用户名: 密码: 验证码:
低渗透油层孔隙介质内微观流动机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国有丰富的低渗透油层资源,但由于受理论与技术发展水平的限制,采收率只能达到20%左右,远低于中、高渗透层水驱—化学驱后采收率可达到60%的指标。造成低渗透油层采收率低的原因很多,根据采收率的定义,波及效率和微观驱油效率决定着采收率的高低。低渗透油层微观驱油效率受孔隙结构、驱替流体性质等诸多因素的影响,研究不同性质流体在多孔介质中的流动规律及其制约低渗透油层微观驱油效率的因素是改善低渗透油层开发效果的关键。
     低渗透油层孔隙结构复杂、喉道细小、孔喉比大,非达西现象是低渗透油层主要特点。液体在细小流道中流动时受岩石壁面的作用,流动特征、微观作用力及其主导因素发生明显变化。本论文在深入调研国内外关于微流体流动、非达西渗流规律等研究成果的基础上,对水驱油微观机理、多孔介质内微观作用力进行了研究。建立了微孔道内固液相互作用条件下的流体黏性系数表达式、二维流动控制方程及数值方程;研究了收缩-扩张、扩张-收缩两种流道模型的流场分布,分析了不同模型参数条件下的流体流动特征,给出了考虑固液作用、不考虑固液作用两种情况下流体的流动规律;利用应力法确定了孔隙内有效波及效率。主要研究成果如下:
     通过研究多孔介质内油滴的受力情况,分析了油藏在整个开发过程中流体间作用力的相互关系及其对剩余油分布的影响。特别是考虑了浮力在油藏不同开发阶段对油滴的作用,并应用达西定律研究了流体浮力对垂向剩余油分布规律的影响。结果表明,在油水井中间区域的压力梯度远小于近井区域的压力梯度,而浮力与重力差在油水井间却没有明显变化,导致油滴所受合力的方向同水平方向的夹角变大,油滴向上漂移的趋势增强,容易在油层顶部形成剩余油。
     为了同固液相互作用条件下流体流动规律进行对比,建立了牛顿流体二维流动控制方程及有限差分数值方程,通过对收缩-扩张、扩张-收缩两种典型流道、不同模型参数的数值计算,研究了相应流道模型的速度、应力及流线分布。结果表明,在相同入口压力梯度的条件下,流道模型参数决定着流道内速度场、应力场、流函数场的分布,分析扩张-收缩流道在相同孔隙半径、不同喉道半径和孔隙长度条件下的计算结果,发现孔喉比和喉道半径是影响流场分布的主要因素,而孔隙长度的影响相对较小;而对于收缩-扩张流道模型,在模型入口压力梯度、孔隙半径不变的情况下,孔喉比、喉道半径、喉道长度对流道内流场分布的影响并不明显。
     研究了固体与液体分子间的微观作用力,认为固液间的相互作用是形成微孔道边界层的主要因素。流体在半径极其细小的流道中流动时,流体成为边界层流体,其黏度同常规液体的黏度不同,宏观上表现为流体黏度的增加,其值等于流体体相黏度与由固液作用引起的附加黏度之和。通过对微孔道内流体分子的受力分析,给出了微流体的黏性系数表达式,其值为离固体界面距离和固液表面性质的函数。利用所给出的边界层流体黏性系数表达式,建立了二维边界层流体的控制方程及其简化方程,得到了圆形截面毛管和平行窄缝中径向速度分布的近似解。利用有限差分法对二维边界层流体的控制方程进行了离散化,建立了二维边界层方程的数值方程。利用编制的计算机程序,求出了圆形截面毛管中考虑固液作用下流体速度分布的数值解,与前述得到的近似解相比,二者速度分布规律相吻合,证明了考虑固液作用的边界层数值方程及所给边界条件完全正确;利用编制的计算机程序,对流体在收缩-扩张、扩张-收缩两种流道类型内的速度场、应力场、流线场分布进行了数值计算,得到了不同模型参数的流场分布图,与非边界层流体的流动特征相比,考虑固液作用时,流体流速呈数量级减少,孔隙内流体有效波及面积减少,喉道半径越小,固液作用越明显。
     依据大庆油田真实油藏条件,确定了孔隙模型的几何和流体动力学参数的关系,进而确定了微孔道中原油屈服应力的下限值。根据扩张-收缩流道模型内应力场的计算结果,结合该屈服应力界限值,计算了有效驱油效率,结果表明,孔喉比越大,驱油效率越低。
China has abundant resources of low permeability reservoirs, but limited by the current theory and technology development, the recovery can only reach about 20%. This is far below the indicators of the middle and high permeability layer after water flooding - chemical flooding, whose recovery can arrive at 60 %. There are many reasons affect the low recovery in low-permeability reservoirs. According to the definition of recovery, affected efficiency and micro oil displacement efficiency determine the recovery. The micro oil displacement efficiency in low-permeability reservoir is affected by many factors such as pore structure, fluid property of displacement and so on. It is critical to study the flow regulation of different fluids in porous media and the limit factors of micro oil displacement efficiency in low permeability reservoir.
     Low-permeability reservoir has complex pore structure, small throat and large pore throat ratio, and non-Darcy phenomenon is the main characteristic of low permeability reservoirs. The flow features, the micro-force and its leading factors changed significantly because the liquid is affected by the rock wall while flowing in the sprue. In this paper, based on previous research results of many micro-fluid flow and non-Darcy flow regulation, the micro-mechanism of water displacing oil and the micro force in porous media are studied; and the fluid viscosity coefficient equation in the micro sprue with the interaction of solid and liquid and the two-dimensional flow control equations and numerical equations are given; using the calculation results, the flow field distribution maps of two types of flow channel model, that is, contraction-expansion and expansion-contraction sprue are plotted, the fluid flow characteristics are analyzed under the conditions of different model parameters, and the fluid flow regulation is considered for two cases, that is, considering the role of solid-liquid interaction and without considering the role of solid-liquid interaction; the effective porosity conformance efficiency is determined by the stress method. Research results obtained are as follows:
     Through the research on the forces of the oil droplets in the porous media, the relationship of forces among the fluids during the whole development of reservoir and the influence of it on the distribution of resident oil are analyzed. Especially, considering the action of buoyancy on the oil droplets in different steps of development of the reservoir, Darcy’s Law is used to study on the influence of the buoyancy of fluid on vertical distribution of resident oil. The result shows that the pressure gradient of the central region between the oil & water wells is far less than that near the well bore region, but the difference of buoyancy and gravity does not change significantly between oil & water wells, resulting in the angle’s becoming larger between the direction of the force that the oil droplets suffered and the horizontal direction. The drift trend upward of oil droplets increased, and it is easy to form the residual oil at the top of the reservoir.
     In order to be compared with the flow behaviors of the fluid in boundary layer when considering the action between the solid and the liquid, the governing equations and the numerical finite difference equations of the 2-dimentional flow of Newtonian fluid are established, and through the numerical calculation of the convergent-divergent and the divergent-convergent model of flow path and the parameters of these two models, figures of the velocity, the stress and the flow line distribution are plotted. The result shows that under the condition of the same pressure gradient at the inlet, the velocity, the stress and the stream function distribution in the flow path are controlled by the parameters of the model. The calculating result of the divergent-convergent model of flow path with the same radius of pore, different radius of pore throat and different pore length is analyzed, and it is founded that the pore throat ratio and the radius of throat are the main factors which influence the distribution of flow field, while the influence of pore length is relatively little; as to the convergent-divergent model of flow path, with certain pressure gradient at the inlet and pore radius, the influences of the pore throat ratio, the radius of throat and the throat path length on the distribution of flow field in flow path are not obvious.
     On the basis of the study for solid and liquid microscopic force between molecules,the solid-liquid interaction was considered to be the main factors of the micro porous channel boundary layer of the formations. When fluids flow in extremely small radius of flow channels, the fluid boundary layer become fluids, its viscosity which was different from the conventional liquid viscosity was expressed as the increasing viscosity on the macro, and its value equaled the sum of fluid phase viscosity and solid-liquid effects caused by the additional viscosity. Through the force analysis of the molecules of the boundary layers, a boundary layer expression of fluid viscosity coefficient was given, and its value was a function of the distance from the solid interface and the nature of the solid-liquid surface. Using the expression, a two-dimensional boundary layer flow control equation and its simplified equation were set up, and the circular and rectangular cross-section velocity profile capillary distribution of the approximate solution was acquired as well. By divergence of the two-dimensional boundary layer equations using finite difference method, a numerical equation of the two-dimensional boundary layer equations was set up. Through the programmed computational procedures, the numerical solution of the circular section which considered the solid-liquid capillary flow velocity distribution was given firstly. Compared with the approximate solution above, we found that their speed distribution coincide, therefore we proved the correctness of the boundary layer numerical equation which considered the solid-liquid interaction and boundary conditions; secondly, using the numerical boundary layer equation, two types of pores: contraction-expansion, expansion-contraction, the velocity, stress and flow line fields have been calculated and the flow field distribution maps of different model parameters were acquired. In contrast with the non-boundary layer fluid flow characteristics, we knew that when considering the solid-liquid interaction, the fluid flow rate decreased in magnitude, the effective affected area of fluids within pores reduced, throat radius diminished, and the performance of solid-liquid effect became more significant.
     Using the relationship among the geometry of pore model and the hydrodynamic parameters derived from the real reservoir conditions in Daqing Oilfield, the lower limit of the yield stress of oil in micro-pore was determined. According to the calculation results of stress in the expansion-contraction sprue and the limit value of this yield stress, the effective displacement efficiency can be calculated. The result shows that the bigger the pore throat ratio, the lower the displacement efficiency.
引文
[1] Bear J,Dynamics of Fluid in Porous Media[M].Dover publications,INC,New York,1972
    [2]沈平平.油水在多孔介质中的运动理论和实践[M].北京:石油工业出版社,2000
    [3]胡志明.低渗透储层微观孔隙结构特征研究及其应用[D].硕士论文
    [4]王尤富,凌建军.低渗透砂岩储层岩石孔隙结构特征参数研究[J].特种油气藏,1999,6(4):26-28
    [5]王瑞飞,陈明强,孙卫等.特低渗透砂岩储层微观孔隙结构分类评价[J].地球学报,2008,29(2):213-220
    [6]杨二龙.孔隙尺度下聚合物驱油渗流规律研究[D].博士论文
    [7]傅国光.多孔性介质内传递与孔隙结构的耦合作用[D].硕士论文
    [8]贺成才.液-液两相水平管流的层流流动规律研究[D].博士论文
    [9]蒋仁杰.液体在微管中流动特性的研究[D].硕士论文
    [10]胡志明.低渗透储层微观孔隙结构特征研究及其应用[D].硕士论文
    [11]盖东玲.深层低渗储层微观孔隙结构特征研究[J].内蒙古石油化工,2008(6):116-118
    [12]张爱东.特低渗透储层渗流机理研究[D].硕士论文
    [13]胡志明,把智波,熊伟,等.低渗透油藏微观孔隙结构分析[J].大庆石油学院学报,2006,30(3):51-53
    [14]王学武,杨正明,刘霞霞.榆树林油田特低渗透储层微观孔隙结构特征[J].石油天然气学报,2008,30(2):508-511
    [15]熊伟,苗盛,胡志明等.长庆低渗透油藏微观孔隙结构[会议].中国力学学会学术大会,2005(CCTAM2005)
    [16]王瑞飞,陈明强,孙卫.鄂尔多斯盆地延长组超低渗透砂岩储层微观孔隙结构特征研究[J].地质论评,2008,54(2):271-276
    [17]王寿庆,何祖荣,祝总祺.双河油田储层微观孔隙结构及其三维数值模式[J].新疆石油地质,1988,9(4):22-28
    [18] J.贝尔著,李竞生,陈崇希,译.多孔介质流体动力学[M].中国建筑工业出版社,1983:1-2
    [19]罗蛰谭,王允诚.油气储集层的孔隙结构[M].科学出版社,1986,21-43
    [20]王寿庆,苟光汉,侯方浩等.双河油田VII油组砂岩的孔隙演化和次生储集空间[J].石油勘探与开发,l996年,第l期
    [21]严衡文,皮广农,吴震滨,等.我国陆相低渗透砂岩油层的粒度和孔隙系统的特征[A].低渗透油气田研究与实践[C].石油工业出版社,1998,11-19
    [22]李道品,罗迪强,刘雨芬.低渗透油田的概念及其在我国的分布[A].低渗透油气田研究与实践[北京].石油工业出版社,1998:1-110
    [23]盖东玲.深层低渗储层微观孔隙结构特征研究[J].内蒙古石油化工,2008(6):116-118
    [24]王学武,杨正明,刘霞霞.榆树林油田特低渗透储层微观孔隙结构特征[J].石油天然气学报,2008,30(2):508-511
    [25]王新江,石京平,张丽萍.大庆海拉尔地区储层岩石孔隙结构特征描述[J].中国地球物理,2006
    [26]李道品.透油田高开发决策论[M].石油工业出社,2003:1-4
    [27]贾文瑞,李福恺,肖敬修.低渗透油田开发部署中几个问题的研究田[J].石油勘探与开发,1995,22(4):47-51
    [28]熊敏,王勤田.盘河断块区孔隙结构与驱油效率[J].石油与天然气地质,2003,24(1):42-44
    [29]鄢捷年.油藏岩石湿润性对注水过程中驱油效率的影响[J].石油大学学报(自然科学版),1998,22(3):43-46
    [30]朱玉双,曲志浩,孔令荣,等.靖安油田长6、长2油层驱油效率影响因素[J].石油与天然气地质,1999,20(4):333-335
    [31]王尤富,鲍颖.油层岩石的孔隙结构与驱油效率的关系[J].河南石油,1999,13(1):23-25
    [32]胡志明.低渗透储层微观孔隙结构特征研究及其应用[D] .硕士论文
    [33]张绍东,王绍兰,李琴等.孤岛油田储层微观结构特征及其对驱油效率的影响[J].石油大学学报(自然科学版),2002,26(3):47-53
    [34]蔡忠.储集层孔隙结构与驱油效率关系研究[J].石油勘探与开发,2000,27(6):45-49
    [35]王尤富,鲍颖.油层岩石的孔隙结构与驱油效率的关系[J].河南石油,1999(1):23-26
    [36]罗蛰潭,王允诚.油气储集层的孔隙结构[M].北京:科学出版社,1986:l09-123
    [37]孙卫,史成恩,赵惊蛰.X-CT扫描成像技术在特低渗透储层微观孔隙结构及渗流机理研究中的应用—以西峰油田庄19井区长82储层为例[J].地质学报,2006,80(5)
    [38] Bear J.,Dynamics of Fluid in Porous Media[M].Dover publications,INC,New York,1972
    [39]唐祯安,王立鼎.关于微尺度理论[J].光学精密工程,2001,9(6):493-497
    [40]陶然,权晓波,徐建中.微尺度流动研究中的几个问题[J].工程热物理学报,2001,22(5):575-577
    [41]宋付权.低渗透多孔介质和微管液体流动尺度效应[J].科技进展(自然杂志),2004, 26(3):128-131
    [42] SHAH R K.Advances in heat exchanger design[J].American So-ciety of Mechanical Engineers,1986,66:112
    [43] KANDLIKAR S G.Fundamental issues related to flow boiling inminchannels and microchannels[J].Exp Therm Fluid Sci,2002(26):38-47
    [44] TRIPLETT K A,GHIAASIAAN S M,ABDEI-KHALIK S I,et al.Gas-liquid two-phase flow in micro-channels,Part 1:twophaseflow patterns[J].Int J Multiphase Flow,1999(25):377-394
    [45]刘中春,侯吉瑞,岳湘安.微尺度流动界面现象及其流动边界条件分析[J].水动力学研究与进展,2006,21(3):339-346
    [46]凌智勇,丁建宁,杨继昌,等.微流动的研究现状及影响因素[J].江苏大学学报(自然科学版),2002,23(6):1-4
    [47]钱晓蓉,沈宏继.微流体动力学研究发展与现状[J].航空精密制造技术,2005, 41(6):11-14
    [48] HARLEY J C, HUANG Y F, BAU H H, et a.l Gas flowinmicro-channels[ J]. J Fluid Mech., 1995, 284: 257-274
    [49] GRAVESEN P, BRANEBJERG J and JENSEN O S. Mi-crofluidics-a review[ J]. Journal of Micromechanics andMicroengineering, 1993, 3: 168-182
    [50] GED-EL-HAK. The fluid mechanics ofmicrodevices-thefreeman scholar lecture [ J]. J. of Fluids Engineering,1999, 121: 5-33
    [51]刘静.微米/纳米尺度传热学[M].北京:科学出版社,2001
    [52] HO Chih-ming, TAIYu-chong.微电子机械系统和流体流动[J].力学进展,1998,28(2):250-272
    [53]徐征,李战华,刘冲,等.锥形轴对称微管道内流动特性实验研究[J].应用力学学报, 2004,21(2): 125-128
    [54] MALA GM, LI Dong-qing. Flow characteristics ofwater inmicrotubes[ J]. Int. J. of Heat and Fluid Flow, 1999,(20): 142-148
    [55] PFAHLER J N, HARLEY J, BAU H, et a.l Liquid andgas transport in small channels[ J]. AS ME DSC, 1990,19: 149-157.
    [56] PFAHLER JN, HARLEY J, BAUH, et a.l Gas and liq-uid flow in small channels[J]. ASMED DSC, 1991, 32:49-60
    [57] Ho Chih_Ming, Tai Yu_Chong. Micro_electro_mechanical_systems (MEMS)and fluid flows.Annu. Rev. FluidMech.,1998;30: 579-612
    [58] Gad_el_Hak. The Fluid mechanics of microdevices—the freeman scholarlecture.J. of Fluids Engineering,1999;121: 5-33
    [59]钟映春,谭湘强,杨宜民.微流体力学几个问题的探讨[J].广东工业大学学报, 2001,18(3):46-48
    [60]张颖,王蔚,田丽,等.微流动的尺寸效应[J].微纳电子技术,2008,45(1):33-36
    [61]过增元.国际传热研究前沿—微细尺度传热[J].力学进展,2000,30(1):1-61
    [62] Chih-Ming Ho, Yu-Chong Tai.微电子机械系统和流体流动[J].力学进展, 1998,28(2):250-272
    [63] Ho Chih-ming, Tai Yu-chong. Micro-electro-mechanical-systems (MEMS)and fluid flows. Annu. Rev. Fluid Mech., 1998, 30: 579~612
    [64] Gad-el-Hak M. The fluidmechanicsofmicrodevices—the freeman schol-ar lecture. J. of Fluids Engineering, 1999, 121: 5~33
    [65]李战华,崔海航.微尺度流动特性[J].机械强度,2001,23(4):476~480
    [66]姜明健,罗晓惠,刘伟力.水在微尺度槽道中单相流动和换热研究[J].北京联合大学学报,1998,12(1):71-75
    [67]牧原光宏,仓久仁彦,永山昭.微小管における液体の流れ—Navier-Stokes方程式の适用性に关する考察[J] .精密工学会讠志,1993,59(3):31-36
    [68] Pfahler J,Harley J,Bau H.Liquid Transport in Micronand Submicron Channels[J]. Sensors and Actuators,1990,A21-A23:431-434
    [69] Makihara M., Sasakura K., Nagayama A. Flow of liquids in micro-capillary tube consideration to application of the Navier_Stokes equa-tions.J. of theJapanSocietyofPrecision Engineering/SeimitsuKogakuKaishi,1993;59(3): 399-404
    [70] Jiang X.N., Zhou Z.Y., Yao J., Li Y., Ye X.Y. Micro_fluid flow inmicrochannel,Transducers’95,Eurosensors IX, Sweden, 1995: 317-320
    [71] Flockhart S.M., Dhariwal R.S. Experimental and numerical investiga-tion into the flow characteristics of channels etched in silicon.J. of Fluids Engineering,1998;120: 291-295
    [72] Xu B., Ooi K.T., WongN.T. Experiment investigation of flowfrictionfor liquid flow in microchannels.Int. Comm. Heat Mass Transfer,2000;27(8): 1165-176
    [73]李战华,周兴贝等.非极性小分子有机液体在微流道中的流量特征.力学学报,2002(3)
    [74] Pfahler J., Harley J., Bau H.,et alGas and liquid flow in smallchannels.DSC,1991;32: 49-59
    [75] Mara G. M., Li Dongqing. FlowCharacteristicsofwater inmicrotubes.Int. J. ofHeat and Fluid Flow,1999;20:142-148
    [76] Qu Weilin, Mara G. M., Li Dongqing. Pressure_driven flows in trape-zoidal silicon microchannels.Int. J. ofHeat andTransfer,2000;43:353-364
    [77] Li Qingren, Qu Weilin, Li Dongqing. Interfacial electrokinetic effectson liquid flow in microchannels.Int. J. ofHeat andTransfer,2001;44: 3125-3134
    [78]吕春红,任泰安.微尺度流动研究的历史与现状[J].重庆电力高等专科学校学报,2007,12(1):11-13
    [79]蒋炳炎,谢磊,谭险峰,等.流道截面形状对微流体流动性能的影响[J].中南大学学报(自然科学版),2006,37(5):964-968
    [80]宫献华.微尺度流动阻力特性的研究[D].硕士论文
    [81]王玮,李志信,过增元.粗糙表面对微尺度流动影响的数值分析.工程热物理学报2003,24(l):85-87
    [82]黄蕾.微尺度下液体流动的特点及其影响因素[J].山西建筑,2007,33(32):195-196
    [83] Stemme G,Kittilsland G, Norden B. ASub-Micron particle filter in Silicon channels[J],Sensors and Actuators,1990,431(4):21-23
    [84]孙宏伟,顾维藻,刘文艳.速度滑移和温度阶跃对微尺度流动和换热的影响[J].工程热物理学报,1998, 19(1):94-97
    [85]姜明健,孙晗.制冷剂在微尺度槽道内的流动与传热研究[J].北京工业大学学报,1998,24(1)::55-59
    [86] Ho Chih_Ming, Tai Yu_Chong. Micro_electro_mechanical_systems (MEMS)and fluid flows.Annu. Rev. FluidMech.,1998;30: 579-612
    [87]刘慕仁等.二维对流扩散方程的格子Boltzmann方法[J].物理学报,1999,48(10): 1080-1083
    [88] Bird G. A. Recent advances and current challenges for DSMC.Com-puters Math.Appl.1998;35: 1-14
    [89]吉庆丰等.计算复杂边界渗流的蒙特卡罗方法[J].计算力学学报,2000,17(4):: 390-393
    [90] Eyes D. M.TheLiquidStateApplications ofMolecularSimulation.NewYork:John Wiley&Sons, 1998
    [91] Shibahara M., Kotake S. Quantum molecular dynamics study on light_to_light absorption mechanism in atomic system.Int. J. Heat and Transfer,1998;41: 839-849
    [92]黄延章等.低渗透油层渗流机理[M].北京:石油工业出版社,1998
    [93]李凡华,刘慈群.含启动压力梯度的不定常渗流的压力动态分析[J].油气井测试, 1997,,6 (1)
    [94] A. T.戈尔布诺夫.异常油田开发[M].北京:石油工业出版社,1987::181
    [95] Miller. R. J. et al. Threshold gradient for water flow in clay system, Proc. Soil.Sci.Soc.Am.,1963,27:606~609
    [96]И.Л马尔哈辛(俄译本).油层物理化学机理[M].北京:石油工业出版社,1997
    [97]ф.A.Требин,НефгепроницаемостъПесчаныхКодпекторов.М,остолте-хиэдат?1965
    [98]РаэвитиеИсследованийпоТеорииФильтрачиивСССР,1917-1967.ИэдателЬствоНАУКАМосква,1969
    [99]阎庆来.单相均质液体低速渗流机理及流动规律.第二界全国流体力学学术会议论文集:北京,科学出版社,1983年
    [100]阎庆来等.低渗透油层中单相液体渗流特征的实验研究[J].西安石油学院院报,1990, 5(2):1-6
    [101]阎庆来,何秋轩,等.低渗透储层中油水渗流规律的研究[J].低渗透油气藏勘探开发技术:北京,石油工业出版社,1993
    [102]阎庆来.低渗透油层渗流机理研究[M].低渗透油田开发技术:北京,石油工业出版社,1994
    [103]黄延章.低渗透油层非线性渗流特征[J].特种油气藏,1997(1)
    [104]宋付权,刘慈群.启动压力梯度的不稳定快速测量方法[J].石油学报,2001,22(3):: 67-70
    [105]姚约东,葛家理.低渗透油层非达西渗流规律的研究[J].新疆石油地质,2000,21(3):213-215
    [106]冯文光,葛家理.单一介质、双重介质中非定常非达西低速渗流问题[J].石油勘探与开发,1985, 12 (1):56-62
    [107]冯文光,葛家理.单一介质、双重介质非达西低速渗流的压力曲线动态特征[J].石油勘探与开发,1986 (5)
    [108]冯文光,葛家理.单一介质低速非达西渗流续流和表皮效应的影响[J].大庆石油地质与开发,1988,7 (2):45-50
    [109]刘慈群.有起始比降固结问题的近似解[J].岩土工程学报,1982,4(3)::107-109
    [110]冯文光.非达西低速渗流的研究现状与进展[J].石油勘探与开发,1986,13(4)::76-80
    [111]程时清,徐论勋.低速非达西渗流试井典型曲线拟合法[J].石油勘探与开发,1996,23(4)::50-53
    [112]宋付权,刘慈群等.低渗透介质含启动压力梯度一维瞬时压力分析[J].应用数学与力学,1999,20(1):25-32
    [113]冯曦,钟孚勋.低速非达西渗流试井模型的一种新的求解方法[J].油气井测试,1997,6(3):16-21
    [114]邓英尔等.分形低渗透油藏非线性渗流压力分析[J].试采技术,2002,23 (4):4-7
    [115]程时清等.油水两相低速非达西渗流数值模拟[J].石油勘探与开发,1998(2)
    [116]邓英尔等.具有启动压力梯度的油水两相渗流理论与开发指标计算方法[J].石油勘探与开发,1998年12月
    [117]邓英尔等.垂直裂缝井两相非达西椭圆渗流特征线解、差分解及开发指标计算方法[J].石油勘探与开发,2000年2月
    [118]邓英尔,刘慈群.启动压力梯度对低渗透油田注水开发的影响.低渗透油气田开发与实践(续一),北京:石油工业出版社,1999年
    [119]葛家理,涂彬等.超低渗透油层渗流机理研究[C].第七届全国渗流力学学术讨论会,合肥
    [120]尚根华.低渗透非线性渗流规律研究[D].中国科学院渗流流体力学研究所博士论文
    [121]谭雷军等.低速非达西流启动压力梯度的确定[J].油气井测试,2000, 9(4):5-7
    [122]刘曰武等.确定低渗透油藏启动压力梯度的三种方法[J].油气井测试,2002,11(4)
    [123]吕成远,王建,孙志刚.低渗透砂岩油藏渗流启动压力梯度实验研究[J].石油勘探与开发,29(1),2002,2
    [124]阮敏,何秋轩.低渗透非达西渗流临界点及临界参数判别法[J].西安石油学院学报,14(3),1999,6
    [125]宋付权,刘慈群.含启动压力梯度油藏的两相渗流分析[J].石油大学学报(自然科学版),23(3),1999,3
    [126]杰弗里卡莫夫等.异常石油(俄译本)[M].北京:石油工业出版社,1983
    [127] Bolt G .H . and Groenevelt P. H.Coupling phenomena as a possible cause for non-Darcian behavior of water in soil.Bull. L.A.S.H. N:2(14),1969
    [128] Swartzendruber D. Non-Darcy flow behavior in liquid-saturated porousmedia J. Geophys. Res. N:13(67),5205-5213,1962
    [129] Von Engelhardt W. and W.L.M.Tum.The flow of fluids through sandstone .III State Geol. Survey Circular 194,1955
    [130]ЛилатовЮ.С. .Поверхностныеявлениявгетерогенныхполимерныхсистемах.Вкн.Успехиколлоиднойхимии[M].《Наука》,1973,с. 309-317
    [131]张立娟,岳湘安.亲油岩石壁面残余油膜的微观驱替机理[J].油气地质与采收率,2007,14(1):79-82,85
    [132] FRAMPTON K D,MARTIN S E,MINOR K.The scaling of a-coustic streaming for application in micro-fluidic devices[J].AppAcoustics,2003(64):681-692
    [133] Alfred Chatenever and John C.Calhoun.Visual Examinations of Fluid Behavior in Porous Media-Part1[R].SPE 135,1952
    [134]诺曼R.莫罗著,鄢捷年,曾利容,陈志刚译.石油开采中的界面现象[M].北京:石油工业出版社,1994
    [135]薛定谔.多孔介质中的渗流物理[M].北京:石油工业出版社,1982
    [136] CHATENEVER A.and CALHOUN J.C.Visual Examinations of Fluid Behaviour in Rorous Media-Part I.Trans.AIME(1952),149-156
    [137] Mattax C.C.and Kyte. J.R.Ever See a Water Flood? Oil and Gas Journal(Oct 1961)59,115-128
    [138]杨付林.聚合物驱油机理及高质量浓度聚合物驱油方法研究[D].博士学位论文.大庆:大庆石油学院,2004
    [139]兰玉波,杨清彦,李斌会.聚合物驱波及系数和驱油效率实验研究[J].石油学报,2006,27(1):64-68
    [140]李宜强,隋新光,李洁.纵向非均质大型平面模型聚合物驱油波及系数室内实验研究[J].石油学报,2005,26(3):77-79,84
    [141]李宜强.聚合物驱大平面模型物理模拟实验研究[D].博士学位论文.万庄:中国科学院研究生院(渗流流体力学研究所),2006
    [142]何秋轩,高永利.沈阳油田储层微观驱油效率研究[J].西南石油学院学报,1996,48(2):20-24
    [143]贺承祖,华明琪.低渗砂岩气藏的孔隙结构与物性特征[J] .新疆石油地质,2005,26(3):280-283
    [144]杨锦林,呙长艳,胡宗全.测井解释储集层孔隙结构与含油气性[J].天然气工业,1998,18(5):36-39
    [145]王为民,郭和坤,叶朝辉.利用核磁共振可动流体评价低渗透油田开发潜力[J].石油学报,2001,22(6):40-44
    [146] R.E科林斯(著),陈钟祥(译).流体通过多孔材料的流动[M].石油工业出版社(北京),1984
    [147]张丽娟.黏弹性流体在复杂孔隙中的流动及对微观驱油效率的影响[D].硕士论文
    [148]王洪涛.黏弹性聚合物溶液微观渗流的有限体积方法[D].硕士论文
    [149]文书明.微流边界层理论及其应用[M].冶金工业出版社,2002
    [150] T.Cochrare,K.Walters,M.F. Webster.Newtonian and Non-Newtonian Flow Near A Reentrant Corner.J.Non-Newt.Fluid Mecd.,Vol.10,1982,95-114

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700