用户名: 密码: 验证码:
全螺旋灌注桩承载特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全螺旋灌注桩是近年来开发的一项专利技术,在我国部分省、区得到应用。但该技术仍处于技术开发和推广应用阶段,缺乏系统的理论研究,其抗压特性、抗拔特性及桩身的破坏机理等尚不清楚,同时缺乏可靠实用的单桩竖向抗压承载力计算公式。
     本文在总结竖向荷载下桩基的承载力确定方法和荷载传递理论的基础上,进行了全螺旋灌注桩室内模型试验,并基于室内模型试验结果和工程实测资料,系统地分析了全螺旋灌注桩在竖向荷载作用下的荷载传递规律,同时利用FLAC~(3D)软件对全螺旋灌注桩的承载特性进行研究,主要工作和研究成果如下:
     (1)进行了全螺旋灌注桩的室内模型实验。对比分析了直线型桩和全螺旋模型桩的荷载—沉降关系、桩身轴力分布规律、桩侧阻力的分布和传递规律以及桩端阻力的发挥特征。研究表明,普通桩的桩侧摩阻力沿桩长基本呈均匀分布,桩身轴力沿桩长逐渐衰减,在小荷载作用下,荷载均由侧阻力承担,桩端阻力基本没有发挥作用。在加载初期,桩身侧阻力增加较快,而在加载后期端阻力的增加速率大于桩身桩侧阻力的增加速率,单桩桩侧摩阻力略先于桩端阻力达到极限。而全螺旋灌注桩在加载初期,上部土层的侧阻力首先发挥,向下很快衰减,下部土层侧阻力基本没有发挥;当外荷载逐渐增大时,上部土层侧阻力逐渐增大并达到极限值,随后中上部土层的侧阻力增至极限值,而下半部分土的侧阻力只发挥了极限值的40%~60%,其桩身轴力也衰减较快。
     (2)分析了全螺旋灌注桩桩侧阻力和桩端阻力的荷载传递模型特点,发现双曲线函数更符合全螺旋灌注桩的桩侧阻力的传递机理。
     (3)通过对比分析直线型和全螺旋模型桩的实验结果,全螺旋灌注桩的极限侧摩阻力约为直线型桩的极限侧摩阻力的1.8~2.2倍。其主要原因为:螺旋桩的桩侧阻力实际上是螺旋、桩身与土体共同作用的反映,螺旋桩的破坏主要表现为螺旋外包面土体的剪切破坏,桩侧极限阻力可用土的抗剪强度表示。全螺旋灌注桩桩端阻力在整个荷载传递过程中所占的比例比直线型的要少。
     (4)分析了全螺旋灌注桩在实际工程中的应用和极限承载力的试验数据。通过分析发现,全螺旋灌注桩的竖向承载力一般为同直径传统直线型桩的2~2.5倍,这与模型试验结果和理论分析相吻合。
     (5)结合室内模型,利用FLAC~(3D)软件分析了桩-土体系应力场和位移场的变化情况。认为:全螺旋灌注桩的桩侧阻力的发挥从上往下有一个逐渐的衰减过程,表现出明显的时间效应:全螺旋灌注桩引起的土的竖向位移从上到下是逐渐减小的,当达到极限荷载时,螺旋间的土呈剪切破坏;同时得到螺距/直径比与单桩承载力的关系,认为螺距为影响承载力大小的重要因素,在进行螺距设计时,螺距/直径比不宜在大于3。
     (6)提出了全螺旋灌注桩的承载力经验估算公式。全螺旋灌注桩的承载力估算可以《火力发电厂支盘灌注桩暂行技术规定》的支盘桩承载力计算公式为基础进行修正。考虑到全螺旋灌注桩荷载传递过程中,从上往下土体对螺旋的阻力发挥有一个逐渐的衰减过程,提出了深度修正系数的观点,并引入深度修正系数η_(pi),同时建立了全螺旋灌注桩的承载力经验预估公式。经比较,计算结果与桩的实际静载试验结果相近,因而用该公式来计算全螺旋灌注桩的竖向极限承载力是合理的、可行的。
     (7)结合工程实例,对全螺旋灌注桩实测数据进行了分析,认为全螺旋灌注桩是一种高效、环保、经济的桩型。同时提出用双曲线法预测全螺旋灌注桩单桩极限承载力这一思想,通过与实测结果进行比较,证明用该方法预测全螺旋灌注桩的极限承载力是可行的,取得的容许承载力是可信的。
The cast-in-place concrete pile with screws is a kind of newly-patented technique developed in recent years, which was used successively in some provinces of our country. But on the whole, this technique is at the early stage of development, research work is not systematic. The failure mechanism and bearing behavior of the pile under compressing loads and pulling loads are not clear. A reliable and practical formula to calculate the vertical bearing capacity of a single pile is also lack.
     This dissertation try to carry through the in-situ static loading test of the pile with screws, and study systematically that the load transferring regulations of this kind of pile under the compressing load based on the test and stress measuring of pile shafts, and analyze that the bearing characteristic of the pile with screws under the help of FLAC~(3D).The following is some conclusions.
     1. With results of the model tests, the circular-pile and the pile with screws were compared in characters such as loading-settlement relationship, distribution regulations of the axial force, friction resistance and the base resistance. The study shows that the friction resistance of the circular-pile is distributed equably along the pile, the axial force of the pile reduces with the depth. With a small stress, the shaft force is almost all taken by the shaft friction. As stress becomes greater, the shaft friction increases more quickly. But in the late period, the base resistance increases faster than the friction resistance, the friction resistance come to the maximum before the base resistance. In the cases of the pile with screws, at the early stage of loading, the friction of upper part of the shaft increases sharply, the lower part of the shaft have almost no stress. With the load increasing, the friction of upper shaft reaches ultimate state, the middle part takes more and more force until reaches ultimate state, the bottom part only uses about 40~60% of its capacity, and the axis forces also decreases sharply.
     2. The load-transferring regulations of the friction resistance and the base resistance of the pile with screws are analyzed, the load-transferring regulations of the friction can be presented with hyperbola function.
     3. It is found in practical cases that piles with screws can undertake capacities 1.8~2.2 times of that of circular piles. This is mainly caused by the interactions of screws, soils and pile. The ultimate friction of the pile is relative to shear strength of soils. Also, the base resistance undertakes less force in the case of the pile with screws.
     4. Some practical examples were introduced and the ultimate capacities were analyzed for the pile with screws. The rest results shows that the vertical bearing capacity is 2~2.5 times of its circular counterpart, which is identical with results of experiment and theory analysis.
     5. FLAC~(3D) was applied to analyze the stress and displacement field in accordance with the model tests. The regulation is very obvious that the shaft resistance attenuate from up to down. The z-displacement of the ground caused by the pile with screws decreases with the depth increasing. When the load reached ultimate state, the soils around the screws reached shear failure state. The relationship between the screw-pitch/diameter ratio and the bearing capacity of a single pile is also analyzed. The screw-pitch is an important factor to the bearing capacities; it should be no more than 3 in practical design.
     6. A formula is presented to calculate the vertical bearing capacity of the pile with screws based on experience. Through the analysis on the practical examples, a formula supposed to calculate the bearing capacity of the pile with expanded branches or plates in《Temporary technique specification for the pile with expanded branches or plates of firepower plant》is modified. Considering the resistance attenuation from up to down, a depth corrected coefficientη_(pi) is put forward, and a modified formula is given out. The data we got from the modified formula matches the ones that come from experiment. So it's reasonable to use this formula to calculate the vertical bearing capacity of the pile with screws.
     7. Based on engineering examples, we got the data of the pile with screws of actual sites. With some analysis, it came out that the pile with screws is more efficient, more environmental-friendly and more economical than the traditional type. The data also bring forward the idea of using the hyperbolic method to predict the limited vertical bearing capacity of a single pile. After a comparison between statistics from the predicted data and the measured data, we believe the hyperbolic method is an available and reliable way to get the limited bearing capacity of the pile with screws.
引文
[1]《桩基工程手册》编写委员会,桩基工程手册[M],北京:中国建筑工业出版社,1997
    [2]陈仲颐、叶书麟编,基础工程学[M],北京:中国建筑工业出版社,1996
    [3]茅以升,中国古桥技术史[M],北京:北京出版社,1986
    [4]孙更生、郑大同编,软土地基与地下工程[M],北京:中国建筑工业出版社,1984
    [5]M.J汤姆林森,桩的设计和施工[M],朱世杰译,北京:人民交通出版社,1984
    [6]陈希哲,土力学地基基础工程实例[M],北京:清华大学出版社,1982
    [7]茅以升,桥梁史话[M],上海:上海科学技术出版社,1977
    [8]高大钊,软土地基与地下工程(第二版)[M],北京:中国建筑工业出版社,2005
    [9]史佩栋、梁晋渝,纪念大直径灌注桩问世100周年,桩基工程设计与施工技术[M],北京:中国建材工业出版社,1994
    [10]王伯惠、上官兴,中国钻孔灌注桩新发展[M],北京:人民交通出版社,1999
    [11]凌治平、易经武,基础工程[M],北京:人民交通出版社,1998,4
    [12]汤康民,基础工程[M],四川:西南交通大学出版社,1990,6
    [13]建设部标准,建筑桩基技术规范(JGJ94-94)[M],北京:中国建筑工业出版社,1995
    [14]李波扬、吴敏,一种灌注桩的施工方法[P].中国专利:ZL961196025,2000.09
    [15]吴敏、李波扬,全螺旋灌注桩——螺纹桩竖向承载力初探[J],武汉大学学报(工学版)2002(5):109-112
    [16]刘金励,桩基础设计与计算[M],北京:中国建筑工业出版社,1990.
    [17]彭振斌、祝世平、刘静,全螺旋灌注桩单桩极限承载力的预测[J],中南大学学报(自然科学版).2007
    [18]H.G.波洛斯,E.H.戴维斯,桩基础的分析和设计[M],中国建筑科学研究院科技资料交流内部出版。
    [19]赵明华,桥梁桩基计算与检测[M],北京:人民交通出版社,2000
    [20]Cooke R W, Price G, Tarr K. Jacked piles in London clay: a study of load transfer and settlement under working conditions[J], Geotechnique, 1979, 29(2): 113-147
    [21]朱百里,沈珠江,计算土力学[M],上海:上海科学技术出版社,1990
    [22]赵明华,胡志清,预估试桩极限承载力的调整双曲线法[J],建筑结构,1995(3):47-52
    [23]邓志勇、陆培毅,几种单桩竖向极限承载力预测模型的对比分析[J],岩土力 学.2002(4):428-431
    [24]钱家欢、殷宗泽,土工原理与计算(第一版)[M],北京:中国水利水电出版社,1996
    [25]刘俊龙,双曲线法预测单桩极限承载力的讨论[J],岩土工程技术,2001(4):204-207
    [26]Chin Fung Kee,用斜率-倒数推算桩的极限荷载[M],地基基础译文集(5)桩基础,北京:中国建筑工业出版社,1982
    [27]赵明华、胡志清,预估试桩极限承载力的调整双曲线法[J],建筑结构,1995,(3):47-52
    [28]《地基与基础译文集》编委会,地基与基础译文集(5)-桩基础[M],北京:中国建筑工业出版社,1995
    [29]祝龙根、刘利民、耿乃兴,地基基础测试新技术IM],北京:机械工业出版社,1999
    [30]龚维明、蒋永生、瞿晋,桩承载力自平衡测试法[J],岩土工程学报,2000,22(5):532-536
    [31]宰金珉、宰金璋,高层建筑基础分析与设计[M],北京:中国建筑工业出版社,1994
    [32]Poulos H.G., Pile behaviour-theory and application, Geotechnique, 1989, 30(3): 365-415
    [33]Wei Dong Guo, Vertically loaded single piles in Gibson soil, Journal of geotechnical and geoenvironmental engineering, ASCE, 2000, 126(2): 189-193
    [34]建设部,《建筑地基基础设计规范(GB50007-2002)》[S],北京:中国建筑工业出版社,2002
    [35]建设部,《岩土工程勘察规范(GBS0021-2001)》[S],北京:中国建筑工业出版社,2002
    [36]建设部,《建筑桩基技术规范(JGJ 94-94)》[S],北京:中国建筑工业出版社,1994
    [37]交通部,《公路桥涵设计通用规范(JTGD60—2004)》[S],北京:中国交通工业出版社,2004
    [38]H.G.Poulos,EH.Davis ,Pile Foundation Analysis and Design[M],John Wiley and Sons ,Inc.
    [39]W.Y.Xu,(1986)Settlement Beheviour of Pile Foundations[C],Proc. Of International Conference for Deep Foundations ,Beijing
    [40]W.Y.Xu,(1986)Environmental Effects Caused by Pile Driving in Soft Clay Deposits and Their Control Techniques[C], Proc. Of International Symposium on Environmental Geotechnology ,Allentown ,Pennsylvania.
    [41]Tomlinson.M.J.(1977).桩的设计和施工[M],朱世杰译.北京:人民交通出版社,1984
    [42]黄强,大直径扩底桩承载力及变形计算[J],建筑结构学报,1994,15(1)
    [43]何颐华,王铁宏.大直径扩底桩承载力及沉降变形的计算[J],建筑结构学报,1993,14(2)
    [44]铁道部标准,《铁路桥涵设计规范((TBJ2-85))[S],北京:中国铁道出版社,1985
    [45]建设部,《基桩低应变动力检测规程(JGJT93-95)》[S],北京:中国建筑工业出版社,2002
    [46]建设部,《基桩高应变动力检测规程(JGJ106-97)》[S],北京:中国建筑工业出版社,2002
    [47]徐攸在,桩的动测新技术(第二版)[M],北京:人民交通出版社,2002,03
    [48]费鸿庆、宰金璋,桩的 摩阻力,桩基设计施工技术研讨会报告[M],《建筑桩基技术规范》编制组,1990.5
    [49]Kezdi. A. The bearing capacity of pile and pile groups[C]. In: Proc London ,4th ICSMFE, London, 1957, vol. 2,46-51
    [50]佐滕悟,基桩承载力机理[J],土木技术,1965,20(1):1-5
    [51]Seed H.B., Reese L.C. The action of soft clay along friction piles. Transactions, ASCE, 1957, 122(SM11):731-754
    [52]Coyle H.M., Reese L.C. Load Transfer for Axially Loaded Piles in Clay. Journal of the Soil Mechanics and Foundations Division, ASCE, 1966, 92(SM2): Ⅰ-26
    [53]Randolph M.F, Wroth C.P. Analysis of deformation of vertically loaded piles[J], Journal of the Geotechnical Engineering Division. ASCE,1978, 104(GT12): 1465-1488
    [54]陈竹昌、王建华,采用弹性理论分析搅拌桩性能的探讨[J],《同济大学学报(自然科学版)》,1993.01(21)P17-25
    [55]Thurman A G, D'Appolonia E. Computed movement of friction and end-bearing piles embedded in uniform and stratified soils. In: Proc.6thICSMFE. Montereal, 1965, vol. 2
    [56]Salas.J A J, Belzunce J A. Resolution theorique de la distribution des forces dans les pieux. In: Proc. 6thICSMFE. Montereal, 1965, vol. 2
    [57]Nair. Load-settlement and load transfer characteristics of a friction pile subject to a vertical load[C],In:Proc.3rdpan-Amer. CSMFE, 1967,vol. 1
    [58]Poulos H G, Davis E H. The settlement behaviour of single axially loaded incompressible piles and piers[J],Geotechnique, 1968, 18(3): 351-371
    [59]Poulos H G. Analysis of the settlement of pile groups[J], Geotechnique, 1968, 18(4): 449-471
    [60]Mattes N.S, Poulos H.G Settlement of single compressible pile[J], Journal of the Soil Mechanics and Foundations Division, ASCE, 1969, 95(SM1): 189-207
    [61]Hooper, J.A. Observation on the Behavior of a Piled-raft Foundation on London Clay[C], Proc. Instu. Civ. Engng., 1973, Part 2, 885-877
    [62]Desai, C.S. Numerical Design-analysis for Piles in Sands[C], Proc. ASCE. J. Geotechn. Engng. Div, 1974, Vol.100. GT6, June, 613-635
    [63]Ottaviani,M. Three-dimensional Finite Element Analysis of Vertically Loaded Piie Groups[J], Geotechnique, 1975, 25 C2), 159-174
    [64]陈雨孙、周红,纯摩擦桩荷载—沉降曲线的拟合方法及其工作机理[J],岩土工程学报,1987,9(2):49-60
    [65]王炳龙.用土的弹塑性模型和有限元法确定桩的荷载—沉降曲线[J],上海铁道大学学报,1997,18(1)
    [66]Trochanis, A.M., Beilak, J.&Christiano.P, Three-dimensional Nonlinear Study of Piles[J],ASCE, 1991, GT3, 429-447
    [67]F.P.Glushikhin, G.N.Kuznetsov etc, Modeling in Geo-mechanics[M], ELSEVEAR Science publishers, B.V. 1990
    [68]任德惠,用相似材料模拟研究工作压力[J],矿山压力,1984,No.1
    [69]左启勋,模型实验的理论与方法[M],水利电力出版社,1984
    [70]陈锐,脆性材料结构模型试验[M],水利电力出版社,1984
    [71]富马加利,静力学模型与地质力学模型[M],水利电力出版社,1979
    [72]王世强,模型论基础[M],科学出版社,1997
    [73]修朝英、李大展,单桩垂直静载试验P-S曲线的数学描述和极限荷载的预测[J],岩土工程学报,1988,1(6):64-73.
    [74]徐至钧、张国栋编著,新型桩——挤扩支盘灌注桩设计与工程应用[M],北京:机械工业出版社,2003
    [75]王学武、赵国光,估算单桩竖向极限承载力的方法及应用[J],天津市政下程,2002(4):12-14
    [76]北京市建设委员会,《北京地区大直径灌注桩技术规程(DBJ01-502-99)》[S],2000
    [77]国家电力公司行业标准,《火力发电厂支盘灌注桩暂行技术规定(DLGJl53-2000)》[S],2005.5
    [78]《建筑施工手册》(第三版)编写组,《建筑施工手册》(第三版)[M],中国建筑工业出版社,1997.04
    [79]江正荣,《地基与基础施工手册》(第一版)[M],中国建筑工业出版社,1997.07
    [80]赵明华等,倾斜荷载下群桩有限元分析方法探讨[J],中南公路工程,2003.Vol.28.No.2:8-14
    [81]龚晓南主编,土工计算机分析[M],北京:中国建筑工业出版社,2000,11-104
    [82]FLAC~(3D), Fast Lagrangian Analysis of Continua in 3 Dimensions, Version 2.1, User's Manual. USA: Itasca Consulting Group, Inc., 1997, 1-M66
    [83]胡斌、张倬元、黄润秋,FLAC~(3D)前处理程序的开发及仿真效果检验[J],岩石力学与工程学报,2002,21(9):1387-1391
    [84]寇晓东、周维垣、杨若琼等,应用三维快速拉格朗日法进行三峡船闸高边坡锚固稳定与机理研究[J],土木工程学报,2002,35(1):68-73
    [85]陈开旭,安关峰,鲁亮,采用有厚度接触单元对桩基沉降的研究[J],岩土力学,2000,21(1):92-96
    [86]Marti J, Cundall P A, Mixed Discretizaion Procedure for Accurate Modelling of Plastic Collapse, Int. J. Rock Mech. Min. Sci. &Geomech.,1982,6(1): 129~139
    [87]Cundall P A(1988),Formulation of a Three-Dimensional Dinsinct Element Model-Part Ⅰ.A Scheme to Detect and Represent Contacts in a System Composedof Many Polyhedral Blocks, Int.j.Rock Mech. Sci. & Geomech.. Abstr.
    [88]潘别桐、黄润秋.工程地质数值法[M].北京:地质出版社,1994.
    [89]陈星烨等,大型结构试验模型相似理论分析与推导[J].长沙交通学院学报,2004(1),11~14。
    [90]杨俊杰,相似理论与结构模型试验[M].武汉理工大学出版社,2005。
    [91]王助成、邵敏,有限单元法基本原理和数值方法[M].清华大学出版社,1997
    [92]Surana K S. Geometrically Monlineat Element[M].Inter. J. fumes. Dleth. Eng. 1983 Formulation for the Curved Shell, 19, 581-615
    [93]Bathe K L Ramm E, Wilson E L. Finite Element Formulations for Large Deformation Dynamic Analysis[M].Int. J. Num, Meth, Engng 1975, 9, 353-386
    [94]Forde B W'R and Stiemer S F. Improved Arc Length Orthogonality Methods for Nonlinear Finite Element Analysis[J]. Computers and Structures, 1987, 27, 625-630
    [95]Bathe K L, et al, Static and Dynamic Geometric and Material Nonlinear Analysis[M]. PB 231113, 1974
    [96]丁秀美等,FLAC~(3D)前处理程序开发及其工程应用[J],地质灾害与环境保护,2004.02
    [97]潘东发等,高应变法检测钻孔桩承载力技术试验研究[J],桥梁建设,1999年第1期
    [98]孟达等,高应变动力试桩理论和信号质量分析[J],低温建筑技术,2003年第1期
    [99]赵海生等,高应变法模拟Q-s曲线误差分析[J],岩石力学与工程学报,2005 Vol.24 No.12
    [100]颜东煌等,岳阳洞庭湖大桥三塔斜拉桥全桥静动力模型设计[J].长沙交通学院学报,1999(1)
    [101]陈常松等,岳阳洞庭湖大桥模型动力特性分析,中外公路,2002(6)
    [102]赵克烈等,FLAC~(3D)在深凹边坡形状优化中的应用[J],露天采矿技术,2006年第01期
    [103]常来山等,节理岩体边坡损伤力学与FLAC~(3D)耦合分析[J],金属矿山2004年第09期
    [104]丁秀美,黄润秋,臧亚君,预应力锚索框架作用下附加应力的FLAC~(3D)模拟[J],成都理工大学学报(自然科学版),2003年第04期
    [105]任天贵等,FLAC有限差分程序及其在矿山工程中的应用[J],中国矿业,2000 Vol.9 No.4 P.78-81,82
    [106]杨昌斌等,FLAC~(3D)在隧道初期支护与原岩条件的“耦合”问题的应用[J],煤田地质与勘探,2004年第05期
    [107]寇晓东等,应用三维快速拉格朗日法进行三峡船闸高边坡锚固稳定与机理研究[J],土木工程学报,2002年第01期
    [108]琚晓冬,基于FLAC~(3D)的抗滑桩设计方法研究[M],三峡大学硕士研究生学位论文,2005
    [109]王明龙等,基于FLAC~(3D)的土钉内力分析[J],工程地质学报,2006年第03期
    [110]卢书强等,澜沧江某电站左岸地下洞室群围岩稳定性的FLAC~(3D)分析[J],工程地质学报,2006年第03期
    [111]曾静等,佛子岭抽水蓄能水电站地下厂房施工开挖过程的FLAC~(3D)数值模拟[J],岩土力学,2006年第04期
    [112]王向东等,用FLAC~(3D)进行土质高边坡稳定性分析[J],西华大学学报(自然科 学版),2005 Vol.24 No.P.P87-89
    [113]张奇华等,某水电站右坝肩边坡岩体稳定性研究[J],长江科学院院报(双月刊),2006年8月,第23卷,第4期,总第107期
    [114]潘建平等,攀枝花露天矿排土场边坡稳定性的三维数值模拟研究[J],成都理工学院学报,2002年6月Vol.29No.3
    [115]周波、彭社琴,赵其华抗滑桩施工中边坡稳定系数分析[J],防灾减灾工程学报,2006年01期
    [116]迟世春、关立军,基于强度折减的拉格朗日差分方法分析土坡稳定性[J].岩土工程学报,2004,26(1);41-46
    [117]刘建华、朱维申、李述才,岩土介质三维快速拉格朗日数值分析方法研究[J].岩土力学,2006.04
    [118]王泳嘉、邢纪波.离散单元法同拉格朗日元法及其在岩土力学中的应用[J].岩土力学,1995,16(2):1-14.
    [119]梁海波、李仲奎、谷兆祺.FLAC程序及其在我国水电工程中的应用[J].岩石力学与工程学报,1996,15(3):225—230.
    [120]陈文胜、冯夏庭、葛修润等.静态松弛快速拉格朗日分析方法原理[J].岩石力学与工程学报,1999,18(6):680-684.
    [121]Poliakov A N B. Modeling of tectonic problem with PAROVOZ: examples of lithospheric rifting and bulking[A]. In: Detournay C, Hart R ed. Proc. of the 1st Int. FLAC Symposium on Numerical Modeling in Geomechanics[C]. Rotterdam: A.A.Balkema, 1999.165-172.
    [122]肖红飞、何学秋、冯涛.基于FLAC~(3D)模拟的矿山巷道掘进煤岩变形破裂力电耦合规律的研究[J],岩石力学与工程学报,2005,22(5):812-817.
    [123]Zhao C B, Hobbs B E, Muhlhaus H B, et al. Numerical modeling of double diffusion driven reactive flow transport in deformable fluid-saturated porous media with particular consideration of temperature-dependent chemical reaction rates[J]. Engineering Computations, 2000, 17(4): 367-385.
    [124]Rutqvist J, Wu Y S, Tsang C F, et al. A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39: 429-442.
    [125]Krysl P, Bittnar Z. Parallel explicit finite element solid dynamics with domain decomposition and message passing: dual partitioning scalability[J]. Computers and Structures, 2001, 79: 345-360.
    [126]Rajkumar B.高性能集群计算:编程与应用(第二卷)[M].郑炜民、汪东升、石威,等译.北京:电子工业出版社,2001.
    [127]Karypis G, Kumar V. Multilevel κ-way partitioning scheme for irregular graphs(Technical Report TR 96-036)[R]. Minnesota: Department of Computer Science, University of Minnesota, 1996.
    [128]Te Kamp L, Konietzky H, Muller-Hoppe N, et al. Modeling huge coupled systems with parallel FLAC3D[A]. In: Proc. of the EUROCK 2000 Symposium[C]. Aachen, Germany: Verlag Gluck-Auf Gmbh,
    [129]张友良、冯夏庭、茹忠亮.基于区域分解算法的岩土大规模高性能并行有限元系统研究[J].岩石力学与工程学报,2004,23(21):3636-3641.
    [130]徐芝纶.弹性力学(第二版)[M].北京:高等教育出版社,1982.
    [131]范镜泓、高芝晖.非线性连续介质力学基础IM].重庆:重庆大学出版社,1987.
    [132]姜谙男、刘建、李洪东.水布垭枢纽地下厂房开挖支护过程三维数值模拟[J].岩土力学,2004,25(1):45-54.
    [133]何满潮,王树仁.大变形数值方法在软岩工程中的应用[J],岩土力学,2004,25(2):185-188
    [134]杨立强、张中杰、林舸,王岳军,FLAC基本原理及其在地学中的应用[J],地学前缘(中国地质大学,北京),2003年3月,VOL.10 NO.1
    [135]徐平、李云鹏、丁秀丽、王芝银,FLAC~(3D)粘弹性模型的二次开发及其应用[J],长江科学院院报2004.04V01.21 No.2
    [136]漆泰岳、陆士良、高波,FLAC锚杆单元模型的修正及其应用[J],岩石力学与工程学报,2004,23(13):2197-2200.
    [137]杨立超,土钉支护及其FLAC数值模拟[J],建筑技术开发,2003,30(9):46-48
    [138]刘钦圣、张晓丹、王兵团.数值计算方法教程[M].北京:冶金工业出版社,1998:229-230
    [139]Numerical simulation of influence of shear dilatancy on deformation characteristics of shear band-elastic body system , WANG Xue-bin, 煤炭学报(英文版), 2004 Vol. 10 No.2
    [140]龚纪文,席先武,王岳军,等.应力与变形的数值模型方法[J].华东地质学院学报,2002,25(3):220~227.
    [141]Murton, Bramley; Biggs, Juliet Numerical modelling of mud volcanoes and their flows using constraints from the Gulf of Cadiz[J].Marine Geology, 195(4):223~236.
    [142]P Tapponnier, et al.Propagating extrusion tectonics in Asia: New insights form simple experiments with plasticine[J].Geology, 1982, 10:611~616.
    [143]戚科骏,徐美娟,宰金眠.单桩承载力的灰色预测方法[J].岩石力学与工程学报,2004,23(12):2069-2071.
    [143]修朝英.李大展.单桩垂直静载试验P-S曲线的数学描述和极限荷载的预测[J].岩土工程学报,1988,1(6):64-73.
    [144]高笑娟.杨晓斌.挤扩支盘桩极限承载力的预测[J].岩土工程技术.2005.19(5):254-257
    [145]李波扬.吴敏.一种灌注桩的施工方法[P].中华人民共和国.专利号:96119602.5
    [146]吴敏.戚茂平.李波扬.螺纹桩桩机[P].中华人民共和国.专利号:01240059.9
    [147]吴敏.戚茂平.李波扬.螺纹钻杆[P].中华人民共和国.专利号:01250189.1及01250190.5
    [148]吴敏.戚茂平.李波扬.螺纹桩桩机卷扬牵引机构[P].中华人民共和国.专利号:200410013038.9
    [149]吴敏.戚茂平.李波扬.螺纹桩桩机联动机构[P].中华人民共和国.专利号:02138738.9
    [150]吴敏.戚茂平.李波扬.螺纹桩桩机联动机构[P].中华人民共和国.专利号:02138738.9
    [151]陈腊根.具有钻进导程同步跟踪自控系统的螺纹桩机[P].中华人民共和国.专利号:01140557.0
    [152]陈腊根.螺旋桩桩机钻杆[P].中华人民共和国.专利号:01252199.Ⅹ

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700