用户名: 密码: 验证码:
航天搭载对小桐子SP1诱变效应的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题利用“实践八号”育种卫星搭载返回的2个种源(版纳种源、元阳种源)小桐子种子和未搭载种子(对照),通过地面播种及种植试验,观察经空间作用后的小桐子种子活力,定植后1a生和2a生植株的株高、地径、冠幅等生长情况,并进行物候观测,对定植第二年植株的单株产量、种子性状及含油率进行测定,根据测定指标制定优良单株筛选标准,初步筛选出优良单株。同时还研究了航天搭载对小桐子光合特性的影响。主要研究结果如下:
     1.航天搭载对小桐子种子活力的影响达到极显著水平。2个种源处理的种子发芽率与发芽势比对照明显降低。在出苗率方面,航天搭载对2个种源出苗率的影响未达到显著水平。由此认为航天搭载诱变对小桐子种子活力有抑制作用。
     2.航天搭载对当代1a生和2a生小桐子生长性状(株高、地径、冠幅、初级分枝数、顶端分枝数)的影响呈现一定规律。具体表现为:元阳种源1a生植株表现为矮化,生长势较对照弱;版纳种源的生长则优于对照。而2a生版纳、元阳种源植株生长均明显优于对照;航天搭载改变了小桐子的生长发育进程及结果能力,主要表现在2个种源处理的定植至开花、开花至坐果、坐果至果熟的天数均低于对照,2个种源处理的第一花序、第二花序和第三花序的小花数、雌雄花比例和结果率都较对照增加,但差异均不明显。总体趋势是航天搭载对改变小桐子植株生长有明显的促进作用。
     3.航天搭载明显提高了2个种源当代2a生植株的平均单株产量。其中版纳种源处理的平均单株产量为339.50g,对照为183.15g;元阳种源处理的平均单株产量为363.71g,对照为219.66g。航天搭载对小桐子单株产量有极显著影响。航天搭载对2个种源处理群体的种子含油率影响不明显,但航天搭载扩大了小桐子种子含油率的变异幅度,处理中出现了较多低含油率和高含油率的植株。
     4.航天搭载提高了2个种源植株的光合同化潜力,且使2个种源利用弱光的能力明显高于对照。而航天搭载对2种源2a生植株叶绿素含量的影响均不明显。
     5.小桐子经航天搭载处理后各主要经济性状的相关性与对照相比发生了变化。版纳、元阳种源初步筛选出的优良单株平均产油率分别比对照优良单株平均产油率高+29.37%、+43.38%。处理中出现了叶形、树形发生变异的植株,航天搭载还使植株的抗病性增强。
     本研究为选育高产、高油和抗逆性强的优良小桐子品种提供了丰富的育种材料,也为进一步深入研究太空环境诱发突变的生物学基础提供了有关信息。
Aerospace has different environmental conditions from the biosphere of the earth such as gravity, radiation, and magnetic field. Plant growth, development and genetic information may be affected under the aerospace conditions. Genetic changes may be used as an effective means of creating new germ plasm.
     The seeds of 2 provenances of Jatropha curcas L. were carried by spaceship. The primary objective of this study was to identify the possibility mutations of seeds induced by aerospace and to select plants which had advantageous traits. So the seeds vigor, growing development and photosynthetic characteristics were analyzed. The results showed as following:
     1. Effections of specelight on Jatropha curcas L. seeds were significant .Germination rate and germination energy of 2 provenances showed a decrease as a whole, while the seedling survival rate had no obviously changes. The results indicated that spaceflight can significant inhibit vigor of Jatropha curcas L.
     2. There were differences between spacetreatments and ground controls in plants height, diameter, width, primary/top branches. For example, in one-year old plants, Yuanyang provenances were lower than the control. while Banna provenances were higher than the control. The twe-year old plants of 2 provenances were both heighter than that of the ground controls. And the days of spacetreatments from setting to flowering and maturation days shorts than control, the number of flower, the ratios of female to male and the ratios of native fruiting on the first, second and third inflorescence also higher. It was showed that the trend of mutation of the plants' growth development were positive.
     3. Space environment had obvious effects on the yield of two-year old plants of Jatropha curcas L. After mutation, the yield of single plant increased significantly, the yields of Banna (339.50g) was highter than that of the control(183.15g), the yields of Yuanyang(363.71g)were also highter than that of the control(219.66g). While seeds oil showed no significant difference.
     4. Photosynthesis characteristics were analyzed; the resulits indicated that there were significant differences between spacetreatments and controls. the two-year old plants of 2 provenances were higher than the control in net photosynthesis rate, and the apparent quantum efficiency of spacetreatments were all increased. The content of the chlorophyll a and b and a/b ratio of 2 provenances were the same as control.
     5. Correlations of main economic traits of Jatropha curcas L. after spaceflight were different from control. The average oil yield of selected individual plants hight than than of the control.
     The results of this study provided preliminary insight about the physiology changes of Jatropha curcas L.induced by space environment. The plants selected in the study are to be used as materials in breeding and the future researches.
引文
[1]吴国江,刘杰,娄志平,等.生物柴油原料植物的研究现状及发展建议.中国科学院院刊,2006,21:53-57.
    [2]钱能志,费世民,韩志群,等.中国林业生物柴油[M].北京,中国林业出版社,2007:132.
    [3]钟志权.小桐子--一种大有希望的生物柴油原料植物[J].热带植物研究,1984,25:62-65.
    [4]丘华兴.中国植物志(44卷)[M].北京:科学出版社,1996:148
    [5]费世民,钱能志,陈秀明,等.林业生物质能及其研发进展,四川林业科技,2007,28(6):18-26
    [6]费世民.发展林业生物质能源的战略思考,四川林业科技,2008,29(4):30-41
    [7]Banerji R,Chowdhury A R,Misra G,etal.Jatropha seed oils for energy[J].Biomass,1985,8(4):277-282.
    [8]Gubitz G M,Mittelbach M,Trabi M.Exploitation of the tropical oil seed plant Jatropha curcas L[J].Bioresource Technology,1999,67(1):73-82.
    [9]Foidl N,Sanchez M,Sanchez M.Jatropha curcas L.as a source for the production of biofuel in Nicaragua[J].BioresourceTechnology,1996,58(1):77-82.
    [10]黄德如,黄自强,郭似旋,等.麻疯树毒素的分离及其某些性质[J].生物化学与生物物理进展,1991,18(2):149-151.
    [11]杨忠,殷关麟,范崇正,等.麻疯树籽提取物杀灭钉螺的实验研究[J].中国血吸虫病防治杂志,2003,15(5):364-366.
    [12]杨燕,程忠跃,高竹琴,等.麻疯树素浸杀钉螺卵效果观察[J].实用寄生虫病杂志,2000,8(2):59-60.
    [13]曾庆海,程忠跃,黄四喜,等.麻疯树素的灭螺效果研究[J].华中医学杂志,2000,24(3):123-124.
    [14]仲磊.小桐子引种栽培试验的初步研究.[学位论文].南京,南京林业大学,2007.
    [15]王继华,安康,吕冰,等.生物技术在小桐子育种上的应用[J].广东农业科学,2008,9:124-127.
    [16]林娟,唐琳,陈放.麻疯树的组织培养及植株再生[J].植物生理学通讯,2002,38(4):317.
    [17]Sujatha M,DhingraM.Rapid plant regeneration from various explants of Jatropha integerrima[J].Plant Cell Tiss Org.Cult,1993,35:293-296.
    [18]陈金洪,高敏,黄记生.麻疯树茎段离体培养及快速繁殖研究[J].广西农业科学,2006,27(3):221-223.
    [19]侯佩,张淑文,杨琳,等.麻疯树胚乳愈伤组织诱导及其污染消除[J].应用与环境生物学报,2006,12(2):264-268.
    [20]任琛,侯佩,邓骛远,等.麻疯树花药愈伤组织诱导的初步研究[J].四川大学学报(自然科学版),2006,43(3):717-719.
    [21]魏琴,陆伟达,廖毅,等.从麻疯树上胚轴外植体再生植株[J].植物生理与分子生物学学报,2004,30(4):475-478.
    [22]李军,吴平治,李美茹,等.能源植物的研究进展及其发展趋势[J].自然杂志,2007,29(1):20-25.
    [23]孙晴,徐莺,颜钫,等.麻疯树RAPD分析的影响因素[J].应用与环境生物学报,2002,8(3):259-261.
    [24]罗言云,魏琴,周黎军,等.一种简易快速高效提取麻疯树营养器官中RNA的方法[J].植物生理学通讯,2005,41(3):361-364.
    [25]邓君萍,颜双春,侯佩,等.不同抗生素种类及浓度对麻疯树培养的影响[J].应用与环境生物学报,2005,11(2):156.
    [26]罗通,马丹炜,邓骛远,等.低温对麻疯树生理指标的影响[J].中国油料作物学报,2005,27(4):50-541.
    [27]林娟,周选围,唐克轩,等.麻疯树植物资源研究概况[J].热带亚热带植物学报,2004,12(3):285-290.
    [28]Openshaw K.A review of Jatropha curcas L.:an oil plant unfulfilled promise[J].Biomassand Bioenergy,2000,19(1):149-151.
    [29]林晓辉.福建南安麻疯树引种试验初报[J].中南林业调查规划,2006,25(3):66-681.
    [30]龚振平,刘自华,刘根齐.高粱空间诱变效应研究[J].农业生物技术科学,2003,19(6):16-24.
    [31]谢克强,张香莲,杨良波.太空莲1\2、3号新品种的选育[J].核农学报,2004,18(4):325.
    [32]刘泽,赵仁渠.空间条件对油菜诱变效果的研究[J].中国油料作物学报,2000,22(4):6-8.
    [33]邱芳,李金国,翁曼丽.空间诱变绿豆长荚型突变系的分子生物学分析[J].中国农业科学,1998,31(6):1-5.
    [34]Kiss J Z,Brillcuet M E,Brillcuet C.Development and growth of several strains of Arabidopsis seeding in microgravity[J].international Journal of Plant Science,2000,161(1):55-62
    [35]蒋兴村.863-2空间诱变育种进展及前景[J].空间科学学报,1996,16(增刊):77-82.
    [36]顾瑞琦,沈惠明.空间飞行对小麦种子的生长和细胞学特性的影响[J].植物生理学报,1989,15(4):403-407.
    [37]Anikeeva I D,Kostina L N,Vaulina.Experiments with air-dried seeds of Arabidopsis haliana(L.) wallr.Aboard salyut 6[J].Adv Space Res,1983,3:129-136
    [38]朱昌兰,胡岳峰,陈莹,等.作物空间诱变育种研究进展[J].江西农业大学学报,1999,21(3):435-437.
    [39]密士军,郝再彬.航天诱变育种研究的新进展[J].黑龙江农业科学,2002,(4):31-33.
    [40]王雁,李潞滨,韩蕾.空间诱变技术及其在我国花卉育种上的应用[J].林业科学研究,2002,15(2):229-234.
    [41]Nevzgodina L V,Maksimova Y N.Cytogenetic effects of heavy charges particles of galactic cosmic radiation in experiments aboard Cosmos-1129 biosatellite[J].Space Biol Aerosp Med,1982,16(4):103-108.
    [42]Maksimova Y N.Effect on seeds of heavy charged particles of galactic cosmic radiation[J].Space Biol Aerosp Med,1985,19(3):.103-107.
    [43]Pickert M,Gartenbach K E,Kranz A R.Heavyion induced mutation in genetic effective cells of high plant[J].Adv Space Res,1992,12:69-75.
    [44]吴殿星,舒庆尧,夏英武,等.空间技术诱发的水稻变异及育种价值[J].核农学报.1999,13(3):175-178.
    [45]陈玉珍,王全德,苑振戈.植物空间环境诱变育种的研究进展[J].山东农业科学,2000,(1):53-55.
    [46]刘录样.植物诱变育种研究新动向.全国第二届青年农学学术年会论文集[M].中国农业科技出版社,1995.
    [47]李能芳,张伦德,陈安个.番茄种子经卫星搭载后的变异初探[J].四川农业大学学报,1997,15(2):229-232.
    [48]韩蕾,孙振元,钱永强,等.“神舟”三号飞船搭载对草地早熟禾生物学特性的影响[J].草业科学,2004,21(5):17-19.
    [49]蒋兴村.8885返地卫星对水稻遗传性状的影响[J].科学通报,1991,36(23):1820-1824.
    [50]刘存德.空间植物学研究现状及趋势[J].植物学通报,1991,8(4):1-5.
    38.Tripathy B C.Growth and photosynthetic responses of wheat plants growth in space[J].Plant Phvsioligv.1992,100(2):692-698.
    [51]韩蕾,孙振元,巨关升,等.空间环境对草地早熟禾诱变效应研究Ⅱ-光合特性和叶绿素含量[J].核农学报,2005,19(6):413-416.
    [52]王高鸿,陈兰洲,胡春香,等.空间飞行和辐射对微藻光合系统影响的观察[J].航天医学与医学工程,2005,18(6):437-441.
    [53]虞秋成.黄宝才,严建民.作物空间诱变育种的现状及展望[J].江苏农业科学,2001,(4):3-6.
    [54]高文远,赵淑平,薛岚.空间条件对红花种子发芽的影响[J].中国药学杂志,1997,32(3):135-138.
    [55]吴岳轩,曾富华.空间飞行对番茄种子活力及其活性氧代谢的影响[J].园艺学报,1998,25(2):165-169.
    [56]薛淮,刘敏.植物空间诱变的生物效应及其育种研究进展[J].生物学通报,2002,37(11):7-9.
    [57]周有耀.棉花高产育种中收获指数的作用[J].中国棉花,1995,22(12):4-6.
    [58]高文远,赵淑平,薛岚,等.红花卫星搭载实验的进一步研究[J].中国中药杂志,1999,24(4):203-205.
    [59]张蕴薇,任卫波,刘敏,等.红豆草空间诱变突变体叶片同工酶及细胞超微结构分析[J].草地学报,2004,12(3):223-226.
    [60]王彩莲,慎玫,陈秋芳,等.空间环境对水稻的细胞学效应研究[J].核农学报,1998,12(5):269-273.
    [61]李金国,蒋兴林,王长城.空间条件对几种粮食作物的同工酶和细胞学特性的影响[J].遗传学 报,1996,23(1):48-55.
    [62]刘中申,都晓伟,王桂清,等.中药黄芪航天育种的初步实验研究[J].中医药信息,1998,1,50-52.
    [63]丘运兰,何远康,梅曼彤,等.太空飞行对玉米种子的生物学效应[J].华南农业大学学报,1994,15(2):100-105.
    [64]罗颖坤,宋强.谷子不育系及其相应可育系小孢子发育的细胞学观察[J].西北植物学报,1993,3:45-48.
    [65]钦天钧.中国航天诱变育种回顾与展望[M].空间诱变育种研究与开发进展一航天育种高层论坛论文选编,2005:153-156.
    [66]王乃彦.开展航大育种的科学研究工作为我国农业科学技术的发展做贡献[J].核农学报,2002,16,(5):257-260.
    [67]朱昌兰,胡岳峰,陈莹,等.作物空间诱变育种研究进展[J].江西农业大学学报,1999,21(3):436-437.
    [68]王俊敏,魏力军,骆荣挺,等.航天技术在水稻诱变育种中的应用研究[J].核农学报,2004,18(4):252-256.
    [69]刘录祥,王晶,赵林姝.作物空间诱变效应及其地面模拟研究进展[J].核农学报,2004,18(4):247-251.
    [70]赵玉锦,赵琦,白志良空间诱变高粱突变体的研究[J].植物学通报,2001,18(1):81-89.
    [71]王呈祥,白志良,王良群.航天育种-我国农业科技革命的新路[J].山西农业科学,2003,31(3):92-96.
    [72]曹墨菊,黄文超,潘光堂.首例航天诱变玉米细胞核雄性不育株与可育株的株高生长分析[J].核农学报,2004,18(4):261-264.
    [73]温贤芳,张龙,戴维序.天地结合开展我国空间诱变育种研究[J].核农学报,2004,18(4):241-246.
    [74]李桂花,张衍荣,曹健,等.蔬菜空间诱变育种研究现状与展望[J].广东农业科学,2006,1:27-29.
    [75]邓立平,郭亚华,杨晓辉.利用空间条件探讨蕃茄青椒的遗传变异初报[J].哈尔滨师范大学自然科学报,1995,11(3):85-89.
    [76]李金国,刘敏,王培生.空间条件对番茄诱变作用及遗传的影响[J].航天医学与医学工程,2000,13(2):114-118.
    [77]刘敏,李金国,王亚林,等.卫星搭载的甜椒87-2过氧化物同工酶检测和RAPD分子检测初报[J].核农学报,1999,13(5):291-294.
    [78]刘光亮,谢克强,李本信,等,卫星搭载对白莲后代的遗传变异[J].空间科学学报,1996.16(增刊):159.
    [79]李金国.蔬菜航天诱变育种[J].中国蔬菜,1999,(1):4-5.
    [80]杨利平,张4方,薛志军.空间条件对毛百合的影响[J].河北林果研究,1999,14(3):230-233.
    [81]张数方,杨利平,丁冰.卫星搭载对露地菊后代遗传性的影响.空间科学学报[J],1996,16(增刊):166.
    [82]洪波,何森,丁兵,等.空间诱变对露地栽培菊矮化性状的影响[J].植物研究,2000,20(2):212-214.
    [83]高文远,贾伟,肖培根.论空间技术在药用植物研究上的应用[J].中国中药杂志,2004,29(7):611-614.
    [84]翁德宝,汪海峰.高空气球搭载实验对普通鸡冠花抗氧化作用的诱变效应[J].热带亚热带植物学报,2004,12:341-344.
    [85]唐敏.桂西南麻疯树生长、种仁含油率及其与环境的相关性研究.[学位论文],广西,广西大学。2007.
    [86]韩蕾.太空环境对草地早熟禾的诱变效应及其诱成突变体的生物学变化.[学位论文].北京,中国林业科学研究院,2005.
    [87]余叔文.植物生理与分子生物学[M].北京.科学出版社.1992.452-461.
    [88]鲍正发,段智英,赵海军.空间诱变引起水稻9311的品质变异[J].核农学报,2004,18(4):272-275.
    [89]戚微娜,吕金印,赵军.60Coγ辐照对冬小麦幼苗保护酶同工酶表达的影响[J].西北农林科技大学学报(自然科学版),2007,35(7):123-136.
    [90]叶庆生,潘瑞炽,丘才新.兰属植物光合途径的研究[J].热带亚热带植物研究,1998,6(1):25-29.
    [91]陆璃,吕金印,巩擎柱.空间环境对小麦叶绿素荧光及光合特性的影响[J].核农学报,2006,20(6):464-468.
    [92]高文远,赵淑平,薛岚.空间环境对红花萌发和营养生长的影响[J].中国中药杂志,1998,23(12):712-713.
    [93]赵琦,刘敏,蔡伟明.模拟微重力条件对植物幼苗生长的影响[J].植物生理学报,2000,26(3):201-205.
    [94]李源祥,蒋兴村,李金国.水稻空间诱变性状变异及育种研究[J],江西农业学报2000,12(2):17-23.
    [95]孙野青,李玉芬,陈岩.空间环境对青椒和番茄遗传诱变研究[J].植物研究,1997,17(2):184-189.
    [96]龙卫平,郑锦荣.航天育种研究进展[J].长江蔬菜,2005,7:35-37.
    [97]周炳炎,黎毛毛,邓息珍.返地卫星搭载水稻种子对后代主要性状变异的影响[J].江西农业学报,1995,7(1):70-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700