用户名: 密码: 验证码:
油页岩钻孔水力开采实验台设计及孔底流场数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国经济的高速发展,引发了油气等能源消费的增长,油气的供求关系逐渐失衡,增大非常规油气资源的勘探与开发已成为国家经济发展迫切需要。国内的油页岩开发表明,只有含油率较高的地层,才能进行商业性的开采,而大部分的难开发的低含油率矿层,它们还具有开采潜力。必须依据技术进步使“难开采”的油页岩资源转化为“可开采”的油页岩资源,而目前钻孔水力开采技术被认为是一种应对低含油率油页岩的经济有效的新方法。
     钻孔水力开采技术作为采矿技术的重要组成部分,是集喷嘴射流冲击碎岩、孔底流体由孔底的抽吸口抽吸矿渣与钻进过程中连续上返岩屑于一体的国际上较先进的采矿技术。
     本文以吉林大学承担的国家重大课题“油页岩勘探开发利用产学研用合作创新项目”为依托,针对油页岩矿藏的特点和钻孔水力开采技术钻进工艺的要求,以钻孔水力开采技术碎岩后的流场为切入点,对孔底流场的速度、压力、喷嘴直径等参数进行研究,目的在于解决孔底流场的流体流动问题,为钻孔水力开采技术应用到油页岩开采与开发领域提供参考。本文主要研究内容和得到的结论如下:
     1.开展油页岩钻孔水力开采孔底流场流体动力学参数的研究,在数学理论推导基础上建立钻孔水力开采的压力和速度计算模型。推导出适合油页岩钻孔水力开采的计算方程。
     2.借助CFD软件,通过建立适合的物理模型和数学方程对钻孔水力开采的孔底流场进行仿真计算,较真实的反应钻孔水力开采的孔底流场的流动形态,流动过程,进而了解钻孔水力开采的结构特征,揭示了喷嘴直径,喷嘴与抽吸口距离等对孔底流体动力学参数的影响。
     (1)不同的射流速度时的流场模拟,显示就喷嘴直径为10mm而言,射流速度的变化对孔底流场的流动形式影响较大,其取值200m/s较适宜,此时液压缸的推力应不小于700KN;
     (2)不同的射流压力时的流场模拟,表明了射流压力配合具体的射流速度(200m/s),需要的高压泵的压力为55MPa以上,如果油页岩的抗压强度为30MPa,高压泵压力的取值应不小于55MPa;
     (3)喷嘴与抽吸口位置关系的模拟表明,抽吸口应置于喷嘴的相对侧的同一水平位置时,抽吸效果最好;
     (4)喷嘴直径的模拟,喷嘴直径越小越好,但是考虑喷嘴的使用寿命和对喷嘴材质的要求,取10mm较适宜。
     3.模拟得到的数据,为实验台设计提供参考依据。实验台设计时应采用55MPa以上的高压泵,10mm的喷嘴,液压缸应选择大于700kN的推力。
     4.结合上述的模拟参数,对最终得到的较适宜的参数进行实际的钻孔水力开采空间进行模拟,模拟结果表明开采区域的20*10m的空间,高压泵的输出压力为55MPa以上,射流200m/s,喷嘴直径10mm,喷嘴与抽吸口的空间位置关系是相对的,可以有效的开采油页岩矿藏。
     目前,油页岩钻孔水力开采的孔底流场流体动力学参数计算仍停留在理论推导和数值模拟层面上,还有待于进行室内模拟实验和实际钻采的检验和修正。本文以上的研究内容只是钻孔水力开采技术应用到油页岩矿藏的开采的,孔底流场的流体动力学的基础性研究,将钻孔水力开采技术应用到油页岩勘探与开发领域还需要进一步深入的全面的研究工作。
With the high-speed development of national economy, the energy source consumption was staggeringly to growth. The supply-demand relationship of oil and gas becomes imbalance. Because of the development of national economy, it is an urgent need for unconventional oil-gas source to be explored and developed. Domestic oil shale development made clearly that only higher oil content was exploited by commercial exploitation. And most of the difficult development of the high-pressure, low oil content of oil shale, while also has mining potential. It must be based on advanced technology to make "hard extraction" of the oil shale resources into "recoverable" oil shale resources. Therefore, it was thought that the Bore Hydraulic Mining Technology was considered to be the new cost-effective method.
     Bore Hydraulic Mining Technology called BHM for short. As an important part of mining technology, it was an advanced technology combined with water jet broken rock, the fluid particles pumping from the borehole bottom and continuous obtaining rock cuttings-sample into system.
     This paper supported by the project of "the cooperation and innovation projects of oil shale exploration and development of production and research", undertaken by Construction Engineering College. The particle-flow of the hole bottom which was formed by BHM was the start of research. Then, for the drilling requirements, it needed to study of particle-flow including of the field velocity, pressure, nozzle diameter, and the distance of nozzle to suction-port and so on. It aimed to resolve oil shale transporting problems of bottom particle-flow by BHM. The main research and conclusions were as following:
     1. Particle-fluid dynamic parameters of BHM was studied by the mathematical theory. The computational model was fit for BHM, which was derived based on the pressure and velocity.
     2. Particle-flow field was simulated by CFD software, through the establishment of appropriate physical models and mathematical equations combined with the characteristic of BHM. It truly showed the flow forms and flow performance. Furthermore structure characteristics was comprehended by the flow forms and flow performance of the particle-flow field. Finally it revealed the effect of fluid dynamics parameters of the particle-flow field including diameter of nozzle and the distance between nozzle and pumping rim and so on.
     (1) When the nozzle diameter was 10mm, it showed that larger jet velocity larger influence of the bottom of particle-flow field. The jet velocity chose 200m/s more appropriate.
     (2) When the jet velocity was 200m/s, result showed the pressure of high pressure pump needed over 50MPa. If the compression strength of oil shale was 30MPa, the high pressure pump must was not less than 55MPa.
     (3) The distance between nozzle and pumping rim was moderately. The nozzle put at the same horizontal direction as the pumping rim may as well.
     (4) Nozzle diameter needed as small as possible, but considering of working life and material quality of nozzle, it should choose 10mm.
     3. The simulated data for the reference test-bed design. The experimental table should be used 70MPa high-pressure pump,10mm nozzle and hydraulic cylinders should be selected more than 700kN thrust.
     4. In short, the better fluid dynamics parameters was jet velocity 200m/s, high pressure pump 55MPa and nozzle diameter 10mm in the space size of 20m*10m.
     At present, fluid dynamics parameters were still stay at the level of theoretical derivation and numerical simulation. They should be modified by experimentation of indoor and geological exploration and drilling of field. Above-mentioned content of study was only about oil shale BHM technique, which was confined BHM to exploit oil shale. And fundamental research investigated the fluid dynamics of the particle-flow field. It was thought that farther, general and larger work was needed to exploit oil shale by BHM.
引文
[1]刘英祥,张霞林,牛玉强.几种典型的油页岩就地蒸馏技术[J].油气田地面工程,2009,9(28):83-84.
    [2]孙可明,赵阳升,杨栋.非均质热弹塑性损伤模型及其在油页岩地下开发热破裂分析中的应用[J].岩石力学与工程学报,2008,1(27):42-52.
    [3]陈晨,张祖培.钻孔水力开采技术[J].中国矿业,1998(6):40-43.
    [4]曹玉宏.深孔水力开采工艺——开发矿产资源的新方法探矿技术[J].国外金属矿山,1995(12):33-40.
    [5]乌效鸣,胡郁东,杨倩云等.钻孔水力采矿研究方法的探讨[J].探矿工程,2002(6):24-26.
    [6]王国发.关于深孔水力采矿技术及其应用于金山店式松软矿体的可能性探讨[J].中国矿业,1996(6):23-29.
    [7]陈国明,殷志明,许亮斌等.深水双梯度钻井技术研究进展[J].石油勘探与开发,2007,34(2):246-251.
    [8]陈永昌.微尺度单相冲击射流强化传热实验研究与理论分析[D].西安:西安交通大学能动学院,2000:63-65.
    [9]平浚.射流理论基础及应用[M].北京:宇航出版社,1995:166-182.
    [10]N.E. Kotsovinos, P.B. Angelidis,The momentum flux in turbulent submerged jets,[J].Fluid Mech,229(1991) 453-470.
    [11]Flemmer R L C,Banks C L.On the drag coefficient of a sphere. Power Technology,1986,48:217-221.
    [12]Satija S,Young J B,Fan L S. Pressure fluctuation and choking velocity of monosize and multisize solids in vertical pneumatic transport lines. Can.J.of Chem.Eng,1986,64:196-204.
    [13]张元清,巫相辉.吉林壳牌合资公司油页岩项目钻探及钻井液配置技术[J].探矿工程(岩土钻掘工程),2008,1:15-17.
    [14]Li J, Cheng C, Zhang Z. The EMMS model-its application, development and updated concepts[J]. Chem. Eng. Sci,1999,54:5409-5425.
    [15]CHEN Guoming, YIN Zhiming, XU Liangbin etal. Review of deepwater dual gradient drilling technology[J]. Petroleum Exploration and Development,2007,34 (2):246-251.
    [16]汪海阁,郑新权.中石油深井钻井技术现状与面临的挑战[J].石油钻采工艺,2005,27(2):4-8.
    [17]杨林,唐川林,张凤华.地下矿产钻孔水力开采技术及其应用[J].地下空间与工程学报.2006,2(4):662-665.
    [18]朱卫海,王晓兵,伍孝平.水力射流泵在南70井的成功应用[J].大众科技,2008,4(104).
    [19]于水杰,李根生,罗洪斌,黄中伟.射流式水力降压钻井机理与参数研究[J].石油钻采工艺,2009,2(31):11-14.
    [20]杨林,唐川林,张凤华.水下开采提升气举机电装置的特性及应用[J].矿冶工程.2005,25(2):13-16.
    [21]胡郁乐,王元汉,李云波,乌效鸣.钻孔水力采矿水采装置的设计研究[J].有色金属(矿山部分),2004,56(4):34-35.
    [22]袁碧华,何清华.射流结合刀具破碎大洋富钴结壳的机理研究[J].矿业研究与开发.2003,2(4):38-39.
    [23]杨兵,王福旺,边亮,李淼,韩坚舟.水力割缝技术在油田开发中的应用[J].油气井测试.2002,11(4):63-65.
    [24]陈殿义.国外油页岩的地下开采及环境恢复[J].吉林地质.2005,24(3):58-60.
    [25]刘招君,柳蓉.中国油页岩特征及开发利用前景分析[J].地学前沿.2005,12(3):315-323.
    [26]樊世忠,窦红梅.保护油气层技术发展趋势[J].石油勘探与开发,2001,28(1):78-83.
    [27]Peter Hofmann, Martina Duckensell. Geochemical and organic petrological characterization of the organic matter of lacustrine Eocene oil shales:reconstruction ofthe depositional environment[J]. Paleolimnol 2005,33:155-168.
    [28]Sloan L.C. and Huber M.Eocene oceanic response to orbital forcing on precessional time scales[J].Paleoceanography,2001,16:101-111.
    [29]王擎,桓现坤,寇震,刘洪鹏,孙佰仲.微波场中油页岩及半焦升温特性[J].微波学 报,2009,1(25):92-96.
    [30]柏静儒,豆海强,孙佰仲,等.油页岩及半焦混合燃烧的燃尽特性[J].动力工程,2007,27(5):815-819.
    [31]钱家麟,王剑秋,李术元.世界油页岩综述[J].中国能源,2006,28(8):16-19.
    [32]刘定平,林俊滨,邓华裕.大型电厂煤粉锅炉掺烧油页岩的应用研究[J].锅炉技术,2008,6(36):54-57.
    [33]刘定平,陈红艳.低热值高炉煤气与煤粉混烧技术的探讨[J].锅炉技术,2003,34(6):44-48.
    [34]秦宏,姜秀民,李润东等.油页岩燃料燃烧特性的研究[J].锅炉技术,1999,30(3):21-22.
    [35]Meignen, R. Analysis of FARO premixing calculations with MC3D in view of reactor applications for the PSA level V2. Note technique IRSN/DPEA/SEAC/2003,03-026.
    [36]Pohlner, G.,Burger, VECO:Schmelzeverhalten im Unteren Plenum. Stander Arbeiten M. Report150 1227, IKE 2-147, University at Stuttgart,2004.
    [37]Uchiyama, T.Fukase, A.Minemura, K. Three-dimensional vortex simulation for gas-particle two-phase compound round jet. The Second Asian Particle Technology Symposium,2003,Vol.2. Penang, pp.359-364.
    [38]Yang, X., Thomas, N.H., GuoL.,J. Hou.Y.2002. Two-way coupled bubble laden mixing layer. Chemical Engineering Science 57,555-564.
    [39]Honl M, Rentzsch R, Lampe F, et al. Water jet cutting for bones and bone cement e parameter study of possibilities and limits of a new method. Biomed Tech (Berl) 2000 Sep,45:222e7.
    [40]J.M.Nazzal. GAS EVOLUTION FROM THE PYROLYSIS OFJORDAN OIL SHALE IN A FIXED-BED REACTOR[J] Journal of Thermal Analysis and Calorimetry,2001,65: 847-857.
    [41]Martin H. Heat and mass transfer between impinging gas jets and solid surfaces [J]. Advances in Heat Transfer,1993,23:123-126.
    [42]S. Kunaporn, M. Ramulu, M. Hashish,J. Hopkins. Proceedings of the WJTA[C]. American Water Jet Conference, August 18-21,2001, paper25.
    [43]周萍,周乃君,蒋爱华.传递过程原理及其数值仿真[M].长沙:中南大学出版社,2006:153-165.
    [44]E.R. delos Rios, A.Walley, M.T. Milan,[G]. Hammersley, Int. J. Fatigue 17,1995: 493-499.
    [45]URSELMAN R, CUMMINS J, WORRALL R N. Pressured mud cap drilling:efficient drilling of high pressure fractured reservoirs [R].SPE/I ADC 52 828,1999.
    [46]沈忠厚.现代钻井技术发展趋势[J].石油勘探与开发,2005,32(1):89-91.
    [47]王乐勤,郝宗睿,吴大转.水下气体射流初期流场的数值模拟[J].工程热物理学报,2009,7(30):1132-1135.
    [48]赵政璋,吴国干,胡素云,宋岩.全球油气勘探新进展[J].石油学报.2005,26(6):119-126.
    [49]唐巨鹏,李成全,潘一山.水力割缝开采低渗透煤层气应力场数值模拟[J].天然气工业.2004,24(10):93-95.
    [50]Grigori Y.Abrsmov;Nikolai I.Bablichev;MikhailM.Novikov;Ratko polic;SergeyD. Tkach;MarcusA.Wiley. Borehole Mining Tool [P].US 6460936 1999-6-19.
    [51]常建勇,剧元达,童明浒.大流量脉冲射流采煤技术[J].水力采煤与管道运输.2001,1:18-23.
    [52]白晓宁,胡寿根,张道方,秦宏波.固体物料管道水力输送的研究进展与应用[J].水动力学研究与进展.2001,16(3):303-311.
    [53]Frances J. Hein. Heavy Oil and Oil (Tar) Sands in North America:An Overview & Summary of Contributions [J]. Natural Resources Research,2006 15(2):67-84.
    [54]F. STEINH-SLER. RADIOLOGICAL IMPACT ON MAN AND THE ENVIRONMENT FROM THE OIL AND GAS INDUSTRY:RISK ASSESSMENT FOR THE CRITICAL GROUP[J].Kluwer Academic Publishers,2004,129-134.
    [55]T. Kaljuveel, J. Pelt and M. Radin. TG-FTIR STUDY OF GASEOUS COMPOUNDS EVOLVED AT THERMOOXIDATION OF OIL SHALE[J]. Journal of Thermal Analysis and Calorimetry,2004,78:399-414.
    [56]闫澈,韩向新,王辉等.油页岩颗粒的热解模型[J].化学工程,2004,32(1):9-12.
    [57]张杰,金之钧,张金川.中国非常规油气资源潜力及分布[J].当代石油化工,2004,12(10):17-19.
    [58]万志军,康建荣,赵阳升.高温岩体地热资源模拟与预测方法[J].岩石力学与工程学报,2005,24(6):945-949.
    [59]谭学术,鲜学福,张广洋等.煤的渗透性研究[J].西安矿业学院学报,1994,14(1):22-25.
    [60]沈忠厚.水射流理论与应用[M].东营:石油大学出版社,1998.
    [61]许建良,李伟锋,曹显奎,代正华Experimental research and numerical simulation of a symmetric impinging streams[J]化工学报,2006,57(2):288-291.
    [62]李伟锋,孙志刚,刘海峰Numerical simulation and experimental study on flow field of two closely spaced opposed jets[J]化工学报,2007,58(6):1385-1390.
    [63]WANG Haige, ZHENG Xinquan. Status quo and faced challenges of deep well drilling techniques of petro china[J].Oil Drilling & Production Technology.2005,27 (2):4-8.
    [64]CHEN Guoming, YIN Zhiming, XU Liangbin etal. Review of deepwater dual gradient drilling technology[J]. Petroleum Exploration and Development,2007,34 (2):246-251.
    [65]ERICK Reyna. Case history of floating mud cap drilling techniques-Ardalin Field, Timan Pechora Basin, Russia [R]. SPE/IADC 29423,1995.
    [66]李进良,李承曦,胡可喜FLUENT6.3流场分析[M].化学工业出版社,2009年10月.
    [67]张政,谢灼利.流体-固体两相流的数值模拟[J].化工学报,2000,52(1):1-11.
    [68]周光炯,严宗毅,许世雄等.流体力学[M].北京高等教育出版社,2001.
    [69]郭鸿志,张欣欣,刘向军等.传输过程数值模拟[M].北京冶金工业出版社,1998.
    [70]Toomey R D, Johnstone H F. Gaseous fluidization of solid particles[J]. Chem. Eng. prog, 1952,48(5):220-226.
    [71]Davidson JF. Symposium on fluidization-discussion[J].Trans.Inst. Chem. Eng, 1961,39:230-232.
    [72]Wilhelm R H, Kwauk M. fluidization of solid particles[J]. Chem. Eng. Prog,1948, 44:201-218.
    [73]Kwauk M, Li J. Fluidization regimes[J].power technology,1996,87:193-202.
    [74]Knowlton T M, Bachovchin D M. The determination of gas-solid pressure drop and choking velocity as a function of gas density in a vertical pneumatic conveying line[J].In: Keairns D L,ed. Fluidization Technology,1975,2:253-282.
    [75]Abrahamsen A R, Geldart D. Behavior of gas-fluidized beds of fine powers, partI[J]. homogenous expansion. Powder Technology,1980,26:35-46.
    [76]Li J, Red L, Kwauk M. Application of the principle of energy minimization to the fluid dynamics of circulating fluidized beds[J]. Circulating Fluidized Bed Technology,1991,105-116.
    [77]Capes C E, Nakamura K. Vertical pneumatic conveying:a experimental study with particles in the intermediate and turbulent flow regimes[J]. Can. J. Chem. Eng, 1973,51:31-38.
    [78]Yang N, Wang W, Ge W. Analysis of flow structure and calculation of drag coefficient for concurrent-up gas-solid flow[J]. Chinese Journal of Chemical Engineering, 2003,11(1):79-84.
    [79]Xu G, Li J. Analytical solution of the energy-minimization multi-scale model for gas-solid two-phase flow [J]. Chem. Eng. Sci,1998,53(7):1349-1356.
    [80]岑可法,樊建人.工程气固多项流动的理论及计算[M].浙江大学出版社,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700