用户名: 密码: 验证码:
强化混凝技术处理低温低浊水试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2001年6月卫生部颁布了《生活饮用水卫生规范》,将水质指标增加到96项,并对多数指标值作出新的规定,约束条件更加严格。针对北方净水厂在低温低浊时的运行状况,在降低水厂运营成本、水质达标的前提下,众多改善水质的深度处理技术当中,对混凝药剂的优化研究是最经济、最有效的方法。
     本文从混凝机理分析入手,依据原水特性,通过混凝烧杯试验,研究了常规无机混凝剂和高分子混凝剂对低温低浊水的处理效果。对低温低浊情况下的混凝影响因素进行分析,特殊地在实验室制备了聚硅硫酸铁高分子混凝剂,对其制备过程中的控制条件进行研究,与聚合氯化铝就低温低浊水的处理效果进行比较研究,通过以上研究并结合概率分析,采用强化混凝的方法来改善常规工艺出水水质。
     通过混凝搅拌试验,研究了沉淀水浊度与混凝药剂投加量之间的关系,沉淀水浊度与混凝剂投加量成正比例关系,但低温低浊水质和常规水质在混凝沉淀过程中都会出现沉淀极限,到达沉淀极限之后继续投加混凝药剂,不会提升沉淀效率。
     通过概率分析的方法,对强化混凝提高出水水质的方法进行分析,得出混凝剂与助凝剂投加量比值和混凝剂投加量之间的关系图,可以根据沉淀水浊度目标值确定混凝剂投加量。数据分析表明,该水厂在低温低浊条件时运行,混凝剂与助凝剂投加量的比值在15~25之间的混凝处理效果要优于比值在5~15之间的混凝处理效果。
     改善常规工艺出水水质生产性试验研究表明,在高锰酸盐指数不高(<5mg/L)的条件下,通过强化混凝的方法,可以控制滤后水浊度低于1NTU,达到0.6NTU,UV254、TOC和DOC的去除率明显提高,常规项目也得到改善,证明控制投药量进行强化混凝的方法能够提高老工艺流程的出水水质,满足《规范》要求。
In Jnne of 2001, Ministry of Sanitation ordinates the criterion for daily drinking water quality, which increased the water quality, indexes to 96 items and the turbidity value was claimed to 1NTU. But the water quality is even worse. By now,the tradiontial process of water treatment is not suitable. According the operation data of a north water treatment plant, optimization of coagulant for low temperature and low turbidity water is aneconomy method among all kinds of water purification technologies under the conditions of reducing the production costs.
     Laboratory and full scale experiments were analyzed by coagulation mechanism regards on the raw water characteristics. The paper studied the effects of some common inorganic and polymeric coagulants; analyzed the influencing factors on coagulation for a low temperature and low turbidity water. A polymeric coagulants, Polymeric Ferric Silicate Sulfate (PFSS), was prepared and compared with PAC on the effects of the treatment of a low temperature and low turbidity water. Meantime, the controlling conditions were determined in the processes. It was obtained to increase the coagulating agents dosage to enhance the coagulation and improve the effluent based on the probability analysis of experimental results.
     The test showed that the coagulant dosage increased as the row water turbidity increased in order to achieve the same sediment effects under virus turbidity. Both common row water and a low temperature and low turbidity one can reach a precipitation extreme. No matter how many agents were increased, the settling efficiency would not increase when a precipitation extreme was appeared.
     The figure of coagulating agents dosage and ratio was obtained based on the probability analysis of the enhancement and the dosage was determined by the effluent turbidity aim. The coagulation was better when the ratio was 15~25 than it was 5~15 for such a low temperature and low turbidity raw water.
     The full-scale experimental results showed the turbidity of the effluent after filtering can be as low as 0.4 NTU by flocculants dosage increasing under such a low temperature, low turbidity, CODMn<5mg/L. Meantime, the removal efficiencies of UV254, TOC and DOC were greatly increased and some other common ones were improved too. It shows that such a coagulating agents dosage increasing method can be used to revise the former water treatment process and improve the effluent to meet the standards.
引文
1 Piet Odendaal. Water Quality Management in Developing Countries. New World Water.1999.9~11
    2 黄英. 我国水资源的可持续利用. 西南民族大学学报(人文社科版).2004, 25(6): 106~107
    3 丁南湖. 增强水的危机感 提高节水自觉性. 净水技术.1999,68(2):2~4
    4 国家环境保护总局. 中国 2003 年环境状况公报. 环境保护. 2004, 7: 3~17
    5 高娟 华珞 李贵宝等. 生活饮用水水质标准发展及特点. 安全卫生. 2005,5(5):54
    6 Wen Po Cheng. Comparision of hydrolysis/coagulation behavior of polymeric and monomeric iron coagulants in humic acid solution.Chemosphere.2002,47:963~969
    7 施纬 蒋颂辉 朱惠刚. 饮用水源中藻类限值研究. 净水技术. 2002,21(特刊):15~19
    8 C.R.O’Melia,W.C.Becker & K.-K. Au. Removal of humic substance by coagulation. Water Science and Technology. 1999,40(9):47~54
    9 Tom Hall & Brain Croll. Particle counters as tools for managing cryptosporidium risk in water treatment. Water Science and Technology. 1997,36(4):143~149
    10 岳舜琳. 给水中有机物与 Ames 致突变的相关性. 中国给水排水. 2003,
    19(1):20~23
    11 岳舜琳. 水的耗氧量的卫生学意义. 给水排水. 2004,30(6):37~39
    12 邱瑞冀 袁宝珊. 自来水不同处理单元出水有机物的致突变性研究. 中国给水排水. 1984,10(2):12~14
    13 J. Clancy and C. Fricker. Control of Cryptosporidium-how Effective is Drinking Water Treatment. Water Quality International. 1998:24~26
    14 Christian Volk. Kimberly Bell. Eva Ibrahim & et al. Impact of enhanced and optimized coagulation on removal of organic matter and its biodegradable fraction in drinking water. Water Research. 2000,34(12):3247~3257
    15 Jinming Duan & John Gregory. The influence of silicic acid on aluminium hydroxide precipitation and flocculation by aluminium salts. Journal ofInorganic Biochemistry. 1998,69:190~200
    16 D.J.Chang. S.H.Chen. S.S.Lin. K.C.Yu & C.Y.Chang. An investigation of reciprocating filtration system. Journal of Membrance Science. 2002 ,202:230~245
    17 翟明晰 刘馨远. 低温低浊水质特性的分析. 中国给水排水. 1998,14(6):33~34
    18 王建龙. 杨基先. 旋流-网格混凝设备处理低温低浊水的试验研究. 中国给水排水. 1998,14(2):32~34
    19 佟朝阳. 浅谈涡旋混凝低脉动沉淀给水处理技术. 中国科技信息. 2005,3:96
    20 黄勤. 气浮法处理低温低浊度水的生产性试验. 给水排水. 1980(4):10~15
    21 钱庆玲 吴国权. 直接过滤的几个问题. 化工给排水设计. 1996,2:55~57
    22 张雍. 微絮凝接触过滤工艺处理低温低浊水. 给水排水. 1980,2:20~24
    23 景有海 金同轨 范瑾初. 均质滤料直接过滤性能的评价指标. 给水排水. 2000,30 (3):18~20
    24 Clarification with microsand seeding. A state of the art. Water Research Vol,15:1281~1290
    25 姜安玺 杨现朝 房安富. 活性粉砂处理低温低浊水的研究. 哈尔滨建筑大学学报. 1998,10(5):46~48
    26 李镜明 姚志强. 低浊度水絮凝新工艺的初步研究. 给水排水. 1989,6:2~6
    27 N. Tambo and X.C. Wann. Control of Coagulation Condition for Treatment of High-turbidity Water by Pellet bed Separation. Jwater SRT-Aqua. 1993,Vo1 42(4):221~242
    28 巴宾科夫 著. 论水的混凝. 郭连起 译. 中国建筑工业出版社. 1982
    29 窦安坤. 双酸根碱式聚合铝的研制及其混凝效果试验. 中国城镇供水. 1998,(4):19~21
    30 田保珍 张云. 铝铁共聚复合絮凝剂的研制及应用. 工业水处理. 1998,18(1):17~20
    31 赵彦生等. 淀粉-丙烯酰胺接枝共聚物的合成及性能. 水处理技术. 1994,20(6):370~373
    32 西安市科委成果推荐. 复合高分子絮凝剂 PHM-Y 处理乳化油污染水的研究
    33 高宝玉 李翠平 于慧等. PASS 水溶液中铝的形态分布的研究. 中国环境科学. 1997,17(3):279~282
    34 胡翔 周定. 聚硅酸系列混凝剂的发展与展望. 化工进展. 1998,17(6):20~22
    35 张俊山 严爱东. 寒冷地区水库水净化技术研究与探讨. 北方环境. 2000(1):39~40
    36 W.Stumm & J.J.Morgan. Chemical aspects of coagulation, AWWA. 1982,54:971~974
    37 H.Hahn & W.stumm, Kinetics of Coagulation with Hydrolyzed Aluminum. Colloid and Inter. Sci. 1988,(28):133~139
    38 W.Stumm. C.R.O’Media. Stoichiometry of Coagulation, Am.Water Works Assoc. 1988,60:514~520
    39 H.Hahn & W.stumm, Coagulation by Al3+, In Adsorption from Aqueous Solutions, ACS Ser. 79, American Chemical Society, Watchington, D.C. 1988
    40 R.D. Letterman, D.R.Iyer. Modelling the Effects of Hydrolyzed Aluminum and Solution, Environ. SCI & Technol. 1985,19:673~678
    41 S.K. Dentel, T.A.Bober, P.D.Ivans, J.M.Gossett. A Physical-chemical, Model of Coagulation, in AWWA 1985 Annu. Conf. Proc. Am. Water Works Assoc. 1985:659~667
    42 S.K. Dentel. Application of the Precipitation-charge Neutralization Model of Coagulation. Environ. SCI & Technol. 1988,22(7):825~828
    43 王志石. 混凝和过滤工艺过程的基础理论研究. 土木工程学报. 1998,21(4):48~51
    44 许保玖 龙腾锐. 当代给水与废水处理原理. 高等教育出版社. 2000,203~236
    45 汤鸿霄 栾兆坤. 聚合氯化铝与传统混凝剂的凝聚-絮凝行为差异. 环境化学. 2000,16(6):497~504
    46 A.Wistrom & J.Farrell. Simulation and system identification of dynamic models for flocculation control. Water Sci Tech. 1998,37(12):181~192
    47 巴宾科夫 著. 论水的混凝. 郭连起 译. 中国建筑工业出版社. 1982
    48 汤鸿霄. 羟基聚合氯化铝的絮凝形态学. 环境科学学报. 1998,18(1):1~10
    49 Dekers et al. the self-preserving size distribution theory II: Comparison with results for Si and Si3N4 aerosols. Journal of Colloid and Interface Science. 2002,248:306~314
    50 Huang C. and Shiu H. Interactions between alum and organics in coagulation. Colloids and Surfaces. Physicochemical and Engineering Aspects. 1996,113:15~19
    51 何慧琴 童仕唐. 水处理中絮凝剂的研究进展. 应用化工. 2001,30(6):14~16
    52 许保玖 龙腾锐. 当代给水与废水处理原理. 北京. 高等教育出版社. 2000,203~206
    53 宋志伟 张桂梅 栾兆坤. 聚铁硅制备中聚硅酸最佳活化形态. 黑龙江科技学院学报. 2004,7(11):206~210
    54 Iler R K. The chemistry of silica,NY, John Wiley&Sons,1999.
    55 郑怀礼 袁宗宣 龚迎昆. 无机高分子复合絮凝剂 PFSS 的制备与性能研究. 精细化工. 2002,19(8):450~454
    56 高宝玉 宋永会 岳钦艳. 聚硅酸硫酸铁混凝剂的性能研究. 环境科学. 1997,18(2):46~48
    57 马军 刘伟 盛力等. 腐殖酸对高锰酸钾氧化除藻效果的影响. 中国给水排水. 2000,16(9):5~8
    58 陈宗淇 戴闽光. 胶体化学. 北京-高等教育出版社. 1984:120~140
    59 Dekkers et al. the self-preserving size distribution theory II: Comparision with results for Si and Si3N4 aerosols. Journal of Colloid and Interface Science. 2002,248:306~314
    60 李燕城编. 水处理试验技术. 北京. 中国建筑工业出版社. 2000:15~20
    61 Annual book of ASTM Standards. 1999,11 (2):853
    62 E·Д·巴宾科夫. 论水的混凝. 郭连起译. 中国建筑工业出版社. 1999,7
    63 高宝玉 岳钦艳 王占生. 聚硅氯化铝的混凝效果及在处理水中的残留铝研究. 中国给水排水. 1999,15(7):1~13
    64 岳钦艳 刘玉真 高宝玉等. 聚合硅酸氯化铝铁混凝剂的制备及其特性. 山东大学学报. 2001,36(4):425~428
    65 戴安邦 江龙. 硅酸及其盐的研究[J] . 化学学报. 1998,23:90~98
    66 Allen.L.H. Matijilic.E. Stability of Colloidal Silica:Effect of Simple Electrolytes [J]. Colloid and Interface Scicnce, 2000,(31):287~296.
    67 Iler R K. Polymerization of Silica Acid:Retarding Effect of Chromate Ion.[J]. Phys. Chem. 1999,56:678.
    68 David J. Pernitsky. Drinking water coagulation with polyaluminum coagulants mechanisms and selection guidelines. Subintted to Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requriments for the degree of Doctor of Philosophy. 2001,9:44~45 -6 3 -
    69 蒋绍阶 刘宗源. UV254作为水处理中有机物控制指标的意义. 重庆建筑大学学报. 2002,24(2):61~65
    70 岳舜琳. 给水中有机物与 Ames 致突物的相关性. 中国给水排水. 2003,19(1):20~22
    71 王占生 刘文君. 微污染水源饮用水处理. 北京-中国建筑工业出版社. 1999,74
    72 崔福义 李名锐 王志红等. 饮用水中铝的危害、来源及现状. 哈尔滨建筑大学学报. 1997,30(6):51~54
    73 徐勇鹏. 低浊度出水条件下给水处理系统优化运行策略的试验研究. 哈尔滨工业大学博士论文. 2004,6:20~23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700