用户名: 密码: 验证码:
特低渗透油藏CO_2驱室内实验及数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国油气勘探开发程度的不断提高,优质油气田的储量和产量逐年减少,低渗透油气田的储量和产量所占比例则逐年增大,已成为当前以及今后我国油气增储上产的主要资源。由于低渗透储层物性差,孔隙喉道细小,具有拟启动压力梯度等特点,注水压力高,吸水能力差,油井注水开发见效慢。油井见水后,产油和产液指数下降快,这给油田的稳产和增产造成了很大困难,如何有效开发特低渗透油藏是目前国内外面临的主要问题。
     本文针对大庆龙虎泡油田高台子特低渗透油藏,利用室内实验及数值模拟,开展特低渗透油藏CO_2驱可行性研究。在模拟地层条件下,利用室内实验测定和相态方程计算相结合,研究了CO_2驱后油气相态变化规律,随CO_2注入量增加,地层油溶解油气比、饱和压力、体积系数、收缩率、平均溶解系数和膨胀系数增大,粘度和密度降低,泡点压力、露点压力、临界压力升高,临界温度降低,相态图两相区面积增大,等液量线的间隔增大。
     利用细管法测定原油与CO_2的MMP为20.3MPa。在此基础上,进行了水驱、CO_2混相驱和非混相驱油实验,结果表明:随着CO_2注入压力增加, CO_2突破时采收率、最终采收率、CO_2换油率、CO_2注入能力逐渐地增大;CO_2突破后,生产气油比增加,压力越高,生产气油比越大;CO_2混相驱采收率高于水驱,非混相驱采收率低于水驱;注气能力与注水能力之比为16.463以上。
     利用一系列实验研究了高台子地层CO_2驱油机理,定量提出了某些机理对驱油效率的贡献值。将CO_2注入油层后,原油及束缚水中溶解大量的CO_2,在地层条件下,原油粘度降低36.73%,原油体积膨胀20.53%,束缚水体积增加5.97%;当地层压力降低后,CO_2形成游离气,产生膨胀能;随着CO_2注入压力增加,油层条件下的气驱时油气界面张力下降;根据驱替压差和驱出流体体积的曲线,确定特低渗透油藏多相流时水驱启动压力梯度为CO_2驱的2.9倍,注入CO_2可降低地层的启动压力;CO_2驱后,岩石孔隙结构发生变化,渗透率提高4%~13%,岩石亲水性增强;改善相对渗透率,气相端点相对渗透率比水相端点渗透率低2.58倍以上,气油两相区范围高于水油两相区。
     根据龙虎泡油田高台子油层试验井区地质特征、井网状况及开发现状,应用PETREL地质建模软件建立了相控地质模型。采用Eclipse中的组分模型对CO_2注入方式、井网部署、注采压力、注采方式等进行了模拟。推荐方案为:井网加密方式采用井间加密,反九点法同步连续注气;注气压力为30MPa以上;采油井流压控制在2~3MPa左右。推荐的CO_2驱方案模拟10年内采收率可达到33.07%,较水驱方案可提高20%以上。可见,大庆龙虎泡油田高台子特低渗透油藏采用CO_2驱是可行的。
The reserve and production of high quality oil-gas field are decreasing with the improvement of exploration and development. The low permeability oil-gas field accounts for larger and larger proportion of oil production. The low permeability deposits have become the main resource to increase reserve and production now and in future. Due to the poor physical property, small size of pore and throat, high capillary force, a threshold pressure gradient exists in the low permeability reservoir. As a result, the water injection pressure is high, the water absorption capacity is poor, and the speed of water injection response is slow. With breakthrough of water in oil wells, the oil and liquid productivity index will decrease rapidly, which cause great difficulty to the stabilization and enhancement of oil production. How to develop effectively the ultra low permeability reservoir is a major problem confronted in the world at present
     The feasibility of CO_2 flooding in Gao Taizi ultra low permeability reservoir of Long Hupao oilfield were studied by laboratory experiment and numerical simulation in this dissertation. At the simulated conditions of Gao Taizi formation, the variation law of oil-gas phase behavior was studied through the combination of laboratory experiment and computation on phase state equation. The critical temperature of the formation crude from Gao Taizi formation was 600℃and the critical pressure was 39.846 MPa. With the increase of CO_2 injection volume, the bubble point pressure, dew point pressure and the critical pressure increased, the area of two-phase region increased, the interval between equivalent fluid lines enlarged. As the injected volume of CO_2 increasing, the GOR, saturation pressure, formation volume factor, volume shrinkage, compressibility coefficient, average solubility factor and expansion coefficient of the formation crude from Gao Taizi oil layer increased, while the viscosity and density declined.
     Slim tube experiment showed the MMP of crude oil and CO_2 was 20.3 MPa, higher than the formation pressure. Experiments of water flooding, CO_2 miscible and immiscible displacement were carried out, obtaining the following results: the recovery at CO_2 breakthrough, ultimate recovery, conversion rate from CO_2 to oil, CO_2 injectivity increased gradually with the increase of CO_2 injection pressure; After the CO_2 breakthrough, the GOR would increase, and the higher the injection pressure, the greater the GOR; the recovery of CO_2 miscible was higher than that of the water flooding, while the recovery of CO_2 immiscible was lower than that of the water flooding; the injectivity of CO_2 flooding was greater greatly than that of the water flooding, the injectivity ratio of gas to water was more than 16.463.
     A series of experiments were carried out to investigate the mechanism of CO_2 flooding in Gao Taizi formation, and the contributions to oil displacement efficiency of some mechanisms were decided quantificationally. With the injection of CO_2 into the formation, the oil and the irreducible water dissolved large amount of CO_2. At the formation condition, the viscosity of oil decreased 36.73%, the volume of oil increased 20.53%, the volume of irreducible water increased 5.97%, this portion of water became into flowing water; along with the reduction of formation pressure, CO_2 became into free gas, generating expansion energy; with the increasing of CO_2 injection pressure, the interfacial tension reduced. The interfacial tension was 3.868mN/m when CO_2 was injected at the formation pressure. When the pressure rised to miscibility pressure, the interfacial tension decreased to 2.598mN/m, and misible flooding occurred when the pressure exceeded the miscible pressure. The thereshhold pressure gradient was determined according to the relationship curve of the displacing pressure differential and the displaced fluid volume. The thereshhold pressure gradient of water flooding was 2.9 times to the CO_2 flooding, and the injection of CO_2 decreased the thereshhold pressure, increasing the injectivity; the rock pore structure changed after CO_2 flooding, the permeability increased 4~13%, the rock hydrophilicity became stronger; the relative permeability was improved, the relative permeability at the end-point of gas phase was more than 2.58 times lower than that at the end-point of water phase, the two phase region of gas flooding was wider than that of the water flooding.
     According to the geological characteristic, well pattern and development status of the test area of Gao Taizi oil layer in Long Hupao oilfield, facies-controled geological model was established by using PETREL geological modeling software. The CO_2 injection mode, well pattern arrangement, injection and production pressure, injection-production pattern, etc. were simulated by the compositional model in Eclipse. The recommended scheme was inter-well infill, inverted nine-spot gas injection; gas injection pressure being above 30MPa; the flowing pressure in oil well being controlled at about 2~3 MPa; synchronous and continuous gas injection. The simulated recovery could arrive at 33.07% in 10 years according to the recommended CO_2 flooding scheme, more than 20% higher than that of the water flooding scheme. Therefore, it is feasible to produce Gao Taizi ultra low permeability reservoir of Long Hupao oilfield by CO_2 flooding.
引文
[1]杨满平,任宝生,贾玉梅.低流度油藏分类及开发特征研究[J].特种油气藏,2006,13(4):48-50.
    [2]苏尔古伊耶夫ΜЛ.低渗透油田开发的问题和原则[M].北京:石油工业出版社,1993,136-138.
    [3]严衡文,周培珍,皮广农.冀东地区南堡潜山带深层储集性能评价研究[M].北京:石油工业出版社,1993:32-40.
    [4]唐曾熊.油气藏的开发分类及描述[M].北京:石油工业出版社,1994,75-91.
    [5]李道品,罗迪强,刘雨芬,等.低渗透砂岩油田开发[M].北京:石油工业出版社,1997:352-355.
    [6]李道品,罗迪强,刘雨芬.低渗透油田的概念及其在我国的分布[M].北京:石油工业出版社,1998:1-10.
    [7] SY/ T62852-1997,油气储层评价方法[S].北京:中国石油天然气总公司,1998.
    [8]赵靖舟,吴少波,武富礼.论低渗透储层的分类与评价标准[J].岩性油气藏,2007,19(3):28-31.
    [9]何琰,伍友佳,吴念胜.特低渗透油藏开发技术[J].钻采工艺,1999,22(2):20-23.
    [10]李士伦,周守信,杜建芬,等.国内外注气提高石油采收率技术回顾与展望[J].油气地质与采收率,2002,9(2):236-251.
    [11]刘华,张宁生,王志伟,等.低渗透油田提高采收率发展现状[J].钻采工艺,2004,27(4):38-40.
    [12]蒲美玲.低渗透油气藏改造技术研究进展[J].内蒙古石油化工,2007,2:315-317.
    [13]王建业,陈道学,杨汉林.特低渗透油藏高效开发技术[J].内蒙古石油化工,2003,29:119-120.
    [14] Gentzis T. Subsurface seque stration of carbon dioxide-anoverview froman Alberta Canada perspective [J]. Internationa Journal of Coal Geology, 2000,43(2):94-98.
    [15] Grig g B., Zeng Zhengwen, Laxman V. Bethapudi. Comparison of Non~Darcy Flow of CO_2 and N2 in a Carbonate RockReid[C]. SPE 89471, 2004.
    [16]张炜,李义连.CO_2储存技术的研究现状和展望[J].环境污染与防治,2006,28(12):950-953.
    [17]刘宝明,何家雄,夏斌.国内外CO_2研究现状及发展趋势[J].天然气地球科学, 2004, 15(4):412-416.
    [18] S. Tanaka, T. Hakuta, H. Haino. Possible contribution of carbon dioxide flooding to global environmental issues[J].Energy Conversion and Management, 1992, 33(2):587-593.
    [19]陈巍编译.在解决全球性气候变暖问题中石油业将起重要作用[J].国外油田工程, 2006,22(9):39-40.
    [20]缪明富,彭子成,钟国利.利用CO_2资源提高气田开发效益[J].石油与天然气化工, 2005,34(6):470-481.
    [21] Charles Tarnocai. The effect of climate change on carbon in Canadian peatlands[J]. Global and Planetary Change, 2006, 53(4): 222-232.
    [22]杨帆,李治平.油田绿色开采技术-CO_2驱油[J].内蒙古石油化工,2007,2:131-133.
    [23] Betty J. Felber. Selected U S. Department of Energy EOR Technology Applications[C]. SPE 89452, 2004.
    [24] Semere Solomon, Michael Carpenter, Todd Allyn Flach. Intermediate storage of carbon dioxide in geological formations: A technical perspective[J].International Journal of Greenhouse Gas Control, 2008,5:20
    [25] M. R. Islam, A. Chakma. Storage and utilization of CO_2 in petroleum reservoirs-A simulation study[J].Energy Conversion and Management, 1993, 34(5):1205-1212.
    [26]马涛,汤达祯,蒋平,等.注CO_2提高采收率技术现状[J].油田化学,2007,24(4) :379-383.
    [27]刘新,钟显东,秦佳,等.国内外混相气驱提高采收率技术[J].中外科技情报.2006(20):20-32.
    [28] Mohammed-Singh,lorna J.,Ashok K..Lessons From Trinidad`s CO_2 Immiscible Pilot Projects 1973-2003[C]. SPE89364,2005.
    [29]曾贤辉,王进安,张清正,等.文188块氮气驱室内实验研究[J].油气地质与采收率,2001,8(1):59-61.
    [30]李士伦,郭平,戴磊,等.发展注气提高采收率技术[J].西南石油学院学报,2000,8(3):41-45.
    [31] Qamar M. Malik, M. R. Islam. CO_2 Injection in the Weyburn Field of Canada: Optimization of Enhanced Oil Recovery and Greenhouse Gas Storage With Horizontal Wells[C]. SPE 59327,2000.
    [32] F.Jay Schempf,孙瑛璇译.美国不断推广应用CO_2驱提高采收率技术[J].国外油田工程,2005,5:15,51.
    [33]А.А.Фаткуллин,张威,王晶译.注气法在开采难采储量中的作用[J].国外油田工程,2000,18:6-8.
    [34] Moritis G .Special report enhanced oil recovery [J]. Oil&Gas Journal, 2002 , 8 : 53 -65.
    [35]凌建军,黄鹏.非混相CO_2开采稠油[J ].油气采收率技术,1996,3 (2):13 -18.
    [36]王福勇,王宏宇.注CO_2提高原油采收率技术[J].国外石油地质,1997,19 (2):55 -61.
    [37] Issever K.莫增敏,石家雄译.非混相CO_2驱提高重油采收率[J].国外油田工程,2001,1:7-11.
    [38]谈士海,张文正.非混相CO_2驱油在油田增产中的应用[J].石油钻探技术,2001,29(2):58-60.
    [39]石油信息.世界领先的加拿大烃类混相驱[J].大庆石油地质与开发,2003,22(4):52.
    [40] Jia, N. Moore, G.. Mehta, S. A.. Compositional Changes and Rheological Properties of Athabasca Bitumen under CO_2/O2 Mixtures Associated with Carbon Dioxide Flooding/Sequestration Process [J]. Ind. Eng. Chem. Res.,2007,46(1): 365-368.
    [41] Litong Zhao, David H.~S. Law.Prediction of fluid phase behaviors in a CO_2-EOR process in Weyburn field, Saskatchewan, Canada[J].Greenhouse Gas Control Technologies, 2005.7: 2069-2073.
    [42]庞彦明,郭洪岩,杨知盛,等.国外油田注气开发实例[M].北京:石油工业出版社,2001.
    [43]李士伦,孙雷,郭平,等.再论我国发展注气提高采收率技术[J].天然气工业, 2006,26(12):30-34.
    [44] F.John Fayers,R.I.Hawes,J.D.Mathews.Some Aspects of the Potential Application of Surfactants or CO_2 as EOR Processes in North Sea Reservoirs[J].Journal of Petroleum Technology. 1981.9:1617-1627.
    [45] Madhav M. Kulkarni, Dandina N. Rao. Experimental investigation of miscible and immiscible Water-Alternating-Gas (WAG) process performance[J].Journal of Petroleum Science and Engineering, 2005,48(1): 1-20.
    [46]郭占谦.中国油气资源可持续发展的思考(三)[J].新疆石油地质,2003.24(6):587-589.
    [47]李向良,李振泉,郭平,等.CO_2后续驱的长岩心物理模拟[J].石油勘探与开发,2004,31 (5):102 -104.
    [48]蒋明,赫恩杰.二连低渗透砂岩油藏开发中的几点认识[J].石油学报,2000,21 (4):58 -64.
    [49]刘炳官,朱平,雍志强.江苏油田CO_2混相驱现场试验研究[J].石油学报,2002,23 (4):56 -60.
    [50]赵明国,孙忠新.气体性质对特低渗透油藏气驱效果的影响[J].特种油气藏,2007,14(4):75-77.
    [51]谢尚贤,韩培慧,钱昱.大庆油田萨南东部过渡带注CO_2驱油先导性矿场试验研究[J].油气采收率技术,1997,4(3):13-19.
    [52]刘洪涛,韩军,孙建国.低渗透窄薄砂体油藏CO_2吞吐采油研究与应用[J].石油天然气学报(江汉石油学院学报),2005,27(2):389-391.
    [53]李莉,庞彦明,雷友忠,等.特低渗透油藏合理注气能力和开发效果分析[J].天然气工业,2006,26(9):118-121.
    [54]刘滨,张俊,李艳明,等.葡北油田注气混相驱开发技术[J].新疆石油地质,2002,23(5):424-426.
    [55]张俊,袁玉梅,桥继红.葡北油田水气交替驱替提高采收率矿场试验研究[J].吐哈油气,2004,9(4):332-334.
    [56]房保财,王允诚,王庆,等.葡萄花油田CO_2吞吐采油现场试验[J].江汉石油学院学报,2003,25(2):93-94.
    [57]邓永红,尚朝辉,杜勇.单井CO_2吞吐技术在桩西油藏开发中的应用[J].钻采工艺,2004,27(3):97-100.
    [58]周正平.稠油井CO_2吞吐采油技术[J].海洋石油,2003,23(3):72-76.
    [59]陈德斌,曾贤辉.文中油田CO_2吞吐矿场试验研究[J].西部探矿工程,2006,121(5):67-68.
    [60]高正龙,杨铁梅,张俊法,等.文184断块二氧化碳混相驱及油藏数值模拟研究[J].江汉石油学院学报,2000,22(4):61-62.
    [61]樊文钢,单鑫,孙维娜.大庆外围特低渗透油田开发试验[J].中外能源,2007,12(6):43-46.
    [62]王玉普,计秉玉,郭万奎.大庆外围特低渗透特低丰度油田开发技术研究[J].石油学报,2006,27 (6):70-74.
    [63] Tarek,Ahmed.张洪亮,董福洲,郑俊德译.油气相态分析[M].北京:蓝天出版社,1991,273-331.
    [64] Jo?o A. P. Coutinho, Marianne J?rgensen, Erling H. Stenby.Predictions of three-phase regions in CO_2-oil mixtures[J].Journal of Petroleum Science and Engineering, 1995,12(3):201-208.
    [65]郝永卯,陈月明,于会利. CO_2驱最小混相压力的测定与预测[J].油气地质与采收率,2005,12(6):64-66.
    [66]郭平,李苗.低渗透砂岩油藏注CO_2混相条件研究[J].石油与天然气地质,2007,28(5):687-692.
    [67]赵明国,陈顶峰.低渗透油藏提高原油采收率的实验研究[J].石油实验地质,2007,29(3):311-314.
    [68]李向良,郭平,李焕臣.大芦湖油田樊124块地层油与CO_2最小混相压力的确定[J].油气地质与采收率,2002,9(6):62-63.
    [69] Elsharkawy A M,Poettmann F H, Christiansen R. L.Measuring CO_2 Minimum Miscibility Pressures:Slim-Tube or Rising-Bubble Method[J].Energy & Fuels,1996,10(2):443-449.
    [70] Metin,Mihcakan F H,Poettmann.Minimum Miscibility Pressure,Rising Bubble Apparatus and Phase Behavior[C]. SPE27815,1994.
    [71] J.Bon,H.K.Sarma,A.M.Theophilos. An Investigation of MMP for CO_2-Rich Injection Gases with Pentanes-Plus Fraction[C]. SPE97536, 2005.
    [72] Richard A.Harmon,Reld B.Grigg.Vapor-Density Measurement for Estimating Minimum Miscibility Pressure[C]. SPE15403,1988.
    [73] Richard L Christiansen,Hiemi Kim Haines.Ripid Measurement of Minimum Miscibility Pressure with the Rising-Bubble Apparatus[C]. SPE13114,2004.
    [74]翼仁.确定最小混相压力的新方法[J].石油钻采工艺,2000,22(4):72.
    [75] S.C.Ayirala, D.N.Rao. Comparative Evaluation of a New MMP Determination Technique[C]. SPE 99606,2006.
    [76]李菊花,李相方,刘斌,等.注气近混相驱油藏开发理论进展[J].天然气工业,2006,26(2):108-110.
    [77] Ml. Zick.A Combined Condensing/Vaporizing Mechanism in the Displacement of Oil by Enriched Gases[C].1986,SPE 15493.
    [78] F.I.Stalkap.Carbon Dioxide Miscible Flooding:Past,present,and outlook for the future[C]. SPE 7042,1978.
    [79] Mungan N.Carbon Dioxide Flooding Fundamentals[J].J.Can.Pet.Tech.,1981,1:87-92.
    [80] W.F.Yelling and R.S.Metcalfe.Determination and Prediction of CO_2 Minimum Miscibility Pressures[J]. JPT, 1980:160-168.
    [81] Glaso. Generalized Minimum Miscibility Pressure correlation[C]. SPE 12893,1985.
    [82]李仕伦,张正卿,冉新权.注气提高石油采收率技术[M].成都:四川科学技术出版社,2001,85-89.
    [83] Mohahhed K.Emera,Hemanta K.sarma.A Reliable Correlation To Predict the Change in Minimun Miscibility Pressure When CO_2 Is Diluted With Other Gases[C]. SPE 93478-PA-P, 2006.
    [84] F.M.orr.and M.K.Silva.Effect of oil composition on minimum Miscibility Pressure-Part2:correlation[C]. SPE 14150, 1987.
    [85]韩培慧,姜言里,张景存.大庆油田CO_2驱油最小混相压力预测[J].油田化学,1989, 4:232-243.
    [86]赵明国,周海菲,王谦.原油与CO_2驱最小混相压力预测方法研究[J].西部探矿工程,2007,12:60-65.
    [87] Horn R G, Smith D T, HallerW. Surface silica and viscosity of water between sheets[ J ]. Chemistry & Physics, 1989, 162 (4 /5): 404- 408.
    [88]李浩,赵鹏大,刘柏林.拟启动压力对低渗透单相流体及油水两相渗流的影响[J].油气地质与采收率,2008,15(1):84-86.
    [89]郝斐,程林松,李春兰,等.特低渗透油藏启动压力梯度研究[J].西南石油学院学报,2006,28(6):29-32.
    [90]甘庆明,成珍,成绥民.低渗油藏非达西流启动压力梯度的确定方法[J].油气井测试,2004,13(3):1-4.
    [91]高树生,边晨旭,何书梅.运用压汞法研究低渗岩心的启动压力[J].石油勘探与开发[J].2004,31(3):140-142.
    [92]许建红,程林松,周颖,等.一种求解低渗透油藏启动压力梯度的新方法[J].石油勘探与开发,2007,34(5):594-597.
    [93]油气相对渗透率测定非稳态方法.中华人民共和国石油天然气行业标准SY/T6339-1998,1998.
    [94]郭沫贞,肖林鹏,张生兵,等.低渗透砂岩油层相对渗透率曲线特征、影响因素及其对开发的影响[J].沉积学报,2008,26(3):445-450.
    [95]孙黎娟,吴凡,刘社芹,等.超低渗油藏注气采油可行性实验[J].河南石油,2005,19(3):38-39.
    [96]赵明国,刘崇江.CO_2注入方式对芳48油藏开发效果的影响[J].2006,27(4):449-451.
    [97] Wang G. C.A Study of Crude Oil Composition During CO_2 Extraction Process[C]. SPE15085, 1986.
    [98] Hunedi S, Danquigny J, morel D. Application of Enhanced Oil Recovery Techiques on Mature Fields-Interest of Gas Injection[C]. SPE93368, 2005.
    [99] Egermann P, Bazin B, Vizika O.An Experimental Investigation of Reaction-Transport Phenomena During CO_2 Injection[C]. SPE93674, 2005.
    [100]苏畅,孙雷,李士伦.CO_2混相驱多级接触过程机理研究[J].西南石油学院学报,2001.23(2):115-118.
    [101] Merete V. Madland, Anne Finsnes, Ali Alkafadgi, Rasmus Risnes, Tor Austad.The influence of CO_2 gas and carbonate water on the mechanical stability of chalk[J].Journal of Petroleum Science and Engineering, 2006,51(3-4):149-168.
    [102]祝春生,程林松.低渗透油藏CO_2驱提高原油采收率评价研究[J].钻采工艺,2007,30(6):55-60.
    [103] A.M. Egwuenu,R.T. Johns, Y. Li.Improved Fluid Characterization for Miscible Gas Floods[C]. SPE94034, 2008.
    [104] Pradeep kumar kaul.An analysis of phase behavior and displacement characteristics of multicomponent mixtures[D].Stanford University,1999.
    [105] R.E. Guzman,Domenico Giordano,F.J. Fayers etal.Three-Phase Flow in Field Simulation of Gas and WAG Injections[C]. SPE28897,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700