用户名: 密码: 验证码:
高渗压下岩石(体)渗透及力学特性试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程中涉及到高水压条件的情况越来越多,国内外由于岩石(体)渗流而造成工程失事的实例已有很多,高渗压下岩石(体)力学、渗透特性研究已成为岩土工程中急待解决的前沿性课题。为研究高水头压力作用下岩石(体)的渗透特性、破坏机理和力学特性,笔者与课题组同志一起,开发研制了大型岩石渗透试验仪器。依托该套试验仪器,针对不同渗透、力学特性试样进行了较为系统的测试研究。本文取得的主要研究成果如下:
     (1)关于试验仪器方面,具有以下特点和创新:以成都液压伺服厂专利产品-静态伺服阀为主要控制元件,实现了试样进水端水压在完全脱离计算机控制条件可长期保持不变;以精确测定渗出水体积变化量的方法,达到提高测试精度,缩短测试时间目的;试样出水端水压采用管路过滤器、调速阀系统控制流量大小基本不变,进而在试样进水端形成稳定的水压大小,实现了对高孔隙水压、小水力梯度的真实模拟;而试样的轴向荷重、侧向压力分别采用两套调速阀控制系统,实现了试验过程的稳定、精确控制。通过对计算机控制程序的改造升级,可通过实时曲线或历史曲线无限放大监控试验过程,根据实测数据变化特点可任意修改、加长操作命令而不影响整个试验过程,真正实现了高渗压条件可控的各种加、卸载路径试验测试研究。针对试样渗透性测试,笔者提出了高水压下试样的密封,方柱体、重塑试样高围压下渗透性测试方法。
     (2)详细阐述了高渗压下各种应力路径渗透、力学特性试验的具体操作方法,为室内渗透性及相关力学特性测试研究提出了一套行之有效的试验测试方法。
     (3)试验证实了低渗透岩非达西渗透现象是普遍存在的,根据其非线性曲线特点,按压力梯度从高到低顺序排序,提出以“三次平均法”进行拟启动压力梯度推算,并通过实例说明这种推算方法是可行的。
     (4)试验发现,孔隙性介质,不论试样的渗透性大小,围压升、降渗透性变化均处于同一数量级,说明渗透性越大的试样受围压条件的影响性就越大;试样轴向位移在围压升高时呈负值(拉伸状态)变化,围压降低时呈压缩状态,并且在围压降低各个阶段的轴向位移值均可恢复到最初时的轴向位移大小,而试样的渗透性却低于最初时围压升高时的大小;说明围压升、降过程渗透性变化主要受试样侧向弹塑性变形的影响。而裂隙性岩体围压升、降后渗透性变化特点却完全不同,围压升高裂隙闭合,围压降低时并不能使闭合的裂隙渗流通道重新张开使渗透性增大。
     (5)首次提出了在全应力-应变过程中,侧向应力是影响岩石(体)渗透性变化幅度大小的主要因素:在三轴加载应力状态下,侧向应力越小,其渗透性变化幅度越大;侧向应力越大,变化幅度则越小。针对同一岩性试样,加载与卸载过程渗透性变化特征差别不大,只要保持一定的侧向应力,全应力-应变过程渗透系数变化存在一个极限值:针对一般岩石(体)试样,渗透系数变化最大值不会超过10~(-5)cm/s量级;而对于低渗透性大理岩,最大值一般不超过10~(-7)cm/s量级。
     (6)围压、压力梯度的大小是影响岩石渗透性的主要外界因素。针对孔隙性介质而言,压力梯度对岩石渗透性影响远大于围压条件的影响;而出水端水压大小对岩石的渗透性影响不大,可根据现场实测水压差,采用出水端水压力为零的方式进行渗透、力学试验研究。
     (7)提出了高渗压下岩石(体)抗剪强度的计算方法:首先把高渗压下实测得到的一组σ_1、σ_3值转化为相应有效应力值,再加上这组数据峰值强度时的平均孔隙水压后,进行抗剪强度计算。
     (8)根据常规饱水三轴压缩实测的σ_1、σ_3值,提出了按实际工程高渗压条件进行抗剪强度计算的方法,并通过试验验证,认为从应力角度进行抗剪强度换算可以反映高渗压状态下岩石(体)的强度特征。
     (9)通过对试样弹性阶段不同应力路径下的应力、应变变化特征研究发现,当侧向应力保持不变时轴向应力的加载或卸载,其应力、变形特征符合胡克弹性定律;而当侧向应力处于加载或卸载状态时,其应力-应变特征则不符合胡克弹性定律。基于此,提出岩体的工程力学参数取值应基于试验基础上,模拟工程实际所处的应力状态进行相应的试验研究。
     (10)在试验和莫尔一库仑定律的基础上,提出了卸载(包括高渗压卸载)条件下岩石(体)的强度计算准则:σ_1+σ_3=k(σ_1-σ_3)-b,相应强度计算公式为:C=b/2tgφ,(?)=arcsin1/k。
Because of the more high water pressure condition in engineering and rock mass seepage, there were many engineering accident examples. The rock or rock mass mechanics and permeability characteristics studies had become the front-subject which should be solved urgently. In order to study the rock and rock mass permeability, failure mechanism and mechanical properties under high seepage pressure, the Rock High Pressure Permeability Testing System had been designed and produced by author and studying team clerks. By means of the device, relatively systematical test was completed, aiming at different sample with different permeability and mechanics property. Corresponding study achievements are presented as follows:
     (1) Followings are the characteristics and innovations about the test machine: Because the patent product - Static Servo-Valve of Chengdu Servo Hydraulic Pressure Equipment had been used as the main controlling element, it was completed that the inlet water pressure of sample could keep stability for a long term although there was no control by computer. Because the volume change of spilling water had been accurately measured, the test time was shortened and test precision was improved. The outlet water pressure of sample could keep basically stability under the controlling system of the special pipeline filter and velocity adjust valve. Therefore, the stable water pressure was gotten at the outlet, and the simulation for high pore water pressure and low hydraulic gradient was truly achieved. Both the axial load and lateral pressure of the sample were respectively controlled by two Speed Control Valves, which made sure the test process stability and precision. Through the modification and improvement of computer controlling program, the visual monitor of test process could be enlarged infinitely by time curve or history curve. According to the changing characteristics of test data, the operation command could be modified and prolonged at will, but this would not at all influence the whole test process. The mechanics test under loading or unloading path was really achieved under controllable high permeability pressure. Aiming at the permeability test of sample, the author put forward the method of the sample waterproof under high water pressure and the test method of the square prism permeability and remodeled sample permeability under high confining pressure.
     (2)The detailed different stress path test operation methods to measure and calculate the permeability and mechanics characteristics of sample had been illustrated, which would be effective for the further studying.
     (3)The test results demonstrated that the non-Darcy flow phenomenon was ubiquitous for low permeability rocks. According to the non-linearity seepage characteristics, the Averaged Three Times Method to reckon quasi-threshold pressure gradient had been given and proved to be effective method by the examples.
     (4)According to the test result, whether the porosity sample permeability was high or low, the values of permeability coefficient all changed in same magnitude along with the confining pressure and axial pressure increasing or decreasing, which showed that the bigger permeability of the sample was, the higher value change value was along with the external pressure. The axial displacement of sample showed the negative value change with the external pressure increasing, which implied the sample was in the tensional state. And when the external pressure dropped, the sample showed compressed state. Furthermore, the axial displacement value could all return to the original value at each fall back phase of the external pressure, but the permeability would get lower than the original value that was tested during external pressure increased, which showed that the lateral elastic-plastic deformation of the sample was the main influence factors for the sample permeability value change during external pressure increase or decrease. But the fractured rock mass permeability change characteristics were different from the rules above. Namely, once the fission of the sample was closed by compression, its permeability could not increase any more even if external pressure was reduced.
     (5)According to the test result, the change scope of permeability for the same lithology sample during the complete stress-strain path was mainly controlled by confining pressure, which had been put forward for the first time. The lower value of the confining pressure was, the higher change scope of permeability was during the triaxial loading process, and vice versa. As for the same lithology sample, the permeability change characteristics had little different during loading and unloading process. As long as the confining pressure was constant, there was a limit value of the permeability change during complete stress-strain process, which was the maximal permeability coefficient, not more than the magnitude of 10~(-5)cm/s, and the low permeability marbles was not more than 10~(-7)cm/s.
     (6)The main external effective factors for the rock permeability were the value of external pressure and hydraulic gradient. As for the porosity medium, the hydraulic gradient influential action was more than the external pressure. Whereas, the water pressure of the sample outlet had little effect on the permeability. According to the factual water pressure difference, zero value could be given to the water pressure at the sample outlet for test studying.
     (7) The calculation method of shear strength under high seepage pressure was put forward: firstly, converting the measured values ofσ_1、σ_3 into the corresponding effective stress and adding the average pore water pressure to the effective stress. The average pore pressure was got from a group of samples, which are measured when the strength arrived to the peak value. Secondly, using the sum of the effective stress and the average pore water pressure to calculate the shear strength under high seepage pressure.
     (8) The saturation water sample test value ofσ_1、σ_3 through conventional triaxial compression could be calculated as the shear strength value according to the actual engineering high seepage pressure conditions. On the basis of checkout by actual test, it was proved that the calculation result from this method that only considered stress conversion could represent the rock or rock mass shear strength characteristics.
     (9) On the basis of the mechanical characteristics studying of different test path triaxial compression, the rules had been found that when the confining pressure was invariant, the shear strength and deformation characteristics accorded with Hooke elastic laws, but when the confining pressure was in loading or unloading state, the shear strength and deformation characteristics were inconformity to Hooke elastic laws. The engineering parameter value should be in accordance with the test result, which should simulate the factual stress condition.
     (10) On the basis of test and theory of Mohr-Coulomb, the rock or rock mass strength calculation criterion under confining pressure unloading condition had been given:σ_1+σ_3 = k (σ_1-σ_3) -b, and the corresponding strength calculation formula wasC =b/2tgφ,(?)= arcsin 1/4
引文
[1] Bellier. J. and P. Londe. The Malpasset Dam. In: Evaluation of dam safety. EngineeringFoundation Conf. proceedings. 1976. 72-136.
    
    [2] Wittke W. dand G. A. Leonhards. Modified hypothesis for failure of Malpasset Dam.Engineering Geology. 1987(24):367-394.
    
    [3]张伟.渗流场及其与应力场的耦合分析和工程应用[博士学位论文][D]武汉大学.2004
    
    [4]卢世宗.我国露天矿山边坡研究概况与展望[C].第四届全国工程地质大会文集.1992.
    
    [5]张有天.岩石水力学与工程[M].中国水利水电出版社.2005.
    
    [6]仵彦卿,张悼元.岩体水力学导论[M].西南交通大学出版社.1995.12.
    
    [7]郭尚平,刘慈群,阎庆来.渗流力学的近况与展望[J].力学与实践,1981,3(3):226.
    
    [8] Olsen H W Darcy's law in saturated kaoljnite[J]. Water Resources 1966, 2(6):287-295
    
    [9] Brace W F, Walsh J B. Fangos W T. Permeability of granite under high pressure [J]. Journal of Geophysical Research. 1968. 73(6):2 225-2 236.
    
    [10]张铭,低渗透岩石实验理论及装置 岩石力学与工程学报 2003 22(6):919-925.
    
    [11]陈祖安,伍向阳,孙德明等.砂岩渗透率随静压力变化的关系研究[J].岩石力学与工程学 报,1995,14(2):155-159.
    
    [12]韩小妹.低渗透岩石非Darcy渗流实验研究[硕士学位论文][D].北京:清华大学2004.
    
    [13]刘亚晨,蔡永庆,刘泉声等.岩体裂隙结构面的温度-应力-水力耦合本构关系[J].岩土工 程学报,2001,23(2):196-200.
    
    [14]郑少河,赵阳升,段康廉.三维应力作用下天然裂隙渗流规律的实验研究[J].岩石力学与工 程学报,1999,18(2):133-136.
    
    [15]李世平,李玉寿,吴振业.岩石全应力应变过程对应的渗透率-应变方程[J].岩土工程学 报,1995,17(2):13-18.
    
    [16]李树刚,徐精彩.软煤样渗透特性的电液伺服试验研究[J].岩土工程学报.2001,23(1): 68-70.
    
    [17]姜振泉,季梁军,左如松等.岩石在伺服条件下的渗透性与应变、应力的关联性特征[J].岩 石力学与工程学报,2002,21(10):1442-1446.
    
    [18]彭苏萍,孟召平,王虎等.不同围压下砂岩孔渗规律试验研究[J].岩石力学与工程学 报,2003,22(5):742-746.
    
    [19]刘玉庆,李玉寿,孙明贵.岩石散体渗透试验新方法[J]矿山压力与顶板管理2002 2: 108-110.
    
    [20]徐贵娥,刘加华,钱春香.一种新的测试受拉状态下混凝土水渗透性试验装置[J].建材技术 与应用2007 11:1-4.
    
    [21]张守良,沈琛,邓金根.岩石变形及破坏过程中渗透率变化规律的实验研究[J].岩石力学与 工程学报,2000,19(增):885-888.
    
    [22]贺玉龙,杨立中.围压升降过程中岩体渗透率变化特性的试验研究[J].岩石力学与工程学 报,2004,23(3):415-419.
    
    [23] Zhang M. Esaki T. Olsen H W. et al. Integrated shear and flow parameter measurement[J]. Geotechnical Testing Journal. 1997. 20(3): 296-306.
    
    [24] Kranz R L. Saltzman J S. Blacic J D. Hydraulic diffusivity measurements on laboratoryrock samples using oscillating pore pressure method [J]. Int. J. Rock Mechanics Min.Sci. and Geomech. Abstr. 1990. 27(5): 345-356.
    
    [25] Hsieh P A. A transient laboratory method for determining the hydraulic properties of "tight" rocks-I: theory [J]. Int. 1. Rock Mechanics Min. Sci. and Geomech. Abstr. 1981. 18(3): 245-256.
    
    [26] Neuzil C E. A transient laboratory method for determining the hydraulic properties of "tight" rocks-11: application [J]. Int. J. Roct Mechanics. Min. Sci. and Geomech. Abstr. 1981,18(3): 253-268.
    
    [27] Lin W. Parametric analyses of the transient method of measuring permeability [J].J. Geophy. Res. 1982. 87(B2): 1055-1066.
    
    [28] Trimmer D A. Design critera for laboratary measurements of low permeability rocks[J]. Geophy. Res. Let. 1981,8(9): 973-988.
    
    [29] Wang H F. Hart D J. Experimental error for permeability and specific storage from pulse decay measurements [J]. Int. J. Rock Mechanics Min. Sci. and Geomechanics Abstr. 1993. 30(7): 1173- 1190.
    
    [30] Zhang M. Takahashi M. Morin R H. et al. Evaluation and application of the transient-pulse technique for determining hydraulic properties of low permeability rocks-part I: theoretical evaluation [J]. Geotech. Testing J, 2000. 23(1): 83-100.
    
    [31] Zhang M. Takahashi M. Morin R H. et al. Evaluation and application of the transient-pulse technique for determining hydraulic properties of low permeability rocks--part 2: experimental applications [J]. Geotech. Testing J,2000. 23(1): 91-106
    
    [32]杨明松,古发刚,颜子.改进的渗透率常规测试装置[J].天然气工业,2002,22(1):73-75.
    
    [33]高家碧,孙良田,王章瑞.瞬时脉冲致密岩石渗透率测试仪的研制[J].仪器仪表学报. 1991,12(4):365-371.
    
    [34]郭大立,曾校慧,江茂泽.测定岩心物性参数的新方法研究[J].天然气工业.2002,22(5): 81-83.
    
    [35]郭大立,曾校慧,江茂泽.致密岩石渗透特性参数的测量解释方法[J].工程力学.2002,19(5): 114-117.
    
    [36]李小春,高桥学,吴智深等.瞬态压力脉冲法及其在岩石三轴试验中的应用[J].岩石力学与 工程学报.2001,20(增):1725-1733.
    
    [37]曾宪明,林润德,易平.基坑与边坡事故警示录[M].北京:中国建筑工业出版社,1999.
    
    [38]陈刚林,周仁德.水对受力岩石变形破坏宏观力学效应的实验研究[J].地球物理学报. 1991,34(3):335-342.
    
    [39]常春,周德培,郭增军.水对岩石屈服强度的影响[J].岩石力学与工程学报.1998,17(4): 407-411.
    
    [40]孙钧,胡玉银.三峡工程饱水花岗岩抗拉强度时效特性研究[J].同济大学学报.1997,25(2): 127-134.
    
    [41]汤连生,张鹏程.水化学损伤对岩石弹性模量的影响[J].中山大学学报(自然科学 版),2000,39(5):126-128.
    
    [42]汤连生,张鹏程,王思敬.水-岩化学作用之岩石宏观力学效应的试验研究[J].岩石力学与工 程学报.2002,21(4):526-531.
    
    [43] Dunning J Douglas B MillerM, et al. The role of the chemical environment in frictional deformation stress corrosion cracking and comminution [J] Pageoph., 1994 143(1/2/3): 151-178
    
    [44] Feucht L. Logan M. Effects of chemically active solutions on shearing behavior ofsandstone [J]. Tectonophysics 1990 175(1/2/3):159-176
    
    [45] Logan J M, Blackwell M I. The influence of chemically active fluids on the frictionalbehavior of sandstone[J]. EOS Trans AM Geophys Union 1983 64(2): 835-837.
    
    [46] Dieterich J H, Conrad G. Effects of humidity on time and velocity dependent frictionin rocks [J]. J Geophys Res, 1984,89(B6).
    
    [47]冯夏庭,赖户政宏.化学环境侵蚀下的岩石破裂特性-第一部分:实验研究[J].岩石力学与 工程学报.2000,19(4):403-407.
    
    [48]陈四利,冯夏庭,李邵军.岩石单轴抗压强度与破裂特征的化学腐蚀效应[J].岩石力学与工程 学报.2003,23(4):547-551.
    
    [49] Laijtai E Z, Schmidtke R H, Bielus L. P. The effect of water on the time-dependent deformation and fracture of a granite [J]. lnt J Rock Mech. Min Sci. 1987,24(4): 247-255.
    
    [50] L Pea K. Stress corrosion and crack propagation in Sioux Quartzite [J]. Geophysical Research 1983. 88( B6): 5037-5046
    
    [51]王泳嘉,冯夏庭.化学环境侵蚀下的岩石破裂特性-第二二部分:时间分形分析[J].岩石力学 与工程学报.2000,19(5):551-556.
    
    [52]冯夏庭,王川婴,陈四利.受环境侵蚀的岩石细观破裂过程试验与实时观测[J].岩石力学与工 程学报.2002,21(7):935-939.
    
    [53]陈四利,冯夏庭,李邵军.化学腐蚀对黄河小浪底砂岩力学特性的影响[J].岩土力 学,2002,23(3):244-287.
    
    [54]陈四利,冯夏庭,周辉.化学腐蚀下砂岩三轴压缩力学效应的试验[J].东北大学学报(自然科 学版),2003,24(3):292-295.
    
    [55] Feng Xiating Chen Sili Li Shaojun. Effects of water chemistry on micro-cracking and compressive strength of granite [J]. Tnt J Rock Mech. Min. Sci, 2001. 38(4): 557-568.
    
    [56]汤连生,王思敬.岩石水化学损伤的机理及量化方法探讨[J].岩石力学与工程学报. 2001,20(3):314-319.
    
    [57]汤连生,张鹏程,王思敬.水-岩化学作用之岩石断裂力学效应的试验研究[J].岩石力学与工 程学报.2002,21(6):822-827.
    
    [58]汤连生.水-岩土化学作用的环境效应[J].中山大学学报.2001,40(5):103-107.
    
    [59]汤连生,周萃英.渗透与水化学作用之受力岩体的破坏机理[J].中山大学学报(自然科学 版),1996,35(6):95-100.
    
    [60]汤连生.水-岩土反应的力学与环境效应研究[J].岩石力学与工程学报.2000,19(5): 681-682.
    
    [61]颜玉定.饱水时间对岩石动态参数的影响[J].岩土力学与工程的新进展[J].广州:华南理 工大学出版社,1996:7-11.
    
    [62]周翠英,彭泽英,尚伟,谭祥韶.论岩土工程中水-岩相互作用研究的焦点问题-特殊软岩的力学 变异性[J].岩土力学.2002,23(1):121-128.
    
    [63]汤连生,王思敬.水-岩化学作用对岩体变形破坏力学效应研究进展[J].地球科学进 展,1999,14(5):433-438.
    
    [64]周翠英,邓毅梅.软岩在饱水过程中水溶液化学成分变化规律研究[J].岩石力学与工程学报. 2004,23(22):3813-3817.
    
    [65]仵彦卿.岩体水力学概述[J].地质灾害与环境保护.1995,6(1):58-64.
    
    [66]宋付权,刘慈群,吴柏志.启动压力梯度的不稳定快速测量[J].石油学报.2001,22(3): 67-70.
    
    [67]杨琼,聂孟息,宋付权.低渗透砂岩渗流启动压力梯度[J].清华大学学报(自然科学报).2004 44(12):1650-1652.
    
    [68]杨琼.低渗透砂岩渗流特性试验研究[硕士学位论文][D].北京 清华大学.2004.
    
    [69]吕成远,王建,孙志刚.低渗透砂岩油藏渗流启动压力梯度实验研究[J].石油勘探与开发 2002 29(2):86-89.
    
    [70]刘曰武,丁振华,何凤珍.确定低渗透油藏启动压力梯度的三种方法[J].油气井测试2002 11(4):1-4.
    
    [71]王道成.低渗透油藏渗流特征实验及理论研究[D].西南石油大学硕士学位论文.2006.
    
    [72]牟学益,刘永祥.低渗透油藏启动压力梯度研究[J].油气地质与采收率2001 8(5):58-591.
    
    [73]李道品.低渗透油田开发[M].北京:石油工业出版社,1994.
    
    [74]林彦兵,刘艳,甘庆明等.有效压力对低渗透多孔介质渗透率的影响[J].重庆高等专科学报. 2003,5(4)33-34.
    
    [75]刘建军,刘先贵.有效压力对低渗透多孔介质孔隙度、渗透率的影响[J].地质力学学报. 2001,7(1)41-44.
    
    [76]王恩志,韩小妹,黄远智 低渗岩石非线性渗流机理讨论[J]岩土力学2003.增224(10): 120-124.
    
    [77]范学平,徐向荣.地应力对岩心渗透率伤害实验及机理分析[J].石油勘探与开发.2002, 29(2):117-119.
    
    [78]贺玉龙,杨立中.围压升降过程中岩体渗透率变化特性的试验研究[J].岩石力学与工程学报. 2004,23(3):415-419.
    
    [79]熊伟.流固耦合渗流规律研究[D].中国科学院渗流流体力学研究所硕士学位论文.2006.
    
    [80]王恩志,张文韶,韩小妹等.低渗透岩石在围压作用下的耦合渗流实验[D].清华大学学报(自 然科学版). 2005 45(6):764-767.
    
    [81]王金安,彭苏萍,孟召平.岩石三轴全应力-应变过程中的渗透规律[J].北京科技大学学报. 2001,23(6):489-491
    
    [82]孙明贵,黄先伍,李天珍等.石灰岩应力-应变全过程的非Darcy流渗透特性[J].岩石力学 与工程学报2006 25(3):484-491.
    
    [83] Singh A B. Study of rock fracture by permeability method [J]. Journal of Geotechnicaland Geoenvironmental Engineering, 1997,123(7): 601-608.
    
    [84] Wang J A, Park H D. Fluid permeability of sedimentary rocks in a complete stress-strainprocess [J]. Engineering Geology, 2002, 63(4): 291-300.
    
    [85] Ferfera F M R, Sarda J P, Bouteca M, et al. Experimental study of monophasic permeabilitychanges under various stress paths [J]. International Journal of Rock Mechanics &Mining Sciences. 1997,34(3/4): 413-419.
    
    [86] Schulze O, Popp T, Kern H. Development of damage and permeability in deforming rocksalt [J]. Engineering Geology ,2001,61(3): 163-180.
    
    [87] Oda M, Takemura T, Aok T. Damage growth and permeability change in triaxial compressiontests of Inada granite [J]. Mechanics ofMaterials. 2002, 34(6): 313-331.
    
    [88] Li S P, Wu D X, Xie W H, et al. Effect of confining pressure pore pressure and specimendimension on permeability of Yinzhuang Sandstone [J]. International Journal of RockMechanics & Mining Sciences,1997, 34(3/4): 432-435.
    
    [89] Heiland J, Raab S. Experimental investigation of the influence of differential stress on permeability of a lower Permian sandstone deformed in the brittle deformation field [J]. Phys. Chem. Earth. 2001,26(1): 33-38.
    
    [90]田杰.岩体渗流的流固藕合问题及其工程应用[D].中国科学院渗流流体力学研究所硕士学位 论文.2005.
    
    [91]姜振泉,季梁军,左如松等.岩石在伺服条件下的渗透性与应变、应力的关联性特征[J].岩 石力学与工程学报.2002,21(10):1442-1446.
    
    [92]韩宝平,冯启言,于礼山等.全应力应变过程中碳酸盐岩渗透性研究[J].工程地质学报.2000, 8(2):127-128.
    
    [93]彭苏萍,屈洪亮,罗立平等.沉积岩全应力应变过程的渗透性试验研究[J].煤炭学报.2000, 25(2):113-116.
    
    [94]李玉寿,马占国,贺耀龙等.煤系地层岩石渗透特性试验研究[J].试验力学.2006.21(2): 129-133.
    
    [95]李树刚,钱鸣高,石平五.煤样全应力应变过程中的渗透系数一应变方程[J].煤田地质与勘 探.2001 29(1):22-24.
    
    [96]朱珍德,张爱民,徐卫亚.脆性岩石全应力-应变过程渗流特性试验研究[J].岩土力学,2002, 23(5):555-563.
    
    [97]杨天鸿,唐春安,徐涛等.岩石破裂过程的渗流特性一理论、模型与应用[M].科学出版社. 2004.
    
    [98]陈占清,缪协兴.影响岩石渗透率的因素分析[J].矿山压力与顶板管理,2001,(2):83-86.
    
    [99]哈秋舲,刘国霖,张永兴等.三峡永久船闸陡高边坡关键技术研究专题研究报告[R].中国三 峡工程开发总公司,葛洲坝水电工程学院,重庆建筑大学,1995.
    
    [100]哈秋舲,李建林,张永兴等.节理岩体卸荷非线性岩体力学[M].北京:中国建筑工业出版 社,1998.
    
    [101]李建林,袁大祥.岩体卸荷分析的基本方法[J].三峡大学学报2001 23(1):1-6.
    
    [102]谢红强,何江达,徐进.岩石加、卸载变形特征及力学参数试验研究[J].岩土工程学报. 2003(5):336-338.
    
    [103]黄润秋.中国西部岩石高边坡应力场特征及其卸荷破裂机理[J].工程地质学报2004. 12(增):7-13.
    
    [104]王贤能,黄润秋.岩石卸荷破坏特征与岩爆效应[J].山地研究.1998(4):281-285.
    
    [105]高玉春,徐进,何鹏等.大理岩加、卸载力学特性的研究[J].岩石力学与工程学报.2005(2): 456-460.
    
    [106]李建林.卸荷岩体力学[M].北京:中国水利水电出版社.2003.10.
    
    [107]李建林,王乐华卸荷岩体的力学特性及其分析方法研究[C].中国岩石力学与工程学会第七 次学术大会论文集西安.2002.9:218-220.
    
    [108]哈秋舲.岩石边坡工程与卸荷非线性岩石(体)力学[J].岩石力学与工程学报.1997 16(4): 386-391.
    
    [109]沈军辉,王兰生,王青海等.卸荷岩体的变形破裂特征[J].岩石力学与工程学报.2003(12): 2028-2031.
    
    [110]吴刚.岩体在加卸荷条件下破坏效应的对比分析[J].岩土力学,1997(6):13-16.
    
    [111]吴刚.卸荷应力状态下裂隙岩体的变形和强度特征[J].岩石力学与工程学报.1998(12): 615-621.
    
    [112]尤明庆,苏承东,徐涛.岩石试样的加载卸载过程及杨氏模量[J].岩土工程学报.2001(9): 588-592.
    
    [113]H. Q. XIE, CH. HE. Study of the unloading characteristics of a rock mass using the triaxial test and damage mechanics [J]. International Journal of Rock Mechanics and Mining Science. March, 2004:13-18.
    
    [114]任建喜,葛修润,蒲毅彬等.岩石卸荷损伤演化机理CT实时分析初探[J].岩石力学与工程 学,2000,19(6):679-701.
    
    [115]孙广忠.岩体结构力学,科学出版社[M].1988.
    
    [116]张倬元,王士天,王兰生.工程地质分析原理[M].地质出版社,1994:92-136.
    
    [117]黄润秋,许模,陈剑平等.复杂岩体结构精细描述及其工程应用[M].科学出版社,2004.
    
    [118]周小平,张永兴,哈秋聆.裂隙岩体加载和卸荷条件下应力强度因子[J].地下空间.2003, 23(2):277-280.
    
    [119]任建喜,葛修润,蒲毅彬等.岩石卸荷损伤演化机理CT实时分析初探[J].岩石力学与工程 学报.2000 19(6):679-701.
    
    [120]黄达.大型地下洞室围岩开挖卸荷变形机理及其稳定性研究[博士学位论文][D]成都理工大 学.2007.
    
    [121]LouisC. Rock Hydraulics in Rock Mechanics in Rock Mechanics [M]. Edified by L. MullerU dine,1974.
    
    [122]Lomize G M .Flow in Fractured Rock [M1.Moscow: Gosemergoizdat, 1951.
    
    [123]Amadei B. Illangasekare T A. Mathematical model for flow and solute transport innonhomogeneous rock fracture [J]. International Journal of Rock Mechanics and MiningSciences & Goemechanics, 1994,18: 719-731.
    
    [124]毛起熙.渗流计算分析与控制[M].北京:水利电力出版社,1990.
    
    [125]钱孝星.关于裂隙水流的数学模型和数值方法[J]. 工程勘察.1990,1:31-35.
    
    [126]张有天.裂隙岩体渗流的理论和实践[R].水利水电科学研究院,1991.
    
    [127]周创兵,熊文林.岩石节理的渗流广义立方定理[J].岩土力学,1996,17(4):1-7.
    
    [128]速宝玉,詹美礼,王媛.裂隙渗流与应力耦合特性的试验研究[J].岩土工程学报.1997, 19(4):73-77.
    
    [129]盛金昌,速宝玉.裂隙岩体渗流应力耦合研究综述[J].岩土力学.1998,19(2):92-98.
    
    [130]郑少河,姚海林,葛修润.渗透压力对裂隙岩体损伤破坏的研究[J].岩土力学,2002,23(6): 687-690.
    
    [131]刘才华,陈从新,付少兰.剪应力作用下岩体裂隙渗流特性研究[J].岩石力学与工程学报. 2003,22(10):1651-1655.
    
    [132]刘才华,陈从新,付少兰.二维应力作用下岩石单裂隙渗流规律实验研究[J].岩石力学与工 程学报.2002,21(8):1194-1198.
    
    [133]Kelsall, P.C.,Case,J.B.,Chabames, C. R., Evolutional of Excavation-induced Changes in Rock Permeability[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 1984, 21,(3): 123-135.
    
    [134]陈洪凯,张永兴.只峡工程永久船闸陡高边坡岩体渗流发育规律探讨[J].重庆交通学院学 报.1996,15(4):21-25.
    
    [135]许光祥,张永兴.岩体裂隙渗流的频率水力隙宽[J].重庆建筑大学学报.2001,23(5):50-55.
    
    [136]许光祥 裂隙岩体渗流与卸荷力学相互作用及裂隙排水研究[博士学位论文][D]重庆.重庆 大学.2001.
    
    [137]曹广祝 岩石 CT尺度小裂纹扩展与渗流特性研究[硕士学位论文][D]陕西 西安理工大学. 2004.
    
    [138]艾万民 岩体卸荷应力场-渗流场藕合试验研究及数值分析[硕士学位论文][D]重庆.重庆 大学.2005.
    
    [139]梁宁慧 慧渗流对卸荷岩质边坡稳定性影响的研究[硕士学位论文][D]重庆.重庆大学.2005.
    
    [140]邓英尔,刘慈群,黄润秋等.高等渗流理论与方法[M].北京:科学出版社,2004.1-15.
    
    [141] Smiles D E, Rosenthal M J. The movement of water in Swelling materials [J]. Journal of Soil Research, 1968(6): 237-248.
    
    [142]徐林生.卸荷状态下岩爆岩石力学试验[J].重庆交通学院学报.2003(1):1-4.
    
    [143]张黎明,王在泉,王建新.岩石卸荷破坏的试验研究[J].四川大学学报.2006(3):34-37.
    
    [144]张黎明,王在泉,贺俊征.岩石卸荷破坏与岩爆效应[J].西安建筑科学大学学报.2007(1): 110-113.
    
    [145]Bear J.多孔介质流体动力学[M],李竟生,陈崇希译.北京:建筑工业出版社.1984.
    
    [146]Barenblatt G.I etc. Basic concept in the theory of seepage of homogeneous liquidsin fissured rocks[J]. J. of Appl. Math. Mech., 1960,24(5): 762-771.
    
    [147]Snow D.T. Anisotropic permeability of fractured media[J]. Water Resource Research.1969, 5(6):705-711.
    
    [148] Snow D. T. A parallel plate model of fractured permeable media, PhD Thesis, Universityof California,1976.
    
    [149] Louis C. A study of groundwater flow in jointed rock and its influence on thestability on rock masses[J]. Rock Mech. Res. Rep. 10, Imp. Coll.,London, 1969.
    
    [150]张有天,张武功.裂隙岩体渗流特性渗流数学模型及系数量测[J].岩石力学,1982,(8):3-8.
    
    [151]胡云进,速宝玉,仲济刚.有地表入渗的裂隙岩体渗流数值分析及工程应用[J].岩石力学与 工程学报.2000,1.9(6):1019-1022.
    
    [152]仵彦卿,岩体水力学基础(一),岩体水力学基本问题[J].水文地质工程地质.1996(6): 24-28.
    
    [153]王允诚,向阳,邓礼正,单钰铭.油层物理学[M].四川科学技术出版社.2006.
    
    [154] Terzaghi. Theoretical soil mechanics [M].New York:TihoWiley, 1923.
    
    [155]Bear,J. Flow and Contaminant Transport in Fractured Rock[M].San Dieo:Academic PrInc,1993.
    
    [156] Wu Yanqing, Zhang Zhuoyuan. Research on lumped parameter model of coupled seepageand stress field in fracture rock mass [A]. Proc. 7th Int Congr Assoc of EngineeringGeology. LISBOA, PORTUGAL, 1995, 4601-4604.
    
    [157] Oda M. An equivalent continuum model for coupled stress and fluid flow analysis injointed in rock masses[J]. Water Resource Re s. 1986. 25(13):1845-1851.
    
    [158]Tim Douglas J R. Finite difference methods for two-phase Incompressible flow inporous media[J].Siam J Number Anal, 1983: 20 (4): 681-696.
    
    [159]黄润秋,徐德敏,付小敏等.岩石高压渗透试验装置的研制与开发[J].岩石力学与工程学报. 2008,27(10):1181-1992.
    
    [160]徐德敏,黄润秋,虞修竟.用于方柱体试样高围压下渗透性测试的模具[P]:中国,ZL 200820061969.2008.10.
    
    [161]杨根兰.蚀变岩工程地质特征及工程响应研究——以小湾水电站为例[博士学位论文][D]. 成都理工大学.2007.
    
    [162]徐德敏,黄润秋,虞修竟等.蚀变岩水-岩相互作用试验研究[J].水土保持研究 2008,15(2):117-119
    
    [163]张志军 钢筋混凝土的腐蚀与防护[J]彭城职业大学学报2002 17(4):60-61.
    
    [164]王军强,沈德建,曹小玉 水工混凝土结构钢筋锈蚀机理及其检测评定[J]江苏煤炭2003,4: 51-53.
    
    [165]黄润秋,徐德敏.高渗压下水-岩相互作用试验研究[J]. 工程地质学报.2008,16(4): 489-494.
    
    [166]水利水电工程岩土力学试验规程(SL264-2001)[s].北京:中华人民共和国水利水电出版 社,2001.
    
    [167]卿凇,黄戡,黄斌等 水泥砂浆相似材料研究[J].西部探矿工程 2003 11:146-148.
    
    [168]李中锋,何顺利.低渗透储层非达西渗流机理探讨[J].特种油气藏.2005.12(2):35-38.
    
    [169]李道品.低渗透油田开发[M].北京:石油工业出版社,1994.
    
    [170]黄延章,等.低渗透油层渗流机理[M].北京:石油工业出版社,1998:59-99.
    
    [171]黄延章,于大森.微观渗流实验力学及其应用[M].北京:石油工业出版社,2001.
    
    [172]王旭升,陈占清.岩石渗透试验瞬态法的水动力学分析[J].岩石力学与工程学报.2006 25(2) 增1:3098-3103.
    
    [173]徐德敏,黄润秋,张强等.高围压条件下孔隙介质渗透特性试验研究[J]. 工程地质学报. 2007,15(6):752-756.
    
    [174]朱继良.大型岩石高边坡开挖的地质-力学响应及其评价预测——以小湾水电站工程高边 坡为例[博士学位论文][D].成都理工大学.2006.
    
    [175]尤明庆,华安增.卸围压法测量岩石材料的泊松比[J].实验力学.1997,12(2):274-278.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700