用户名: 密码: 验证码:
榆林气田上古压裂理论与应用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
榆林气田是我国鄂尔多斯盆地发现的大型气田,是长庆油田的四大主力气田之一,“西气东输“的主要气源区。对于鄂尔多斯这类低压低渗透油气藏其自然生产能力极差,压裂改造是开发的必备手段,完善发展这类低渗透气藏的高效改造技术,不仅是摆在石油工作者面前的重要课题,也是我国石油工业发展战略的需要。
     对榆林气田低压气藏压裂工艺及配套技术的研究和完善,不仅可以为该区块的勘探开发提供有力的技术支撑和技术手段,为进一步提高上古低压气藏的单井产量,提高气田的经济综合开发效益起到重要的作用;而且也是针对这类难开发的低渗储层的改造措施方面的一个技术储备,为鄂尔多斯盆地的储层改造提供一个研究思路及借鉴方法。
     本文从上古储层的实际地质特征入手,针对榆林上古压裂改造技术的需要,重点对压裂定量选井选层技术、多薄层压裂模型、控缝高理论与技术、支撑剂回流机理和压降评估等方面进行了较为系统和深入的研究,取得了以下主要成果:
     (1)通过榆林上古储层地质特征、前期压裂资料和生产测试资料的统计、评估、分析,运用灰色关联、模糊数学等方法建立了利用人工智能方法提高榆林上古储层压裂效果的定量选井选层模型,形成了一套既考虑储层特征又考虑施工参数优选压裂井层的方法。
     (2)根据Kirchoff第一定律和Kirchoff第二定律,建立了多层水力压裂过程中的流量分配模型,实现了对整个压裂过程中的流量初始分配和再分配的动态分配;在此基础上考虑多层裂缝同时起裂延伸,建立了多条垂直裂缝三维延伸数学模型,编制了相应的计算程序。
     (3)利用线弹性断裂力学和数理方程知识,在拟三维的假设条件下,引入动态应力强度因子公式,建立了裂缝高度模型。并编制了程序,进行了该区块裂缝高度延伸影响因素的研究。
     (4)建立了压裂液返排中的支撑剂回流力学模型和强制返排的井口压力计算模型,为定量确定压裂返排参数、选择最佳的油嘴提供依据:建立了气井生产过程中出砂的力学机理模型。
     (5)研究与分析传统的压力递减分析模型,对传统G函数分析方法进行了改进,并考虑压裂液的压缩性与压后立即返排,建立了适合裂缝性油藏的PKN和KGD二维分析模型,形成新的压裂分析解释技术。
     (6)在考虑非达西效应和长期裂缝导流能力的基础上,建立了压裂气井产量预测数学模型,给出了压裂气井产量拟合求取裂缝参数的基本原理,并依据榆林气井压后生产数据拟合得到了支撑裂缝参数。
Yulin gas-field, a large gas field found in Ordos basin, one of Changqing's four main gas fields, is one chief gas resource zone of the West-East Gas Pipeline Project. For the reservoirs with low permeability and formation pressure as Ordos, hydraulic fracturing is an essential approach for improving well production. So improving the effective stimulation technology for low permeability gas resource is researchers' key subject, and also the Strategic demand of petroleum industrial's development.
     Research and improvement of the fracturing techniques and technology for Yulin low pressure gas reservoir can not only provide powerful technology brace and approach, but also can play an important role in improving single well's output of Palaeoid low pressure gas reservoir and reservoir's composite economic benefit. Further more, it can also provide technology reserve for low permeability reservoir's exploitation, a research route and reference for formation stimulation in Ordos basin reservoir.
     This article starts with the actual geologic characteristic of Palaeoid reservoir, considering the demand of fracturing technology in Yulin, and especially does an in-depth and systemic study on the contents below: the technology of fracturing quantitative selection of well and layer, the model of multi-laminar fracturing, the technology and theory of controlling fracture height, backflow mechanism about proppant, evaluating the pressure drop and so on. The achievements are as follows:
     (1) Through the statistics, evaluation and analysis on the geologic characteristic of Palaeoid reservoir in Yulin, the early fracturing data and the production test data, with the methods of gray correlative and fuzzy mathematics, we set up a model of quantitative selecting well and layer on enhancing fracturing effect about Palaeoid reservoir in Yulin with artificial intelligence approach, and formed a suit of methods of selecting fracture well and layer, considering reservoir characteristic and treating parameters.
     (2) Based on Kirchoff's first law and second law, we established a model of distributing flow in the multi-layer hydraulic fracture process, which successfully achieved the aim of flow's dynamic distributing for the initial and redistribution. Considering multi-layer fractures extending at the same time, we set up a mathematic model of multi-vertical splits which can extend dimensionally, and compiled a relevant calculation procedure.
     (3) With the knowledge of linear elastic fracture mechanics and mathematical equations and on the assumption of P3D, we set up a model of fracture height with the introduction of dramatic stress intensity formula, and investigate the factors which can affect the extension of fracture height in this zone.
     (4) We established a mechanical model of proppant backflow in the process of fracture fluid flowback, and set up a calculating model of wellhead pressure in the course of compulsive flowback, which provide the criterion for checking parameters of fracture flowback and selecting optimal choke. We also built a mechanical model of gas-well's sand flow during the production.
     (5) With the research and analysis on traditional model of pressure decline, we improved the traditional method of G function analysis; Considering the fracture fluid's compressibility and discharging immediately after fracture, we established PKN and KGD models through two-dimensional analysis, and developed a new analyzing and interpreting technology.
     (6) Based on the consideration of non-Darcy flow and long-term conductivity, we built a mathematical production forecast model of fractured gas-well, put forward the fundamental principle of matching fracture parameters by the gas-well's production, and fitly got prop-fracture's parameters through the production data obtained after fracturing.
引文
[1]宋永,刘春林等.影响油层压裂效果的因素分析.大庆石油地质与开发,1995,14(2)
    [2]吴亚红,李秀生等.人工神经网络在压裂选井及选层中的应用.石油大学学报(自然科学版),2001,25(5)
    [3]蒋廷学,汪绪刚等.水力压裂选井选层的快速评价方法.石油钻采工艺,2003,25(4)
    [4]蒋廷学.重复压裂选井选层的模糊识别方法.石油钻采工艺,1997,19(3)
    [5]肖芳淳.压裂酸化中选层的模糊物元评价分析.石油钻采工艺,1996,18(6)
    [6]刘洪,赵金洲等.模糊神经网络系统在优选压裂井层中的应用.钻采工艺,2002,25(5)
    [7]杜卫平.重复压裂选井选层人工神经网络方法.钻采工艺,2003,26(4)
    [8]刘长印,孔令飞等.人工智能系统在压裂选井选层方面的应用.钻采工艺,2003,26(1)
    [9]S.R.R.eeves,et al.:"Benchmarking of Restimulation Candidate Selection Techniques in Layered,Tight Gas Sand Formations Using Reservoir Simulation",paper SPE 63096 presented at the 2000SPE Annual Technical Conference and Exhibition held in Dallas,Texas,1-4 October 2000
    [10]Robert F.Shelley:"Artificial Neural Networks Identify Restimulation Candidate in the Red Oak Field",paper SPE 52190 presented at the 1999 SPE Mid-Continent Operation Symposium held in Oklahoma City,March 28-31
    [11]Christian Oberwinkler,Michael J.Econmides:"The Definitive Identification of Candidate Wells for Refracturing",paper SPE 84211 presented at the SPE Annual Technical Conference and Exhibition held in Denver,Colorado,U.S.A.5-8 October 2003
    [12]S.Mohaghegh,et al.:"Candidate Selection for Stimulation of Gas Storage Wells Using Available Data With Neural Networks and Genetic Algorithms",paper SPE 51080 presented at the 1998 SPE Eastern Regional Meeting held in Pittsburgh.P.A.9-11 November 1998
    [13]Shahab Mohaghegh,et al.:"Development of an Intelligent Systems Approach for Restimulation Candidate Selection",paper SPE 59767 presented at the 1999 SPE Gas Technology Symposium held in Calgary,AB.Canada,3-5 April 2000
    [14]Perkins,T K,Kern,L R.Widths of Hydraulic Fractures.JPT,Sept,1961.
    [15]Norgren,R P.Propagation of a Vertical Hydraulic Fracture.SPEJ,Aug,1972.
    [16]Khristianovic,S A,Zheltov,Y P Formation of Vertical Fractures by Means of Highly Viscous Liquids.Proceeding of the fourth World Petroleum Congress,Section Ⅱ,1955.
    [17]Geertsma,J,Dekerk,F.A Rapid Method of Predicting Width and Extent of Hydraulically induced Fractures.JPT,Dec,1969.
    [18]Daneshy,A A.Numerical Solution of Sand Transport in Hydraulic Fracturing.JPT,Jan,1978.
    [19]Simonson,E R,Abou Sayed,Clifton,R J.Containment of Massive Hydraulic Fractures.SPEJ,Feb,1978.
    [20]Van Eekelen.Hrdyaulic Fracture Geometry:Fracture Containment in Layed Formation.SPEJ,June,1982.
    [21]Advani,S H,Ganggerao,H V S,Chang,H Y,Komar,C A,Khan,S.Hydraulic Fracture Modeling for the Eastern Gas Shales Project.Proceeding DOE Second Eastern Gas Shales Symposium,Morgantown,1978.
    [22]Advani,S H,Chang,H Y,Komar,C A,Stonesifer,R.Rock Mechanics Aspects of Hydraulic Fracturing in the Devonian Shale.21 th Rock Mechancis Symposium,1980.
    [23]Advani,S H,Lee,L K.Finite Eelment Model Simulations Associated Width Hydraulic Fracturing.SPEJ,April,1982.
    [24]U.Ahmed,B.M.Newberry,and D.E.Cannon.Hydraulic fracture treatment design of wells with multiple zones.SPE/DOE 13857,1985.
    [25]K.Ben Naceur,and J.C.Roegiers.Design of fracturing treatment in multi.layered formations.SPE 17712,1988.
    [26]W.S.Lee and E.L.Jantz.A three.dimensional hydraulic propagation theory coupled with two.dimensional proppant transport.SPE 19770,1989.
    [27]K.Ben Naceur,and J.C.Roegiers.Design of fracturing treatment in multilayered formations.SPEPE,February 1990.
    [28]J.L.Elbel,A.R.Piggott,and M.G.Mack.Numerical modeling of multilayer fracture treatment.SPE 23982,1992.
    [29]W.S.Lee.A three.dimensional hydraulic propagation theory simulating fracture growth simultaneously from two sets of perforation.SPE 26792,1993
    [30]Z.Rahim,S.A.Holditch.Using a three.dimensional concept in a two.dimensional model to predict accurate hydraulic fracture dimensions.JPSE 13,1995.
    [31]LaGrone,K.and Rasmussen,J.A New Development in Completion Methods - The Limited Entry Technique.JPT(July 1963) 693.702.
    [32]Cramer,D.D.The Application of Limited Entry Techniques in Massive Hydraulic Fracturing Treatments.SPE 16189,1987.
    [33]J.L.Elbel.A method to estimate multizone injection profiles during hydraulic fracturing.SPE 21869,1991
    [34]Mack,G.M.,Elbel J.L.,and Piggott,A.R(1992)Numerical Representation of Multilayer Hydraulic Fracturing,Rock Mechanics,Tilerson and Wawersik(eds),Balkema,Rotterdam
    [35]王鸿勋,张士诚.水力压裂设计数值计算方法.北京:石油工业出版社,1998,
    [36]米卡尔J.埃克诺米德斯,肯尼斯G.诺尔特著,张宏逵等译.油藏增产措施.北京:石油工业出版社,1991.
    [37]万仁溥,罗英俊主编.采油技术手册(第九分册).北京:石油工业出版社,2002
    [38]张士诚.分层压裂技术在多产层开发中的应用[J].钻采工艺,2001,24(4):81-83
    [39]王宗六,孟祥和等.低渗多层薄油层压裂技术[J].油气采收率技术,1999,6(2):61-66
    [40]Economides,M J,Nolte,K G著,张保平,蒋阗等译.油藏增产措施.第三版.北京:石油工业出版社,2002.6:171
    [41]Hanson,A W and Lyons,D W.Method of Fracturing Formations.U.S.Patent.1964.6:151-678
    [42]Hanson A W.Plastically Deformable Solids in Treating Subterranean Formations.U.S.Patent.3.1964.10,159-217
    [43]Simonson,E R and Abou-Sayed,A S.Containment of Massive Hydraulic Fractures.SPE 6089,1978
    [44]Nguyen,H X and Larson,D B.Fracture Height Containment by Creating an Artificial Barrier With a New Additive.SPE 12061,1983
    [45]Arp,M E and Hilton,R E.Case History Study of Fracture Height Containment in East Texas.SPE 14653,1986
    [46]Palmer,I D and Kutas.GM,Hydraulic Fracture Height Growth in San Juan Basin Coalbeds.SPE 21811,1991
    [47]Mukherjee,H and Paoli,B F.Successful Control of Fracture Height Growth by Placement of Artificial Barrier.SPE 25917,1993
    [48]Gidley,J L著,蒋阗、单文文等译.水力压裂技术新发展.北京:石油工业出版社,1995:170-251
    [49]Morales,R and Fragachan,F E.Production optimization by an Artificial Control of Fracture Height Growth.SPE 38150,1997
    [50]Mukherjee,Hemanta and Paoli,B F.Successful Control of Fracture Height Growth by Placement of Artificial Barrier.SPE25917,1995
    [51]D G.Garcia and G.F.Kruse.Effective control of vertical fracture growth by placement of an artificial barrier(bottom screen out) in an exploratory well.SPE69578,2001
    [52]David J.Mack and Joseph Awny.Fracture height development and control in the Mississippian sandstone of Central west Virginia.SPE 84841,2003
    [53]何岱海,屈展等.控缝高水力压裂中支撑剂和隔离剂输送规律.西安石油学院学报.1998,13(5):20-22
    [54]刘德铸等.水力压裂控缝高技术在辽河油田的研究与应用.压裂酸化技术论文集.中国石油天然气集团公司油气开发部编.北京:石油工业出版社,1999:178-185
    [55]郭大立,赵金洲等.控制裂缝高度压裂工艺技术实验研究及现场应用.石油学报.2002,23(3):91-94
    [56]杨秀夫,刘希圣,陈勉,陈志喜.国内外水力压裂技术现状及发展趋势[J].钻采工艺.1998.4
    [57]刘新全,刘新生,赵炜,水层或衰竭层上方产层压裂缝高的控制技术.国外油田工程,2001.9:7-9
    [58]任书泉,刘蜀知,赵金洲等.控制裂缝高度的压裂方法研究.低渗透油气田,1992:39-44
    [59]Sinclair,A.R.and Graham,J.W.et al.:"Improved Well Stimulation With Resin-Coated Proppants," SPE11579,1983.2.
    [60]Pope,C.D.,Wiles,T.J.and Pierce,B.R.:"Curable Resin-Coated Sand Controls Proppant Flowback",SPE16209,1987.3.
    [61]Coulter,G.R.and Wells,R.D.:"The Advantages of High Proppant Concentration in Fracture Stimulations",JPT,1972.6:643.
    [62]Ely,J.W.,Arnold,W.T.and Holditch,S.A.:"New Techniques and Quality Control Find Success in Enhancing productivity and Minimizing Flowback",SPE20708,1990.9.
    [63]姚飞,王晓泉.支撑剂在裂缝中运移机理研究.世界石油工业.1999,6(3):38-41.
    [64]Martins,J.P.et al:Deviated Well Fracturing and Proppant Production Control in the Prudhoe Bay Field",SPE24858,1992.10.
    [65]Vreeburg,R-J.et al:"Proppant Backproduction During Hydraulic Fracturing-A New Failure Mechanism for Resin-Coated Proppants",JPT,1994.10:884.
    [66]Clayton,F.M.et al.:"TheLemanF and G Development Obtaining Commercial Production rates from a Tight Gas Reservoir",SPE20993,1990.
    [67]Baumgartner,W.E.et al.:"Fracture Stimulation of a Horizontal Well in a Deep,Tight Gas reservoix:A Case History From Offshore the Nethedand",SPE26795,1993.9.
    [68]唐洪明,孟英峰等.柴达木盆地东部气田疏松砂岩气藏出砂与防砂机理探讨.天然气工业:2002.1,22(1).
    [69]Romero,J.M.et al.:"The optimization of the productivity index and the fracture geometry of a stimulated well with fracture face and choke skins",SPE81908,2003.2.
    [70]Mark Parker and Diederik Van Batenburg.Understanding Proppant Flowback.SPE 56726
    [71]Naval Goel and Subhash N.Shah.Experimental Investigation of Proppant Flowback Phenomena Using a Large Scale.SPE 56880
    [72]Barree,R.D.,and Mukherjee,H.Engineering Criteria for Fracture Flowback Procedures[p].SPE 29600
    [73]G.L.Gidley,G.S.Penny and P.R.McDaniel.Effect of Proppant Failure and Fines Migration on Conductivity of Propped Fractures.SPE 24008
    [74]D.D.Sparlin and R.W.Hagen.Proppant Selection for Fracturing and Sand Control.World Oil,Jan,1995:37-40
    [75]R.K.Bratli and R.Risnes.Stability and Failure of Sand Arches.SPE 8427
    [76]J.Remreo and J.P.Feraud.Stability of Proppant Pack Reinforced with Fiber for Proppant Flowback Control.SPE 31093
    [77]David Milton Tayler,Chris Stepherson,and M.L.Asigan.Factors Affecting the Stability of Proppant in Propped Fractures:Results of a Laboratory Study.SPE 24821
    [78]Frac Tech Ltd:"Proppant Flowback Report",2002.
    [79]Andrew,J.S.and Kjφrholt,H.:"Rock Mechanical Principles Help Predict Prppant Flowback from Hydraulic Fractures",SPE47382,1998.7.
    [80]Javier,M.et al.:"Avoiding Proppant Flowback in Tight-Gas Completions with Improved Fracture Design",SPE84310,2003.10.
    [81]Parker,M.and Weaver,J.et al.:"Understanding Proppant Flowback",SPE56726,1999.10.
    [82]Asgian,M.I.and Cundall,P.A.:"The Mechanical Stability of Propped Hydraulic Fractures",SPE28510,1994.9.
    [83]姚飞,王晓泉.水力裂缝起裂延伸和闭合的机理研究.油气藏改造论文集.北京:石油工业出版社.2000:81-86.
    [84]宋军政 郭建春.压裂气井出砂机理研究.钻采工艺.2005,3.28(2):20-21
    [85]傅英 郭建春等.支撑剂回流室内研究.河南石油.2006,20(1):58-60
    [86]Economides,M J,Nolte,K G.油藏增产技术(第三版).张保平等译.北京:石油工业出版社,2002.
    [87]Economides,M J,Nolte,K G.油藏增产技术(第二版).张宏速等译.山东:石油大学出版社,1991.
    [88]Gidley,J L,Nolte,K G.等.水力压裂技术新进展.蒋闻等译.北京:石油工业出版社,1995.
    [89]Zemanek,J,et al.The Borehole Televiewer-A New Logging Concept for Fracture Loaction and Other Types of Borehole Inspection.SPE 2402.
    [90]Smith,M B,Rosenberg,R J,Bowen,J F.Fracture Width:Design vs.Measurement.SPE 10965.
    [91]Albright,J N,Pearson,C F.Acoustic Emissions as a Tool for Hydraulic Fracture Location:Experience at the Fenton Hill Hot Dry Rock Site.SPEJ,Aug,1982.
    [92]Thorne,B J,Morris,H E.Advances in Borehole Seismic Fracture Diagnostics.SPE/DOE 16405.
    [93]Hart,C M,et al.Fracture Diagnostics Results for the Multiwell Experiment's Paluda]Zone Stimulation.SPE 12852.
    [94]Vinegar,H J,et al.Active and Passive Seismic Imaging of a Hydraulic Fracture in Diatomite.JPT,Jan,1992
    [95]Truby,L S,et al.Data Gathering for a Comprehensive Hydraulic Fracture Diagnostic Project:A Case Study.SPE 27506.
    [96]Warpinski,N R,et al.Microseismic Mapping of Hydraulic Fracture Using Multi Level Wireline Receivers.SPE 30507.
    [97]Anderson,J A,et al.Determination of Fracture Height by Spectral Gamma Log.SPE 15439.
    [98]Agnew,B G.Evaluation of Fracture Treatments with Temperature Surveys.JPT,July,1966
    [99]Smith,R C,Stcffenscn,R J.Interpretation of Temperature Profiles in Water-Injection Wells.JPT,June,1975.
    [100]Dobkins,TA.Improved Methods to Determine Hydraulic Fracture Height.JPT,April,1981.
    [101]Davis,P M.Surface Deformation Associated with Dipping Hydrofracture.J Geophy Res,July,1983.
    [102]Holzhausen,G,et al.Hydraulic Fracture Growth During Steam Stimulation in a Single-Well Test.SPE13619.
    [103]Branagan,P T,et al.Measuring the Hydraulic Fracture Induced Deformation of Reservoirs and Adjacent Rocks Employing a Deeply Buried Inclinometer Array: GRI/DOEE Multi-Site Project. SPE 36451.
    [104] Godbey, J K, Hodges, H D. Pressure Measurements During Formation Fracturing Operations. Trans RIME, 1958.
    
    [105] Nolte, K C} Smith, M B. Interpretation of Fracturing Pressures. SPE 8297; JPT, Sept, 1981.
    [106] Nolte, KGDetermination of Proppant and Fluid Schedules from Fracturing Pressure Decline. SPEFE, July, 1986.
    
    [107] Nolte, K G. Fracturing Pressure Analysis for Non-Ideal Behavior. SPE 20704; 3PT, Feb, 1991.
    [108] Ayoub, J A, et al. Diagnosis and Evaluation of Fracturing Treatments. SPEPE, Feb, 1992.
    [109] Crockett, A R, Okusu, N M, Cleary, M P A Complete Integrated Model for Design and Real-Time Analysis of Hydraulic Fracturing Operations. SPE 15069.
    [110] Crockett, A R, Willis, R M, Cleary, M P Improvement of Hydraulic Fracture Prediction by Real-Time History Matching on Observed Pressures. SPEPE, Nov, 1989; SPE 15264;低渗透油气田开发译文集.北京:石油工业出版社, 1992.
    [111] Cleary, M P, et al. Computerized Field System for Real-Time Monitoring and Analysis of Hydraulic Fracturing Operations. SPE 14087.
    [112] Buharali, A M, Wright, T B, Willis, R M. Real-Time Hydraulic Fracturing Simulation Using a Portable Microcomputer. SPE 16486.
    [113] Pearson, C M. Development and Application of an Operator's Stimulation Monitoring System. SPE 16903.
    [114] Cleary, M P, Barr, D T, Willis, R M. Enhancement of Real-Time Hydraulic Fracturing Models with Full 3-D Simulation. SPE 17713.
    [115] Johnson, D E, et al. On-Site Real-Time Analysis Allows Optimal Propped Fracture Stimulation of a Complex Gas Reservoir. SPE 25414.
    [116] Johnson, D E, et al. Real-Data On-Site Analysis of Hydraulic Fracturing Generates Optimum Procedures for Sob Design and Execution. SPE 25920.
    [117] Robinson, B M, Holditch, S A, Peterson, R E. The Gas Research Institute's Second Staged Field Experiment: A Study of Hydraulic Fracturing. SPE 21495.
    [118] Meyer, B R. Three-Dimensional Hydraulic Fracturing Simulation on Personal Computers: Theory and Comparison Studies. SPE 19329.
    [119] Meyer, B R, Cooper, G D, Nelson, S G. Real-Time 3-D Hydraulic Fracturing Simulation: Theory and Field Case Studies. SPE 20658.
    
    [120] Gulrajani, S N, Mack, M g, Elbel, J L. Pressure History Inversion for Interpretation of Fracture Treatments. SPE 36439.
    [121] Gulrajani, S N, Nolte, K C} Romero, J. Evaluation of the M-Site B-Sand Experiments:The Evolution of a Pressure Analysis Methodology. SPE 38575.
    [122]Oulrajani,S N,Romero,J.Evaluation and Modification of Fracture Treatments Showing Near-Wellbore Effects.SPE 36901.
    [123]Piggott,A R,Brady,B H,Gu,H.Reservior Formation Characterization from Hydraulic Fracturing Records.Proc Eurock'92 Symposium,London,UK,1992.
    [124]郭大立,刘慈群,赵金洲.垂直裂缝气井生产动态预测及参数识别.应用数学和力学,23(6).2002.
    [125]郭大立,赵金洲,刘先灵,刘富,吴刚.识别水力裂缝参数的自动拟合模型和方法.石油钻采工艺,25(1),2003.
    [126]Nolte,K G Determination of Fracture Parameters from Fracturing Pressure Decline.SPE 8341,54th SPE Annual Technical Conference and Exhibition,Las Vegas,Nevada,Sept,1979.
    [127]Nolte,K q Smith,M B.Interpretation of Fracturing Pressures.J Pet Tech,Sept,1981
    [128]Nolte,K G.A General Analysis of Fracturing Pressure Decline with Application to Three Models.Soc Pet Eng Formation Evaluation,Dec,1986.
    [129]Martins,J P,Harpor,T R.Min-frac Pressure Decline Analysis for Fracture from Long Perforated Interval and Uneffected by Conf'mly Strata.SPE 13冬69.
    [130]Lee,W S.Pressure Decline Analysis with the Christianovich and Zheltov and Penny-shaped Geometry Model of Fracturing.SPE/DOE 13872,May,1985.
    [131]Lee,W S.New Method of Mini-Frac Analysis Offers Greater Accuracy and Enhanced Applicability.SPE 15941,Eastern Regional Meeting,Columbus,Ohio,Nov,1986
    [132]王鸿勋,张士诚.水力压裂设计数值计算方法.北京:石油工业出版社,1998.
    [133]张士诚,王鸿勋.压降曲线三维分析方法及应用.石油学报,11(3).1990.
    [134]郭大立,赵金洲,郭建春,曾晓慧.压后压降分析的拟三维模型和数学拟合方法.天然气工业,21(S).2001.
    [135]孟维宏,王鸿勋.一种确定裂缝参数的新方法.石油大学学报(自然科学版),12(4).1988
    [136]蒋闻等.压裂压力分析及应用.SPE,1988.
    [137]Ding Zhu,Hill,A D.The Effect of Temperature on Minifrac Pressure Decline.SPE 22874.
    [138]Gastillo,J L.Modified Fracture Pressure Decline Analysis Including Pressure Dependent Leakoff.SPE16417.
    [139]Nolte,K GS et al.A Systematic Method forApplying Fracturing Pressure Decline:Part 1.SPE 25845.
    [140]Meyer,B R.Design Formula for 2-D and 3-D Vertical Hydraulic Fractures:Model Comparison and Parametric Studies.SPE 15240.
    [141]Meyer,B R,Hagel,M W.Simulated Mini-Frac Analysis.J of Canadian Pet Eng,Sept-Oct,1989.
    [142]郭大立,陈汉斌,赵金洲.压裂后压力递减分析新方法.石油钻采工艺,19(4),1997.
    [143]张平,郭大立,陈汉斌,赵金洲.压裂后压力测试资料分析解释技术.天然气工业,17(5),1997
    [144]郭大立,吴刚,刘先灵,赵金洲.确定裂缝参数的压力递减分析方法.天然气工业,23(4),2003.
    [145] Muskat, M. Flow of Homogeneous Fluids through Porous Media. McGraw Hill Book Co., Inc., New York, 1937.
    [146] Dyes, A B, Kemp, C E, Caudle, B H. Effect of Fractures on Sweepout Pattern. Trans AIME, 213, 1958.
    [147] Prats, M, Hazebroek, P, Strickler, W R. Effect of Vertical Fractures on Reservoir Behavior-Compressible Fluid Case. SPEJ, June, 1962.
    [148] Russell, D q Truitt, N E. Transient Pressure Behavior in Vertically-Fractured Reserviors. JPT, Oct, 1964.
    [149] Gringarten, A C, Ramey, H J J. The Use of Source and Green's Functions in Solving Unsteady Flow Problems in Reserviors. SPEJ, Oct, 1973.
    [150] Gringarten, A C, Ramey, H J J, Raghavan, R. Unsteady State Pressure Distributions Created by a Well with a Single Infinite-Conductivity Vertical Fracture. SPEJ, Aug, 1974.
    [151] Gringarten, A C, Ramey, H J J, Raghavan R. Applied Pressure Analysis for Fractured Wells. JPT, July, 1975.
    [152] Ozkan, E, Raghavan, A New Solutions for Well-Test-analysisProblems: Part 1-Analytical Considerations. SPEFE, Sept, 1991.
    [153]Ozkan, E, Raghavan, R. New Solutions for Well-Test-analysis Problems: Part 2-Computational Considerations, and Applications. SPEFE, Sept, 1991.
    [154] Cinco-Ley, H, Samaniego, F, Dominguez, N. Transient Pressure Behavior for a Well with a Finite-Conductivity Vertical Fracture. SPEJ, Aug, 1978.
    
    [155] Cinco-Ley, H, Samaniego, F. Transient Pressure Analysis for Fractured Wells. JPT, Sept, 1981.
    [156] Cinco-Ley, H. Evaluation of Hydraulic Fracturing by Transient Pressure Analysis Methods. SPE10043.
    [157] Cinco-Ley, H, Meng, H Z. Pressure Transient Analysis of Wells with Finite Conductivity Vertical Fracture in Double Porosity Reservoirs. SPE 18172.
    [158] Agawal, R q Carter, R D, Pollock, C B. Evaluation and Performance Prediction of Low-Permeability Gas Wells Stimulated by Massive Hydraulic Fracturing. JPT, March, 1979.
    [159] Sheng-Tai Lee, Brockenbrough, J R. A New Approximate Analytic Solution for Finite Conductivity Vertical Fractures. SPEFE, Feb, 1986.
    [160] Olarewaju, J S, Lee, W J. A New Analytic Model of Finite Conductivity Hydraulic Fracture in a Finite Reservoir. SPE 19093.
    [161] Ozkan, E, Sarica, C, Raghavan, R. Effect of Conductivity on Horizontal Well Pressure Behavior. SPE 24683.
    [162] Bennett, C O, Reynolds, A C, Raghavan, R, Elbel, J L. Performance of Finite Conductivity Vertically Fractured Wells in Single-Layer Reservoirs. SPEFE, Aug, 1986.
    
    [163] Ben-Naceur, K, Economides, M J. Production from Naturally Fissured Reservoirs Intercepted by a Vertical Fracture.SPE 17425.
    [164]刘慈群.在双重孔隙介质中有限导流垂直裂缝井的非牛顿流体试井分析方法.石油学报,1I(4),1990.
    [165]刘曰武,刘慈群.考虑井筒储存和表皮效应的有限导流垂直裂缝井的试井分析方法.油气井测试,2(2).1993.
    [166]刘慈群,杨介.垂直裂缝井非牛顿流体试井分析.石油钻采工艺,1993.
    [167]刘曰武,刘慈群.双重孔隙介质中垂直裂缝井流量动态预测方法的研究.试采技术,21(4),2000.
    [168]宋付权,刘慈群.低渗透油藏中垂直裂缝井的不定常渗流.试采技术,21(3).2000.
    [169]李凡华,刘慈群.分形油藏中无限导流垂直裂缝井的非牛顿流体渗流规律.石油学报,18(4),1997.
    [170]邓英尔,刘慈群.两相流体椭圆渗流数学模拟与开发计算方法.石油学报,20(6)1999.
    [171]邓英尔,刘慈群.各向异性双重介质垂直裂缝井两相流体渗流.力学学报,32(6),2000.
    [172]Cinco-Ley,H,Samaniego,R Transient Pressure Analysis:Finite Conductivity Fracture Case Versus Damaged Fracture Case.SPE 10179.
    [173]Holditch,S A,Morse,R A.The Effects of Non-Darcy Flow on the Behavior of Hydraulically FracturedWells.JP 工 Oct,1976.
    [174]李玉喜,肖淑海.储层天然裂缝与压裂裂缝关系分析.特种油气藏,2000.7(3):26-29
    [175]Nolte,K G.Determination of Fracture Parameters from Fracturing Pressure Decline.SPE 8341,54th SPE Annual Technical Conference and Exhibition,Las Vegas,Nevada,Sept 1979.
    [176]冈秦麟.特殊低渗透油气田开采技术[M]北京:石油工业出版社,1999:3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700