory-type tape-casting machine with a doctor blade casting head, using 75 microns thick silicone coated mylar (polyethylene terephthalate) as a carrier film. The casting speed was set as 420 cm/min. The cast slurries were dried at room temperature without additional air flow. Aluminum electrode was screen-printed on the tape and laminated before firing. To minimize the warpage of the Bi_2Mo_2O_9-Aluminum MLCCs in this study, we applied an external force during the sintering course. When the internal pressure was too large, the local compressive stresses in MLCC samples could cause the cracks during sintering course. Only when the proper pressure was applied, the warpage could be successfully limited. Scanning electron microscoy, dielectric spectroscopy, dielectric temperature dependence and P-E loop were measured on pellet samples, MLCC samples and monolayer samples. There is no reaction or interdiffusion between electrode layer and ceramic layer. The relative permittivities of multilayer, monolayer, and monolithic Bi_2Mo_2O_9 samples all stabilize at around 39, and the dielectric losses are near 0.001 at 1MHz. Temperature dependence is similar for both monolayer and monolithic Bi_2Mo_2O_9 samples. Energy density of the monolayer Bi_2Mo_2O_9 sample reaches 0.75J/cm~3 at 67kV/mm with a thickness of 46μm. This study extends the application of the ultra-low temperature firing Bi_2Mo_2O_9 with Al electrodes.
引文
[1] McQuiddy DN, Wassel JW, Lagrange JB, et al. Monolithic microwave integrated-circuits and historical-perspective[J]. IEEE Transactions on Microwave Theory and Techniques, 1984, 32 (9): 997-1008.
    [2] Pozar DM. Microstrip antennas[J]. Proceedings of the IEEE, 1992, 80 (1): 79-91.
    [3] Axelsson AK, Alford NM. Bismuth titanates candidates for high permittivity LTCC[J]. J Eur Ceram Soc, 2006, 26 (10-11): 1933-1936.
    [4] Gupta TK, Jean JH. Principles of the development of a silica dielectric for microelectronics packaging[J]. J Mater Res, 1996, 11 (1): 243-263.
    [5] Sebastian MT, Jantunen H. Low loss dielectric materials for LTCC applications: a review[J]. Int Mater Rev, 2008, 53 (2): 57-90.
    [6] Valant M, Suvorov D. Chemical compatibility between silver electrodes and low-firing binary-oxide compounds: conceptual study[J]. J Am Ceram Soc, 2000, 83 (11): 2721-2729.
    [7] Moulson AJ. Electroceramics[M]. London: Chapman & Hall, 1995.
    [8]殷之文.电介质物理学[M].北京:科学出版社, 2003.
    [9]钟维烈.铁电体物理学[M].北京:科学出版社, 2000.
    [10] Dunkle SS, Suslick KS. Photodegradation of BiNbO4 Powder during Photocatalytic Reactions[J]. Journal of Physical Chemistry C, 2009, 113 (24): 10341-10345.
    [11] Roberts S. Polarizabilities of ions in perovskite-type crystals[J]. Physical Review, 1951, 81 (5): 865-868.
    [12] Bosman AJ, Havinga EE. Temperature dependence of dielectric constants of cubic ionic compounds[J]. Physical Review, 1963, 129 (4): 1593-1600.
    [13]李婷,王筱珍,张绪礼.微波介质陶瓷相对介电常数的简易测量[J].电子元件与材料, 1996, 15 (1): 41-45.
    [14]李标荣,王筱珍,张绪礼.无机电介质[M].武汉:华中理工大学出版社, 1995.
    [15] Heydweiller A. Density, dielectricity constants and refraction of solid salts[J]. Zeitschrift Fur Physik, 1920, 3: 308-317.
    [16] Shannon RD. Dielectric polarizabilities of ions in oxides and fluorides[J]. J Appl Phys, 1993, 73 (1): 348-366.
    [17] Shannon RD, Oswald RA, Parise JB, et al. Dielectric-constants and crystal-structures of CaYAlO4, CaNdAlO4, and SrLaAlO4, and deviations from the oxide additivity rule[J]. J Solid State Chem, 1992, 98 (1): 90-98.
    [18] Hakki BW, Coleman PD. A dielectric resonator method of measuring inductive capacities in the millimeter range[J]. IRE Transactions on Microwave Theory and Techniques, 1960, 8: 402-410.
    [19] Kobayashi Y, Katoh M. Microwave measurement of dielectric-properties of low-loss materials by the dielectric rod resonator method[J]. IEEE Transactions on Microwave Theory and Techniques, 1985, 33 (7): 586-592.
    [20] Choi GK, Kim JR, Yoon SH, et al. Microwave dielectric properties of scheelite (A=Ca, Sr, Ba) and wolframite (A = Mg, Zn, Mn) AMoO4 compounds[J]. J Eur Ceram Soc, 2007, 27 (8-9): 3063-3067.
    [21] Yoon SH, Kim DW, Cho SY, et al. Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds[J]. J Eur Ceram Soc, 2006, 26 (10-11): 2051-2054.
    [22] Shannon RD. Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A, 1976, 32 (SEP1): 751-767.
    [23] Fukuda K, Kitoh R, Awai I. Microwave characteristics of TiO2-Bi2O3 dielectric resonator[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 1993, 32 (10): 4584-4588.
    [24] Templeton A, Wang XR, Penn SJ, et al. Microwave dielectric loss of titanium oxide[J]. J Am Ceram Soc, 2000, 83 (1): 95-100.
    [25] Kim HJ, Kucheiko S, Yoon SJ, et al. Microwave dielectrics in the (L1a/2Na1/2)TiO3-Ca(Fe1/2Nb1/2)O3 system[J]. J Am Ceram Soc, 1997, 80 (5): 1316-1318.
    [26] Wise PL, Reaney IM, Lee WE, et al. Structure-microwave property relations in (SrxCa1-x)n+1TinO3n+1[J]. J Eur Ceram Soc, 2001, 21 (10-11): 1723-1726.
    [27] Huang CL, Weng MH, Shan GM. Effect of V2O5 and CuO additives on sintering behavior and microwave dielectric properties of BiNbO4 ceramics[J]. Journal of Materials Science, 2000, 35 (21): 5443-5447.
    [28] Harrop PJ. Temperature coefficients of capacitance of solids[J]. Journal of Materials Science, 1969, 4 (4): 370-374.
    [29] Wersing W. Microwave ceramics for resonators and filters[J]. Current Opinion in Solid State & Materials Science, 1996, 1 (5): 715-731.
    [30] Kim DW, Hong HB, Hong KS, et al. The reversible phase transition and dielectric properties of BaNb2O6 polymorphs[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2002, 41 (10): 6045-6048.
    [31] Kim DW, Youn HJ, Hong KS, et al. Microwave dielectric properties of (1-x)Ba5Nb4O15-xBaNb2O6 mixtures[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2002, 41 (6A): 3812-3816.
    [32] Wise PL, Reaney IM, Lee WE, et al. Structure-microwave property relations of Ca and Sr titanates[J]. J Eur Ceram Soc, 2001, 21 (15): 2629-2632.
    [33] Hu X, Chen XM. Microstructure and dielectric properties of Ca(Fe1/2Nb1/2)O3-modified PbZrO3 ceramics[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2004, 43 (1): 215-218.
    [34] Tatsuki K, Murano K, Kawamura T, et al. Dielectric-properties of PbO-ZrO2-ReOx Ceramics at microwave frequencies[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 1987, 26(2): 80-82.
    [35] Hu X, Chen XM, Wu SY. Preparation, properties and characterization of CaTiO3-modified Pb(Fe1/2Nb1/2)O3 dielectrics[J]. J Eur Ceram Soc, 2003, 23 (11): 1919-1924.
    [36] Bian JI, Kim DW, Hong KS. Microwave dielectric properties of A2P2O7 (A = Ca, Sr, Ba; Mg, Zn, Mn)[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2004, 43 (6A): 3521-3525.
    [37] Ubic R, Reaney IM, Lee WE. Microwave dielectric solid-solution phase in system BaO-L2nO3-TiO2 (Ln = lanthanide cation)[J]. Int Mater Rev, 1998, 43 (5): 205-219.
    [38] Reaney IM, Wise P, Ubic R, et al. On the temperature coefficient of resonant frequency in microwave dielectrics[J]. Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, 2001, 81 (2): 501-510.
    [39] Konishi Y. Novel dielectric waveguide components-microwave applications of new ceramic materials[J]. Proceedings of the IEEE, 1991, 79 (6): 726-740.
    [40] Tamura H. Microwave loss quality of (Zr0.8Sn0.2)TiO4[J]. Am Ceram Soc Bull, 1994, 73 (10): 92-95.
    [41] Tamura H, Sagala DA, Wakino K. Lattice-vibrations of Ba(Zn1/3Ta2/3)O3 crystal with ordered perovskite structure[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes &Review Papers, 1986, 25 (6): 787-791.
    [42] Wakino K, Murata M, Tamura H. Far infrared relection spectra of Ba(Zn,Ta)O3-BaZrO3 dielectric resonator material[J]. J Am Ceram Soc, 1986, 69 (1): 34-37.
    [43] Penn SJ, Alford NM, Templeton A, et al. Effect of porosity and grain size on the microwave dielectric properties of sintered alumina[J]. J Am Ceram Soc, 1997, 80 (7): 1885-1888.
    [44] Kingery WD, Bowen HK, Uhlmann DR. Introduction to ceramics[M]. New York: Wiley, 1976.
    [45] Kim ES, Yoon KH. Effect of nickel on microwave dielectric-properties of Ba(M1g/3Ta2/3)O3[J]. Journal of Materials Science, 1994, 29 (3): 830-834.
    [46] Iddles DM, Bell AJ, Moulson AJ. Relationships between dopants, microstructure and the microwave dielectric-properties of ZrO2-TiO2-SnO2 ceramics[J]. Journal of Materials Science, 1992, 27 (23): 6303-6310.
    [47] Kucheiko S, Kim HJ, Yoon SJ, et al. Effect of ZnO additive on microstructure and microwave dielectric properties of CaTi1-x(Fe0.5Nb0.5)xO3 ceramics[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 1997, 36 (1A): 198-202.
    [48] Geller B, Thaler B, Fathy A, et al. LTCC-M: An enabling technology for high performance multilayer RF systems[J]. Microwave Journal, 1999, 42 (7): 64-65.
    [49] Wu KL, Zhang R, Ehlert M, et al. An explicit knowledge-embedded space mapping technique and its application to optimization of LTCC RF passive circuits[J]. IEEE Transactions on Components and Packaging Technologies, 2003, 26 (2): 399-406.
    [50] Newborn CH, English JM, Coe DJ. LTCC fabrication for a leaf spring vertical actuator[J]. Inter J Appl Ceram Tech, 2006, 3 (1): 61-67.
    [51] Peterson KA, Patel KD, Ho CK, et al. Novel microsystem applications with new techniques in low-temperature co-fired ceramics[J]. Inter J Appl Ceram Tech, 2005, 2 (5): 345-363.
    [52] Imanaka Y. Multilayerd Low Temperature Cofired Ceramics (LTCC) Technology[M]. New York: Springer, 2005.
    [53] Kuromitsu Y, Yoshida H, Takebe H, et al. Interaction between alumina and binary classes[J]. J Am Ceram Soc, 1997, 80 (6): 1583-1587.
    [54] Vest RW. Materials science of thick-film technology[J]. Am Ceram Soc Bull, 1986, 65 (4): 631-636.
    [55] Yoon SO, Kim KS, Shim SH, et al. Microwave dielectric properties of lead borosilicate glass-A2Ol3 composites[J]. Journal of Ceramic Processing Research, 2008, 9 (2): 97-99.
    [56] Jawahar IN, Mohanan P, Sebastian MT. A5B4O15 (A=Ba, Sr, Mg, Ca, Zn; B=Nb, Ta) microwave dielectric ceramics[J]. Mater Lett, 2003, 57 (24-25): 4043-4048.
    [57] Kagata H, Kato J. Dielectric-properties of Ca-based complex perovskite at microwave-frequencies[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 1994, 33 (9B): 5463-5465.
    [58] Kamba S, Petzelt J, Buixaderas E, et al. High frequency dielectric properties of A5B4O15 microwave ceramics[J]. J Appl Phys, 2001, 89 (7): 3900-3906.
    [59] Lufaso MW. Crystal structures, modeling, and dielectric property relationships of 2:1 ordered Ba3(MM')O9 (M=Mg, Ni, Zn; M'=Nb, Ta) perovskites[J]. Chem Mater, 2004, 16 (11): 2148-2156.
    [60] Scott RI, Thomas M, Hampson C. Development of low cost, high performance Ba(Z1/n3Nb2/3O3) based materials for microwave resonator applications[J]. J Eur Ceram Soc, 2003, 23 (14): 2467-2471.
    [61] Jonker GH, Kwestroo W. The ternary systems BaO-TiO2-SnO2 and BaO-TiO2-ZrO2[J]. J Am Ceram Soc, 1958, 41 (10): 390-394.
    [62] Obryan HM, Thomson J. Ba2Ti9O20 Phase-equilibria[J]. J Am Ceram Soc, 1983, 66 (1): 66-68.
    [63] Plourde JK, Linn DF, Obryan HM, et al. Ba2Ti9O20 as a microwave dielectric resonator[J]. J AmCeram Soc, 1975, 58 (9-10): 418-420.
    [64] Hirano S, Hayashi T, Hattori A. Chemical-processing and microwave characteristics of (Zr,Sn)TiO4 microwave dielectrics[J]. J Am Ceram Soc, 1991, 74 (6): 1320-1324.
    [65] Takada T, Wang SF, Yoshikawa S, et al. Effects of glass additions on (Zr,Sn)TiO4 for microwave applications[J]. J Am Ceram Soc, 1994, 77 (9): 2485-2488.
    [66] Wakino K, Minai K, Tamura H. Microwave characteristics of (Zr,Sn)TiO4 and BaO-PbO-Nd2O3-TiO2 dielectric resonators[J]. J Am Ceram Soc, 1984, 67 (4): 278-281.
    [67] Huang GH, Zhou DX, Xu JM, et al. Low-temperature sintering and microwave dielectric properties of (Zr,Sn)TiO4 ceramics[J]. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2003, 99 (1-3): 416-420.
    [68] Kolar D, Gaberscek S, Volavsek B, et al. Synthesis and crystal-chemistry of BaN2dTi3O10, BaNd2Ti5O14 and Nd4Ti9O24[J]. J Solid State Chem, 1981, 38 (2): 158-164.
    [69] Chen YC, Huang CL. Microwave dielectric properties of Ba2-xSm4+2/3xTi9O26 ceramics with zero temperature coefficient[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2002, 334 (1-2): 250-256.
    [70] Chen XM, Li Y. A- and B site cosubstituted Ba6-3xSm8+2xTi18O54 microwave dielectric ceramics[J]. J Am Ceram Soc, 2002, 85 (3): 579-584.
    [71] Li Y, Chen XM. Effects of sintering conditions on microstructures and microwave dielectric properties of Ba6-3x(Sm1-yNdy)8+2xTi18O54 ceramics (x=2/3)[J]. J Eur Ceram Soc, 2002, 22 (5): 715-719.
    [72] Ohsato H. Science of tungstenbronze-type like Ba6-3xR8+2xTi18O54 (R = rare earth) microwave dielectric solid solutions[J]. J Eur Ceram Soc, 2001, 21 (15): 2703-2711.
    [73] Ota Y, Kakimoto K, Ohsato H, et al. Low-temperature sintering of Ba6-3xSm8+2xTi18O54 microwave dielectric ceramics by B2O3 and GeO2 addition[J]. J Eur Ceram Soc, 2004, 24 (6): 1755-1760.
    [74] Ubic R, Reaney IM, Lee WE. Microwave dielectric solid-solution phase in system BaO-L2nO3-TiO2 (Ln = lanthanide cation)[J]. Int Mater Rev, 1998, 43 (5): 205-219.
    [75] Ubic R, Reaney IM, Lee WE. Space group determination of B6a-3xNd8+2xTi18O54[J]. J Am Ceram Soc, 1999, 82 (5): 1336-1338.
    [76] Kim WS, Yoon KH, Kim ES. Microwave dielectric characteristics of the Ca2/5Sm2/5TiO3-Li1/2Nd1/2TiO3 ceramics[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2000, 39 (9B): 5650-5653.
    [77] Kim WS, Yoon KH, Kim ES. Microwave dielectric properties and far-infrared reflectivity characteristics of the CaTiO3-Li1/2-3xSm1/2+xTiO3 ceramics[J]. J Am Ceram Soc, 2000, 83 (9): 2327-2329.
    [78] Higuchi Y, Tamura H. Recent progress on the dielectric properties of dielectric resonator materials with their applications from microwave to optical frequencies[J]. J Eur Ceram Soc, 2003, 23 (14): 2683-2688.
    [79] Ezaki K, Baba Y, Takahashi H, et al. Microwave dielectric-properties of CaO-L2iO-TiO2 ceramics[J]. Jpn J Appl Phys, Part 1, 1993, 32 (9B): 4319-4322.
    [80] Takahashi H, Baba Y, Ezaki K, et al. Microwave dielectric properties and crystal structure of CaO-Li2O-(1-x)Sm2O3-xLn2O3-TiO2 (Ln, lanthanide) ceramics system[J]. Jpn J Appl Phys, Part 1, 1996, 35 (9B): 5069-5073.
    [81] Kato J, Kagata H, Nishimoto K. Dielectric-properties of lead alkaline-earth zirconate at microwave frequencies[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 1991, 30 (9B): 2343-2346.
    [82] Kato J, Kagata H, Nishimoto K. Dielectric-properties of (PbCa)(MeNb)O3 at microwave frequencies[J]. Jpn J Appl Phys, Part 1, 1992, 31 (9B): 3144-3147.
    [83] Kim DW, Kim JH, Kim JR, et al. Phase constitutions and microwave dielectric properties of Zn3Nb2O8-TiO2[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2001, 40 (10): 5994-5998.
    [84] Kim DW, Park B, Chung JH, et al. Mixture behavior and microwave dielectric properties in the low-fired TiO2-CuO system[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2000, 39 (5A): 2696-2700.
    [85] Shin CK, Paek YK, Lee HJ. Effect of CuO on the sintering behavior and dielectric characteristics of titanium dioxide[J]. Inter J Appl Ceram Tech, 2006, 3 (6): 463-469.
    [86] Axelsson AK, Alford NM. Bismuth titanates candidates for high permittivity LTCC[J]. J Eur Ceram Soc, 2001, 21 (10-11): 1933-1936.
    [87] Kagata H, Inoue T, Kato J, et al. Low-fire bismuth-based dielectric ceramics for microwave use[J]. Jpn J Appl Phys, Part 1, 1992, 31 (9B): 3152-3155.
    [88] Liu DH, Liu Y, Huang SQ, et al. Phase-structure and dielectric-properties of B2iO3-ZnO-Nb2O5 based dielectric ceramics[J]. J Am Ceram Soc, 1993, 76 (8): 2129-2132.
    [89] Wang XL, Wang H, Yao X. Structures, phase transformations, and dielectric properties of pyrochlores containing bismuth[J]. J Am Ceram Soc, 1997, 80 (10): 2745-2748.
    [90] Dihlstrom K. Formation of veritable antimony tetroxide and isomorphic with it stibiotantalite, SbTaO4[J]. Z Anorg Allg Chem, 1938, 239 (1): 57-64.
    [91] Aurivillius B. X-Ray Investigations on BiNbO4, BiTaO4 and BiSbO4[J]. Arkiv for Kemi, 1951, 3 (2-3): 153-161.
    [92] Roth RS, Waring JL. Phase equilibrium relations in binary system bimuth sesquioxide-niobium pentoxide[J]. Journal of Research of the National Bureau of Standards Section a-Physics and Chemistry, 1962, 66 (6): 451-463.
    [93] Roth RS, Waring JL. Synthesis and stability of bismutotantalite, stibiotantalite and chemically similar ABO4 compounds[J]. Am Mineral, 1963, 48 (11-2): 1348-1356.
    [94] Keve ET, Skapski AC. Structure of triclinic BiNbO4 and BiTaO4[J]. Chem Commun, 1967, (6): 281-283.
    [95] Keve ET, Skapski AC. Crystal-structure of triclinic beta-BiNbO4[J]. J Solid State Chem, 1973, 8 (2): 159-165.
    [96] Subramanian MA, Calabrese JC. Crystal-structure of the low-temperature form of bismuth niobium oxide [alpha-BiNbO4][J]. Mater Res Bull, 1993, 28 (6): 523-529.
    [97] Ayyub P, Multani MS, Palkar VR, et al. Vibrational spectroscopic study of ferroelectric SbNbO4, antiferroelectric BiNbO4, and their solid-solutions[J]. Physical Review B, 1986, 34 (11): 8137-8140.
    [98] Tzou WC, Yang CF, Chen YC, et al. Improvements in the sintering and microwave properties of BiNbO4 microwave ceramics by V2O5 addition[J]. J Eur Ceram Soc, 2000, 20 (7): 991-996.
    [99] Ding SH, Yao X, Yang Y. Dielectric properties of B2O3-doped BiNbO4 ceramics[J]. Ceram Int, 2004, 30 (7): 1195-1198.
    [100] Yang Y, Ding SH, Yao X. Influences of Fe2O3 additives on the dielectric properties of BiNbO4 ceramics under different sintering atmosphere[J]. Ceram Int, 2004, 30 (7): 1341-1345.
    [101] Huang CL, Weng MH. The microwave dielectric properties and the microstructures of Bi(Nb, Ta)4O ceramics[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 1999, 38 (10): 5949-5952.
    [102] Wang N, Zhao MY, Li W, et al. The sintering behavior and microwave dielectric properties of Bi(Nb,Sb)O4 ceramics[J]. Ceram Int, 2004, 30 (6): 1017-1022.
    [103] Chen YC, Tzou WC, Yang CF, et al. The effect of the crystalline phase on the sintering and microwave dielectric properties of CuO-doped (B0i.95Sm0.05)NbO4 ceramics[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2001, 40 (5A): 3252-3255.
    [104] Choi W, Kim KY, Moon MR, et al. Effects of Nd_2O_3 on the microwave dielectric properties of BiNbO4 ceramics[J]. J Mater Res, 1998, 13 (10): 2945-2949.
    [105] Ding SH, Yao X, Mao Y, et al. Microwave dielectric properties of (B1i-xRx)NbO_4 ceramics (R=Ce,Nd,Dy,Er)[J]. J Eur Ceram Soc, 2006, 26 (10-11): 2003-2005.
    [106] Tzou WC, Yang CF, Chen YC, et al. Microwave dielectric characteristics of (B1i-xSmx)NbO4 ceramics[J]. Ceram Int, 2002, 28 (1): 105-110.
    [107] Wang N, Zhao MY, Yin ZW, et al. Effects of complex substitution of La and Nd for Bi on the microwave dielectric properties of BiNbO4 ceramics[J]. Mater Res Bull, 2004, 39 (3): 439-448.
    [108] Lee HR, Lee BD, Yoon KH. Microstructures and dielectric properties of low temperature cofired BiNbO4-ZnNb2O6 ceramics with Ag-electrode[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2005, 44 (3): 1333-1336.
    [109] Lee HR, Yoon KH, Kim ES. Low temperature sintering and microwave dielectric properties of BiNbO4-ZnNb2O6 ceramics with CuV2O6 additive[J]. Jpn J Appl Phys, Part 1, 2003, 42 (9B): 6168-6171.
    [110] Wang N, Zhao MY, Yin ZW, et al. Low-temperature synthesis of beta-BiNbO4 powder by citrate sol-gel method[J]. Mater Lett, 2003, 57 (24-25): 4009-4013.
    [111] Pirnat U, Valant M, Jancar B, et al. Formation characteristics of the commensurate fluorite-type Bi2O3-Nb2O5 solid solution[J]. Chem Mater, 2005, 17 (20): 5155-5160.
    [112] Valant M, Jancar B, Pirnat U, et al. The order-disorder transition in B2iO3-Nb2O5 fluorite-like dielectrics[J]. J Eur Ceram Soc, 2005, 25 (12): 2829-2834.
    [113] Cho SY, Youn HJ, Kim DW, et al. Interaction of BiNbO4-based low-firing ceramics with silver electrodes[J]. J Am Ceram Soc, 1998, 81 (11): 3038-3040.
    [114] Zhang L.气氛下铌酸铋微波陶瓷及其与铜共烧的研究[D]. Xi'an: Xi'an Jiaotong University, 2006.
    [115]李标荣.电子陶瓷工艺原理[M].武汉:华中工学院出版社, 1986.
    [116] Wakai F. Modeling and simulation of elementary processes in ideal sintering[J]. J Am Ceram Soc, 2006, 89 (5): 1471-1484.
    [117] Benjamin JS. Mechanical alloying[J]. Scientific American, 1976, 234 (5): 40-49.
    [118] Krupka J. Resonant modes in shielded cylindrical ferrite and single-crystal dielectric resonantors[J]. IEEE Transactions on Microwave Theory and Techniques, 1989, 37 (4): 691-697.
    [119] Coble RL. Sintering crystalline solids 1. intermediate and final state diffusion models[J]. J Appl Phys, 1961, 32 (5): 787-792.
    [120] Coble RL. Sintering crystalline solids 2. experimental test of duffusion models in powder compacts[J]. J Appl Phys, 1961, 32 (5): 793-799.
    [121] Takenaka T, Komura K, Sakata K. Possibility of new mixed bismuth layer-structured ferroelectrics[J]. Jpn J Appl Phys, Part 1, 1996, 35 (9B): 5080-5083.
    [122] Ling CD, Withers RL, Schmid S, et al. A review of bismuth-rich binary oxides in the systems Bi2O3-Nb2O5, Bi2O3-Ta2O5, Bi2O3-MoO3, and Bi2O3-WO3[J]. J Solid State Chem, 1998, 137 (1): 42-61.
    [123] Valant M, Suvorov D. Dielectric properties of the fluorite-like B2iO3-Nb2O5 solid solution and the tetragonal Bi3NbO7[J]. J Am Ceram Soc, 2003, 86 (6): 939-944.
    [124] Choi JW, Kang CY, Sim SH, et al. Dielectric and patch antenna characteristics of new high-Q (1-x)(Al1/2Ta1/2)O2-x(Mg1/3Ta2/3)O2 (0<=x<=1.0)[J]. Mater Chem Phys, 2003, 79 (2-3): 247-251.
    [125] Peng Z, Wang H, Yao X. Dielectric resonator antennas using high permittivity ceramics[J]. Ceram Int, 2004, 30 (7): 1211-1214.
    [126] Zhou D, Wang H, Yao X, et al. Microwave dielectric properties of low-firing BiNbO4 ceramics with V2O5 substitution[J]. J Electroceram, 2008, 21 (1-4): 469-472.
    [127] Wang N, Zhao MY, Yin ZW. Effects of Ta_2O_5 on microwave dielectric properties of BiNbO_4 ceramics[J]. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2003, 99 (1-3): 238-242.
    [128] Zou ZG, Ye JH, Arakawa H. Optical and structural properties of the BiTa_(1-x)Nb_xO_4 (0<=x<=1) compounds[J]. Solid State Commun, 2001, 119 (7): 471-475.
    [129] Zou ZG, Ye JH, Sayama K, et al. Photocatalytic and photophysical properties of a novel series of solid photocatalysts, BiTa1-xNbxO4 (0<=x<=1)[J]. Chem Phys Lett, 2001, 343 (3-4): 303-308.
    [130] Lin XP, Huang FQ, Wang WD, et al. A novel photocatalyst BiSbO4 for degradation of methylene blue[J]. Applied Catalysis a-General, 2006, 307 (2): 257-262.
    [131] Lee CY, Macquart R, Zhou QD, et al. Structural and spectroscopic studies of BiT1a-xNbxO4[J]. J Solid State Chem, 2003, 174 (2): 310-318.
    [132] Huang CL, Lin RJ, Wang JH. Effect of B2O3 additives on sintering and microwave dielectric behaviors of CuO-Doped ZnNb2O6 ceramics[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2002, 41 (2A): 758-762.
    [133] Shlyakhtin OA, Oh YJ. Low temperature sintering of Zn3Nb2O8 ceramics from fine powders[J]. J Am Ceram Soc, 2006, 89 (11): 3366-3372.
    [134] Cho IS, Kim JR, Kim DW, et al. Microwave dielectric properties and Far-infrared spectroscopic analysis of Ba5+nTinNb4O15+3n (0.3    [135] Ratheesh R, Sreemoolanadhan H, Suma S, et al. New high permittivity and low loss ceramics in the BaO-TiO2-Nb2O5 composition[J]. J Mater Sci Mater Electr, 1998, 9 (4): 291-294.
    [136] Zeng Q, Li W, Shi JL, et al. A new microwave dielectric ceramic for LTCC applications[J]. J Am Ceram Soc, 2006, 89 (5): 1733-1735.
    [137] Borisevich AY, Davies PK. Crystalline structure and dielectric properties of L1i+x-yNb1-x-3yTix+4yO3 M-phase solid solutions[J]. J Am Ceram Soc, 2002, 85 (3): 573-578.
    [138] Zhang SX, Li JB, Cao J, et al. Effect of composition on sinterability, microstructure and microwave dielectric properties of ZrxTi1-xO4 (x=0.40-0.60) ceramics[J]. J Mater Sci Lett, 2001, 20 (15): 1409-1411.
    [139] Chen XM, Liu D, Hou RZ, et al. Microstructures and microwave dielectric characteristics of Ca(Zn_1/3Nb2/3)O_3 complex perovskite ceramics[J]. J Am Ceram Soc, 2004, 87 (12): 2208-2212.
    [140] Valant M, Suvorov D. Glass-free low-temperature cofired ceramics: calcium germanates, silicates and tellurates[J]. J Eur Ceram Soc, 2004, 24 (6): 1715-1719.
    [141] Udovic M, Valant M, Suvorov D. Phase formation and dielectric characterization of the B_2Oi_3-TeO_2 system prepared in an oxygen atmosphere[J]. J Am Ceram Soc, 2004, 87 (4): 591-597.
    [142] Udovic M, Valant M, Suvorov D. Dielectric characterisation of ceramics from the Ti_O2-TeO_2 system[J]. J Eur Ceram Soc, 2001, 21 (10-11): 1735-1738.
    [143] Kwon DK, Lanagan MT, Shrout TR. Microwave dielectric properties of BaO-TeO2 binary compounds[J]. Mater Lett, 2007, 61 (8-9): 1827-1831.
    [144] Kwon DK, Lanagan MT, Shrout TR. Synthesis of BaTiTe3O9 ceramics for LTCC application and its dielectric properties[J]. J Ceram Soc Jpn, 2005, 113 (1315): 216-219.
    [145] Kwon DK, Lanagan MT, Shrout TR. Microwave dielectric properties and low-temperature cofiring of BaTe4O9 with aluminum metal electrode[J]. J Am Ceram Soc, 2005, 88 (12): 3419-3422.
    [146] Feteira A, Sinclair DC. Microwave dielectric properties of low firing temperature B2Wi2O9 ceramics[J]. J Am Ceram Soc, 2008, 91 (4): 1338-1341.
    [147] Valant M, Suvorov D. Processing and dielectric properties of sillenite compounds B12iMO20-delta (M = Si, Ge, Ti, Pb, Mn, B1/2P1/2)[J]. J Am Ceram Soc, 2001, 84 (12): 2900-2904.
    [148] Cho IS, Kim JR, Kim DW, et al. Phase transformation and microwave dielectric properties of BiP4Oceramics[J]. J Electroceram, 2006, 16 (4): 379-383.
    [149] Umemura R, Ogawa H, Ohsato H, et al. Microwave dielectric properties of low-temperature sintered Mg_3(VO_4)_2 ceramic[J]. J Eur Ceram Soc, 2005, 25 (12): 2865-2870.
    [150] Ogawa H, Yokoi A, Umemura R, et al. Microwave dielectric properties of Mg_3(V_O4)_2-xBa_3(VO_4)_2 ceramics for LTCC with near zero temperature coefficient of resonant frequency[J]. J Eur Ceram Soc, 2007, 27 (8-9): 3099-3104.
    [151] Umemura R, Ogawa H, Kan A. Low temperature sintering and microwave dielectric properties of (Mg_(3-x)Zn_x)(VO_4)_2 ceramics[J]. J Eur Ceram Soc, 2006, 26 (10-11): 2063-2068.
    [152] Choi GK, Kim JR, Yoon SH, et al. Microwave dielectric properties of scheelite (A=Ca, Sr, Ba) and wolframite (A = Mg, Zn, Mn) AMoO4 compounds[J]. J Eur Ceram Soc, 2007, 27 (8-9): 3063-3067.
    [153] Choi GK, Cho SY, An JS, et al. Microwave dielectric properties and sintering behaviors of scheelite compound CaMoO_4[J]. J Eur Ceram Soc, 2006, 26 (10-11): 2011-2015.
    [154] Bian JJ, Kim DW, Hong KS. Glass-free LTCC microwave dielectric ceramics[J]. Mater Res Bull, 2005, 40 (12): 2120-2129.
    [155] Bian JJ, Kim DW, Hong KS. Microwave dielectric properties of Ca_2P_2O_7[J]. J Eur Ceram Soc, 2003, 23 (14): 2589-2592.
    [156] Ohashi M, Ogawa H, Kan A, et al. Microwave dielectric properties of low-temperature sintered Li3AlB2O6 ceramic[J]. J Eur Ceram Soc, 2005, 25 (12): 2877-2881.
    [157] Takada T, Kageyama K. Synthesis and microwave dielectric properties of La_2O_(3-x)B_2O_3-based melt mixtures for low-temperature cofired ceramics[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2005, 44 (9A): 6629-6635.
    [158] Takada T, Yamamoto H, Kageyama K. Synthesis and microwave dielectric properties of xRe_2O_3-yB_2O_3 (Re = La, Nd, Sm, Dy, Ho and Y) compounds[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2003, 42 (9B): 6162-6167.
    [159] Subodh G, Ratheesh R, Jacob MV, et al. Microwave dielectric properties and vibrational spectroscopic analysis of MgTe2O5 ceramics[J]. J Mater Res, 2008, 23 (6): 1551-1556.
    [160] Subodh G, Sebastian MT. Glass-free Zn2Te3O8 microwave ceramic for LTCC applications[J]. J Am Ceram Soc, 2007, 90 (7): 2266-2268.
    [161] Maeda M, Yamamura T, Ikeda T. Dielectric characteristics of several complex oxide ceramics at microwave frequencies[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 1987, 26(2): 76-79.
    [162] Udovic M, Suvorov D. Sintering and dielectric characterization of pseudoternary compounds from the Bi2O3-TiO2-TeO2 system[J]. J Am Ceram Soc, 2007, 90 (8): 2404-2408.
    [163] Subodh G, Sebastian MT. Microwave Dielectric Properties of AT3eO8 (A = Sn, Zr) Ceramics[J]. Japanese Journal of Applied Physics, 2008, 47 (10): 7943-7946.
    [164] Zhou D, Wang H, Yao X, et al. Dielectric behavior and cofiring with silver of monoclinic BiSbO_4 ceramic[J]. J Am Ceram Soc, 2008, 91 (4): 1380-1383.
    [165] Zhou D, Wang H, Yao X, et al. Microwave Dielectric Properties of Low Temperature Firing Bi_2Mo_2O_9 Ceramic[J]. J Am Ceram Soc, 2008, 91 (10): 3419-3422.
    [166] Bleijenberg ACAM, Lippens BC, Schuit GCA. Catalytic oxidation of 1-butene over bismuth molybdate catalysts I. system Bi2O3-MoO3[J]. J Catal, 1965, 4 (5): 581-585.
    [167] Chen T, Smith GS. Compounds and phase-diagram of MoO3-rich Bi_2O_3-MoO_3 system[J]. J Solid State Chem, 1975, 13 (4): 288-297.
    [168] Egashira M, Matsuo K, Kagawa S, et al. Phase-diagram of the system Bi_2O_3-MoO_3[J]. J Catal, 1979, 58 (3): 409-418.
    [169] Kohlmull R, Badaud JP. Studies on system B2iO3-MoO3[J]. Bull Soc Chim Fr, 1969, (10): 3434-3439.
    [170] Belyaev IN, Smolynaninov NP. Ternary system Bi2_O_3-MoO_3-PbO[J]. Zhur Neorgan Khimii, 1962, 7(11): 1126-1131.
    [171] Erman LY, Calperin EL, Soboler BP. Phase diagram of the bismuth sesquioxide-molybdenum trioxide system[J]. Zhur Neorgan Khimii, 1971, 16 (2): 490-495.
    [172] Vandenel.Af, Rieck GD. Crystal-structure of Bi_2(MoO_4)_3[J]. Acta Crystallographica Section B-Structural Science, 1973, B 29 (NOV15): 2433-2436.
    [173] Buttrey DJ, Vogt T, White BD. High-temperature incommensurate-to-commensurate phase transition in the Bi_2MoO_6 catalyst[J]. J Solid State Chem, 2000, 155 (1): 206-215.
    [174] Brown ID, Altermatt D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal-structure database[J]. Acta Crystallographica Section B-Structural Science, 1985, 41 (AUG): 244-247.
    [175] Brese NE, Okeefe M. Structures of rbd and csd by time-of-flight neutron-diffraction[J]. Acta Crystallographica Section C-Crystal Structure Communications, 1991, 47(9): 1956-1957.
    [176] Wang H, Zhang DS, Wang XL, et al. Effect of La2O3 substitutions on structure and dielectric properties of Bi_2O_3-ZnO-Nb_2O_5-based pyrochlore ceramics[J]. J Mater Res, 1999, 14 (2): 546-548.
    [177] Chen HY, Sleight AW. Crystal-structure of Bi2Mo2O9-a selective oxidation catalyst[J]. J Solid State Chem, 1986, 63 (1): 70-75.
    [178] Feteira A, Sinclair DC, Lanagan MT. Structural and electrical characterization of CeAlO_3 ceramics[J]. J Appl Phys, 2007, 101 (6).
    [179] Zuo RZ, Li LT, Gui ZL, et al. Effects of additives on the interfacial microstructure of cofired electrode-ceramic multilayer systems[J]. J Am Ceram Soc, 2002, 85 (4): 787-793.
    [180] Zuo RH, Li LT, Gui ZL. Effects of BaTiO3 additive on densification mechanism of silver-palladium paste[J]. Mater Chem Phys, 2002, 74 (2): 182-186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700