用户名: 密码: 验证码:
超高强度Cu-Cr系原位复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高脉冲强磁场技术和高速电气化铁路的发展,对磁场导体和电力接触线材料的性能提出了新的要求,需要高强度、高导电性和高导热性的材料,本文开发出的Cu-Cr系原位形变复合材料可以满足上述材料的性能要求。本文采用感应加热熔炼、旋转锻、线拉变形及中间热处理制备了Cu-15Cr-0.1Zr、Cu-15Cr-0.2Zr、Cu-15Cr-0.1Zr-RE三种形变原位复合材料,借助扫描电镜(SEM)和透射电镜(TEM)高分辨电镜(HREM)和抗拉强度测试、导电率测试等手段研究了合金化元素Zr、微量的RE元素、应变量、中间退火工艺等对合金组织和性能的影响。以余氏固体与分子经验电子理论和程氏改进的TFD理论为基础,通过对原位复合材料中纤维相和界面的研究,进一步阐释了界面结合因子与界面性能的的关系。主要的研究结果如下:
     采用冷变形结合中间热处理技术研制出新的具有超高强度、高导电、高热稳定性的Cu-15Cr-0.1Zr和Cu-10Cr-0.1Zr原位复合材料,应变量η=6.43时,材料的强度/导电率分别为:1212MPa/71.5%IACS,1096MPa/76.3%IACS,抗软化温度均达550℃。
     合金元素Zr的加入促进Cr的析出,保持了微合金化Cu-15Cr复合材料的高导电性;添加0.1wt%Zr可使Cu-15Cr-0.1Zr的抗拉强度提高约15%;同时,Zr的加入使复合材料的抗软化温度提高了50℃左右。在Cu-15Cr-0.1Zr合金中加入微量的RE会使合金的导电性略有提高,但强度降低。
     合金的铸态组织由Cu基体、粗大的Cr枝晶、少量的Cu-Cr共晶组成。在冷拉拔过程中,热锻并经固溶处理后的Cr相沿拉拔方向伸长,在较低的应变量下纤维保持着与铸态树枝晶相同的bcc单晶结构,在较高的应变量下,单根Cr纤维被分隔为一些由亚晶界组成的亚结构,相邻亚晶的偏差角在5°~30°之间。随着应变量的增大,逐渐形成横截面为弯曲薄片状的Cr纤维,对界面的观察发现,Cu/Cr界面在η=6.43条件下显示完全共格或波纹图衬度。
     对两次中间退火制备的Cu-15Cr-0.1Zr合金的研究发现,中间退火在不严重影响材料强度的同时显著提高了材料的导电率。第一次中间退火对合金的最终性能起关键作用。拉拔至最终尺寸时,第一次中间退火温度为450℃的合金能获得最好的抗拉强度。第一次中间退火温度为500℃的合金能获得最好的导电性能。
     测定了形变Cu-Cr原位复合材料的强度并分析其强化机理,认为是界面作用的结果。可用几何协调位错强化模型和界面位错源强化模型描述。
     对Cu-15Cr-0.1Zr合金的热稳定性研究表明:合金的抗软化温度达到了550℃左右,满足性能指标。合金在400℃~600℃退火,导电率随着退火温度的升高逐渐增大,在600℃达到最大值(约78%IACS),并随着退火温度的继续升高迅速下降。在不同的温度条件下,研究大变形Cu-15Cr-0.1Zr原位复合材料中Cr纤维的断裂行为。用SEM及TEM观察了Cr纤维形态的变化,测定了Cr纤维的断开直径,并进行了数值模拟。观察结果显示,纤维高温下断裂过程是逐步形成空洞、纵向开裂、柱状化、断开和球化。模拟结果表明:纤维断裂受界面扩散控制,并分析了其计算模型,经比较,计算值和实验结果具有很好的一致性。
     对Cu-Cr原位复合材料中的Cu/Cr界面的界面结合因子的计算结果表明:Cu(111)/Cr(110)异相界面的电子密度差Δρ最大,同时该界面电子密度保持连续的原子状态组数σ′也大,其符合更高强度级别的强韧化。
With the development of the high pulse and high field magnets technology and the high speed electric railway, there is a new urgent need by the magnetic field conductor and the electric contact wire, which needs the best combination of high strength, high electrical conductivity and high thermal conduction. Thus, deformed Cu-Cr in-situ composites were developed.
     Deformation processed Cu-15Cr-0.1Zr, Cu-15Cr-0.2Zr and Cu-15Cr-0.1Zr-RE in situ composites were manufactured by inductive melting, casting, swaging, appropriate wire drawing and intermediate annealing. Effect on the microstructure and properties of Cu-Cr in situ composite caused by the content of Zr, the addition of RE, intermediate annealing of alloys were studied through scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution electron microscopy(HREM), tensile test, and resistivity measurement, on the basis of the combination of Yu's empirical electron theory in solid and molecules (EET) and Cheng's improved Thomas-Fermi-Dirac (TFD) theory. The relationship between the valence electron structure of a biphase interface and its properties is explained further through the research on the effect of the fiber phase and Cu/Cr interface in in-situ composites. The main results of the research are listed below:
     A new type of high strength and high conductivity Cu-15Cr-0.1Zr and Cu-lOCr-0.1Zr in situ composites were successfully prepared using the cold drawing and intermediate heat treatment, When alloy was drawn to 6.43 the strength/conductivity can reach 1212MPa/71.5%IACS and 1096MPa/76.3%IACS respectively, and all the softening temperatures are up to 550℃.
     The addition of 0.1wt%Zr accelerate the precipitation of Cr in the matrix and keep the conductivity of the micro-alloying Cu-15Cr composite; the ultimate tensile strength of Cu-15Cr-0.1Zr can increases about 15% and the soften temperature of Cu-15Cr-0.1Zr can improves 50℃with addition the trace Zr. The addition of Zr about 0.2% in Cu-15Cr alloy could promote alloy work hardening in the process of alloy deformation, and against to the deformation of alloy, and reduced the conductivity of alloy. The addition of RE in Cu-15Cr-0.1Zr alloy improved electrical conductivity. But, at the same time it also reduced the strength.
     As cast, the alloy include of Cu matrix, gross Cr dendrite and a small quantity of Cu-Cr eutectic. In the process of alloy deformation, Cr phases with heat forged and solution treatment were elongated along the direction of drawing. At lower drawing strains, some of Cr fibers have the same bcc single crystal structure as that of dendrites in the as cast state. At higher drawing strains, a single fiber was divided into sub-grains. These sub-grains were separated by sub-grain boundaries. Relative angle differences across the sub-grain boundaries are about 5°~30°.With the increasing of strain, Cr phases formed fibers and Cr ribbons were curl and fold in cross section, observation at the interface showed that the interface of Cu/Cr were coherent or shows moire pattern contrast atη=6.43.
     The study on Cu-15Cr-0.1Zr alloy prepared by two times intermediate annealing showed appropriately intermediate annealing and obviously improved the electrical conductivity, and the strength did not terribly reduced. The first intermediate annealing was very important for the properties of alloy. When the alloy was drawn to 6.43, the alloy prepared by the first intermediate annealing at 450℃can obtain best strength, and the alloy prepared by the first intermediate annealing at 500℃can obtain best electrical conductivity. In this paper, the relationship of three times intermediate annealing and the properties of Cu-15Cr-0.1Zr alloy were also studied. The results showed that when alloy prepared by three times intermediate annealing was drawn to 6.43, the strength of alloy was smaller than the alloy prepared by two times intermediate annealing, but the electric conductivity had a little increasing.
     The strength of deformation-processed Cu-Cr in-situ composite was measured. The results showed to be anomalously higher than those predicted by rule of mixture equations. The strength increased with increasing of the deformation. The strengthening mechanism was discussed. The analysis indicate that the sub-structural especially phase boundary strengthening plays the crucial role. The experimental data are in good agreetment with the predictions of the geometrically-necessary dislocation model and interface as dislocation source model.
     The results of thermal stability test for Cu-15Cr-0.1Zr alloy showed that the softening temperature of the alloy exceed about 550℃, and achieved the performance figure. When alloy was annealed during 400℃~600℃, electric conductivity gradually increased with the increasing of annealing temperature. The electric conductivity of alloy reached maximum value (about 78%IACS) when alloy was annealed at 600℃. At last, with the continuous increasing of annealing temperature, the electric conductivity rapidly reduced. Investigate the fracture behavior of Cr fibers in heavily drawn Cu-15Cr-0.1Zr in-situ composite wires as a function of temperature. Results of SEM and TEM show the fibers undergo interfacial diffusion shape change from cavitation, longitudinal spliting plus, cylinderization plus, breakup to complete spheroidization failure. Predicted result showed the fracture behavior of the Cr fibers were consistent with interfacial diffusion, Experimental results were compared with existing models and the appropriate physical model for breakup of filaments were provided.
     The interface conjunction factors of the Cu/Cr interface of Cu-Cr in-situ composites show that:the electron density of Cu(lll)/Cr(110) interface Ap is the largest in other interface, and the number of atom state groupsσ' which keeps continuous interface electron density is larger, according to the theory of Yang Zhilin, The larger theΔρof Cu/Cr interface, the larger the stress on the interface is, if the larger theσ' or a, that is the steady combine at the higher stress station, so that accord with strength and toughness at higher strain.
引文
[1]姜训勇,李忆莲,王童. 高强度高导电铜合金[J].上海有色金属,1995,16(5):284-286.
    [2]Bevk J, Harbison J P, Bell J L. Anomalous increase in strength of in situ formed Cu-Nb multifilamentary composite[J]. Journal of Applied Physics,1978,49(12):6031-6038.
    [3]Wood J T, Embury J D, Ashby M F. An approach to materials processing and selection for high-field magnet design[J]. Acta Mater,1997,45(3):1099-1103.
    [4]Filgueria M, Pinatti D P. In situ diamond wires Part I. The Cu-15 vol.% Nb high strength cable[J]. Journal of Material Processing Technology,2002,128:191-195.
    [5]Hong S I, Hill M A. Microstructural stability of Cu-Nb micro composite wires fabricated by the bundling and drawing process[J]. Mater Sci Eng,2000, A28(1-2):189-197.
    [6]Hong S I, Hill M A, Kim H S. Strength and ductility of heavily drawn bundled Cu-Nb filamentary micro composite wires with various Nb contents[J]. Metall. Mater. Trans.,2000,31A(10):2457-2462.
    [7]Popova E N, Popov V V, Rodionova L A, Romanov E P, et al. Effect of annealing and doping with Zr on the structure and properties of in situ Cu-Nb composite wire[J]. Script Materialia,2002,46(3): 193-198.
    [8]D.Mattissen, D.Raabe, F.Heringhaus. Experimental investigation and modeling of the influence of microstructure on the resistive conductivity of a Cu-Ag-Nb in situ composite[J]. Acta Materialia,1999, 47(5):1627-1634.
    [9]张晓辉,宁远涛,李永年,戴红,杨家明.大变形Cu-10Ag原位纤维复合材料的结构和性能[J].中国有色金属学报,2002,12(1):115-119.
    [10]Sakai Y, Schneider, Muntau H J. Ultra high strength high conductivity Cu-Ag alloy wires[J]. Acta Mater.,1997,45(3):1017-1023.
    [11]Sakai Y, Inoue K, Asano T, et al. Development of a high strength high conductivity copper-silver alloy for pulsed magnets[J]. IEEE Trans. Megn.,1992,28(1):888-891.
    [12]Lee K L, Whitehous A F, Withers P J, Daymond. Neutron diffraction study of the deformation behavior of deformation processed copper-chromium composites[J]. Materials Science and Engineering,2003, A348:208-216.
    [13]葛继平,姚再起.高强度高导电的形变Cu-Fe原位复合材料[J].中国有色金属学报,2004,14(4):568-573.
    [14]孙世清,毛磊,郭志猛,殷声.Cu-Fe-Cr原位复合材料中的纤维相[J]. 金属学报,2003,39(6):565-568.
    [15]葛继平.Cu-Ag-Cr合金线拉形变过程[J]. 中国有色金属学报,1998,8(SI):159-163.
    [16]Raabe D, Miyake K, Takahara H. Processing, microstructure, and properties of ternary high-strength Cu-Cr-Ag in situ composites [J]. Mater. Sci. Eng. A,2000, A 291(1-2):186-197.
    [17]Hong S I, Song J S. Strength and conductivity of Cu-9Fe-1.2X(X= Ag or Cr) filamentary micro-composite wires [J]. Metall Trans A,2001,32A(4):985-989.
    [18]刘平,赵冬梅,田保红. 高性能铜合金及其加工技术[M]. 北京:冶金工业出版社,2004:16.
    [19]刘平,田保红,赵冬梅等. 铜合金功能材料[M]. 北京:冶金出版社,2005:1-20.
    [20]温宏权,毛协民,戚飞鹏.高强度高导电性铜合金研究现状及展望[J].功能材料,1995,25(6):553-556.
    [21]何启基. 金属的力学性能[M].北京:冶金工业出版社,1982:193-197.
    [22]包永千. 金属学基础[M].北京:冶金工业出版社,1986:328-334.
    [23]赵冬梅,董企铭,刘平等.高强高导铜合金成分设计[J].功能材料,2001,6:609-611.
    [24]赵冬梅,董企铭,刘平等.铜合金引线框架材料的发展[J].材料导报,2001,15(5):25-27.
    [25]闵光辉,宋立,于化顺等.高强度导电铜基复合材料[J]. 功能材料,1997,28(4):342-345.
    [26]Moustafa S F, Abdel-Hamid Z, Abd-Elhay A M. Copper Matrix SiC and Al2O3 Particulate Composites by Powder Metallurgy Technique [J]. Materials Letters,2002,53:244-249.
    [27]Nadkarni A V. Dispersion strengthened copper properties and applications high conductivity copper and Aluminum Alloys[J]. Metall. Soc.AIME, Warrendale,1984,5:77-101.
    [28]Rhines F N, Johnson W A, Anderson W A. Rates of High Temperature Oxidation of Dilute Copper Alloys[J]. Trans AIME,1942,147:205-221.
    [29]王孟君,娄燕,张辉等.弥散强化铜电阻焊电极材料的研制[J].矿冶工程,2002,20(2):54-56.
    [30]郑雁军,姚家鑫,李国俊.高强高导铜合金研究现状及展望[J].材料导报,1997,11(6):52-56.
    [31]L. S. Chumbley, H. L. Downing, W.A.Spitzig, J.D.Verhoeven. Electron microscopy observation of an in situ Cu-Nb composite[J]. Materials Science and Engineering A,1989,117(9):59-65.
    [32]Popova E N, Popov V V, Rodionova L A, et al. Effect of annealing and doping with Zr on the structure and properties of in situ Cu-Nb composite wire[J]. Scripts Materialia,2002,46(3):193-198.
    [33]Raabe D, Mattissen D. Microstructure and mechanical properties of a cast and wire-drawn ternary Cu-Ag-Nb in situ composite[J]. Acta Materialia,1998,46(16):597-5984.
    [34]Pourrahimi S, Nayeb-hashemi H, and Foner S. Strength and microstructure of powder metallurgy processed restacked Cu-Nb microcomposites[J]. Metall Trans,1992,2:573-586.
    [35]Botcharova E, Heilmaier M, Freudenberger J, et al. Supersaturated solid solution of niobium in copper by mechanical alloying[J]. Journal of Alloys and Compounds,2003,351(1-2):119-125.
    [36]Spitzig W A, Krotz P D. A comparison of the strength and microstructure of heavily cold worked Cu-20%Nb composites formed by different melting procedures [J]. Scripta Mater,1987,21(8): 1143-1148.
    [37]Hong S I, Hill M A. Mechanical properties of Cu-Nb microcomposites fabricated by the bundling and drawing process[J]. Scripta Mater,2000,42(8):737-742.
    [38]Hong S I. Effect of Nb content on the strength of Cu-Nb filamentary microcomposites[J]. J Mater Res, 2000,15(9):1889-1893.
    [39]Zhao X B, Wu Z T, Yuan T Z. Preparation and properties of Fe-fiber-strengthened copper composite[J]. J Mater Sci Lett,1999,18:159-161.
    [40]Jha S C, Delagi R D, Forster J A, et al. High strength high-conductivity Cu-Nb microcomposite sheet fabricated via multiple roll bonding[J]. Metall Trans,1993,4A(1):15-20.
    [41]W. Hume-Rothery. Electrons, atoms, metals and alloys[M]. London:Metal Industry Press,1948: 268-329.
    [42]刘志林,李志林,刘伟东.界面电子结构与界面性能[M].北京:科学出版社,2002:1-10.
    [43]L. Pauling. The shared electron chemical bond[J]. The Proceedings of National Academy of Sciences, 1928,14(4):359-362.
    [44]L. Pauling. The principles determining the structure of complex ionic crystals[J]. J American Chemical Society,1929,51:1010-1031.
    [45]L. Pauling. The nature of the chemical bond:Ⅱ The one-electron bond and the three-electron bond[J]. J American Chemical Society,1931,53:3225-3239.
    [46]L. Pauling. The nature of the chemical bond:Ⅲ The transition from one extreme bond type to another[J]. J American Chemical Society,1932,54:988-1004.
    [47]国家自然科学基金委员会.金属材料科学[M].北京:科学出版社,1995:133-140.
    [48]张济山,崔华,胡壮麒.合金电子理论及其在合金设计中的应用[J].材料科学与工程,1993,11(3):1-10.
    [49]M. Morinaga, J Saito, N Yukawa, H Adachi. Electronic effect on the ductility of alloyed TiAl compound[J]. Acta Metall Mater,1990,38(1):25-28.
    [50]T. Kawabata, T. tamura, and O. Izumi. Effect of Ti/AI ratio and Cr, Nb, and Hf additions on material factors and mechanical properties in TiAl [J]. Metallurgical Transactions A,1993,24(1):141-150.
    [51]D G Pettifor, A H Cottrell(陈魁英译).合金设计的电子理论[M].沈阳:辽宁科学技术出版社,1997:1-6.
    [52]Liu Zhilin, Li Zhilin, Sun Zhenguo. Electron density of austenite/martensite biphase interface[J]. Chinese science bulletin.1996,41(5):367-370.
    [53]李志林,刘志林,孙振国.合金相结构因子和界面结合因子及其在合金设计中的应用[J].金属学报,1999,35(7):673-681.
    [54]Li Zhilin, Sun Zhenguo, Liu Zhilin, Valence electron structure of austenite-martensite interface and phase transformation toughening[J]. Chinese Journal of Mechanical Engineering,1996,9(2):119-126.
    [55]D Raabe, K Miyake, H Takahara. Processing, microstructure, and properties of ternary high-strength Cu-Cr-Ag in situ composites[J]. Materials Science and Engineering A,2000,291(10):186-197.
    [56]D Raabe, U Hangen. Correlation of microstructure and type Ⅱ superconductivity of a heavily cold rolled Cu-20mass% Nb in situ composite[J]. Acta Materialia,1996,44(3):953-961.
    [57]F Heringhaus, D Raabe, G Gottstein. On the correlation of microstructure and electromagnetic properties of heavily cold worked Cu-20 wt% Nb wires[J]. Acta Metallurgicaet Materialia,1995,43(4): 1467-1476.
    [58]Lee K L, Whitehouse A F, Russell A M. Elevated temperature tensile properties and failure of a copper-chromium in situ composite[J]. Journal of Materials Science,2003,38:3437-3447.
    [59]Lee K L. Effect of oxidation on the creep behaviour of copper-chromium in situ composite[J]. Composites Part A Applied Science and Manufacturing,2003,34(12):1235-1244.
    [60]Spitzig W A, Pelton A R., Laabs F C. Characterization of the strength and microstructure of heavily cold worked Cu-Nb composites[J]. Acta metall,1987,35:2427-2442.
    [61]Spitzig W. A., Chumbley. L. S, Verhoeven. J. D et al. effect of temperature on the strength and conductivity of a deformation processed Cu-20%Fe composite[J]. J. Mater. Sci,1992,27:2005-2011.
    [62]H G Suzuki, T Takeuchi, K Mihara, et al. Processing and fabrication of advanced materials Ⅶ[J]. TMS,1998,44:359.
    [63]H G Suzuki, J Ma, K Mihara et al. Effect of alloying elements on Cu-15Cr in-situ mechanical properties in composites[J]. Trans Nonferrous Met Soc China,2004,14(2):284-290.
    [64]Y Jin, K Adachi, T Takeuchi, H G suzuki. Correlation between the Cold-Working and aging treatments in a Cu-15 Wt%Cr in situ composite[J]. Metallurgical and Materials Transactions A,1998,29A(8): 2195-2203.
    [65]D L Zhang, K Mihara, E Takakura, H G Suzuki. Effect of the amount of cold working and ageing on the ductility of a Cu-15%Cr-Ti in-situ composite[J]. Materials Science and Engineering A,1999,266: 99-108.
    [66]姚再起,葛继平,刘书华.形变Cu-11.5%Fe原位复合材料的强度和导电性[J].复合材料学报,2005,22(3): 121-125.
    [67]葛继平,陈美玲,刘书华.形变Cu-20vol%Fe原位复合材料研究[J].材料热处理学报,2003,24(4):22-28.
    [68]宁远涛,张晓辉,张婕.大变形Cu-10Ag原位纳米纤维复合材料[J].稀有金属材料与工程,2005,34(12):1930-1934.
    [69]宁远涛,张晓辉,张婕.大变形Cu-10Ag原位纤维复合材料的稳定性[J].中国有色金属学报,2005,15(4):506-512.
    [70]余瑞璜.固体与分子经验电子理论[J].科学通报,1978,23(4):217-224·
    [71]张瑞林,余瑞璜.Fe-C马氏体价电子结构分析[J].金属学报,1984,20(4):A279-285·
    [72]余瑞璜,张瑞林,郑伟涛.渗碳体价电子结构及其性质的分析[J].科学通报,1993,38(7):665-668·
    [73]刘志林,戴天时.低合金超高强度钢马氏体的价电子结构及其对强韧性的影响[J].科学通报,1990,(12):891-894.
    [74]刘志林,戴天时.类拖曳效应的价电子理论模型[J].科学通报,1989,1:15-17.
    [75]张建民,张瑞林,余瑞璜.Fe-Al合金有序无序相变的电子理论研究[J].金属学报,1994,30(5):205-209.
    [76]李文,陈岱民,关振中.Ti-Al系金属间化合物力学性能的电子理论[J].物理学报,1998,47(2):2064-2073.
    [77]刘伟东,刘志林,屈华.Ti-4.5Al-5Mo-1.5Cr合金增韧的价电子理论研究[J].金属学报,2002,38(12):1246-1250.
    [78]吴非,余瑞璜,张瑞林.Fe-Mn合金高温相图的电子理论计算[J].中国科学(A),1990,8:889-896.
    [79]郑伟涛,张瑞林,余瑞璜.Ag-Au, Au-Cu二元合金形成能和高温相图的研究[J].科学通报,1990,35(9):705-709.
    [80]余瑞璜.α-Fe,γ-Fe和Fe4N的价电子结构和磁矩结构分析[J].金属学报,1982,18(3):336-349.
    [81]刘志林,孙振国,李志林.铸铁凝固理论中的结构形成因子[J].科学通报,1995,40(4):311-313.
    [82]郑伟涛.Cu-Ag, Cu-Au, Ag-Au二元合金的价电子结构与相平衡的电子理论[D].长春:吉林大学,1988:78.
    [83]郑伟涛,余瑞璜,张瑞林.Cu-Au二元合金有序-无序相平衡的研究[J].科学通报,1991,36(2):179-181.
    [84]王力衡,黄运添,郑海涛.薄膜技术[M].北京:清华大学出版社,1991,第一版:63.
    [85]P D Funkenbusch, T H Courtney. Microstructural strengthening in cold worked in situ Cu-14.8Vol.%Fe composites[J]. Scripta Metall,1981,15:1349-1354.
    [86]J D Verhoeven, H L Downing, E D Gibson, resistivity and microstructure of heavily drawn Cu-Nb alloys[J]. J Appl Phys.,1989,65:1293-1301.
    [87]Y S Go and W A Spitzig. Strengthening in deformation-processed Cu-20%Fe composites[J]. J. Mater Sci,1991,26:163-171.
    [88]R Heringhaus, D Raabe, G Gottstein. On the correlation of microstructure and electro magnetic properties of heavily cold worked Cu-20wt%Nb wires [J]. Acta Metal Mater,1995,43:1467-1476.
    [89]C Bliselli and D G Morris. Microstructure and strength of Cu-Fe in situ composites obtained from prealloyed Cu-Fe powders[J]. Acta. Metall. Mater.,1994,42:163-176.
    [90]葛继平.形变Cu-Fe原位复合材料[D]. 大连:大连交通大学,2005:45.
    [91]张雷.纤维相增强Cu-Ag合金的显微组织及力学和电学性能[D].浙江:浙江大学,2005:67-80.
    [92]Hong S I, Hill M A. Microstructure and conductivity of Cu-Nb microcomposites fabricated by the bundling and drawing process [J]. Scripta Materialia,2001,44(10):2509-2515.
    [93]Pelton A R, L aabs F C, Spitzig W A, ChengC C. Microstructural analysis of in-situ Cu-Nb composite wires[J]. Ultramicroscopy,1987,22:251-265.
    [94]Frommeyer G, Wassermann G. Microstructure and anomalous mechanical properties of in-situ-produced silver-copper composite wires[J]. Acta Metall,1975,23:1353-1360.
    [95]Thilly L, V6ron M, Ludwig O, Lecouturier F, Peyrade J P, Askenazy S. High-strength materials: in-situ investigations of dislocation behaviour in Cu-Nb multifilamentary nanostructured composites[J]. Philos Mag,2002, A82:925-942.
    [96]Han K, Hirth J P, Embury J D, Modeling the formation of twins and stacking faults in the Ag-Cu system[J]. Acta Mater,2001,49:1537-1540.
    [97]叶恒强等,材料界面结构与特性[M].北京:科学出版社,1999:195.
    [98]李方华.电子晶体学图像处理及其在材料科学中的应用[J].稀有金属材料与工程,2002,31(3):161-166.
    [99]P赫什,R B尼科尔森,D W帕施利等.薄晶体电子显微学[M].北京:科学出版社,1983:355-394.
    [100]E Snoeck, F Lecouturier L. Thilly M J Casanove H. Rakoto et al. Microstructural Studies of in Situ Produced Filamentary Cu-Nb Wires[J]. Scripta Materialia,1998,38(11):1643-1648.
    [101]刘嘉斌,孟亮.Cu-6%Ag合金组织纤维化过程中的应变协调行为[J].金属学报,2006,42(9):931-936.
    [102]Sakai S, Suzuki H G, Mihara K. Effect of Sn addition on the mechanical and electrical properties of Cu-15%Cr in-situ composites[J]. Material transactions,2003,44(2):232-238.
    [103]Jerman G A, Anderson I E, Verhoeven J D. Strength and electrical conductivity of deformation-processed Cu-15 vol pct Fe alloys produced by powder metallurgy echniques[J]. Metall Trans,1993, A24:35-42.
    [104]Karasek K R, Bevk J. Normal-state resistivity of in-situ-formed ultrafine filamentary Cu-Nb composites [J]. Journal of Applied Physics,1981,52(3):1370-1375.
    [105]Raabe D. Simulation of the resistivity of heavily cold worked Cu-20wt%Nb wires[J]. Comput Mater Sci,1995,3:402-412.
    [106]Shou-Yi Chang, Chi-Fang Chen, Su-Jien Lin and Theo Z. Katamis. Electrical resistivity of metal matrix composites[J]. Acta Materialia,2003,51:6191-6302.
    [107]Kasaba K, Katagiri K, Shoji Y, Takahashi T. et al. Stress/strain dependence of critical current in Nb3Sn superconducting wires stabilized with Cu-Nb microcomposites-effect of Nb content[J]. Cryogenics,2001,41(1):9-14.
    [108]Hong S I, Hill M A. Microstructural stability and mechanical response of Cu-Ag microcomposite wires[J]. Acta. Metall. M ater,1998,46:4111-4122.
    [109]Spitzig W A, Biner S B. Comparison of strengthening in wire-drawn or rolled Cu-20%Nb with a dislocation accumulation model[J]. J. Mater. Sci.,1993,28(17):4623-4629.
    [110]Funkenbucth P D, Lee J K, Courtney T H. Ductile twe-phase alloys:predictionon of strengthening at high strains[J]. Metall Trans,1987,18A(7):1249-1257.
    [111]Spitzig W A. Strengthening in heavily deformation processed processed Cu-20%Nb composite[J]. Acta Metall Mater,1991,39(6):1085-1090.
    [112]Verhoeven J D, Chumbley L S, Laabs F C, et al. Measurement of filament spacing in deformation processed processed Cu-Nb alloys[J]. Acta Metall Mater,1991,39(11):2825-2834.
    [113]Raabe D, Hangen U Simulation of the yield strength of wire drawn Cu-based in-situ composites[J]. Computational Materials Science,1996,5(1-3):195-202.
    [114]Hangen U, Raabe D. Modelling of the yield strength of heavily wire drawn Cu-20%Nb composite by use of a modified linear rule of mixtures[J]. Acta Metall Mater,1995,43(11):4075-4082.
    [115]Trybus C I, Spitzig W A. Characterization of the strength and microstructural evolution of a heavily cold rolling Cu-20%Nb composite[J]. Acta Metall,1989,37(7):1971-1981.
    [116]Spitzig W A, Krotz P D. Comparison of the strength and microstructure of Cu-20%Ta and Cu-20%Nb in situ composites[J]. Acta Metall,1988,36(7):1709-1715.
    [117]Hong S I. Yield strength of a heavily drawn Cu-20%Nb filamentary micro-composite [J]. Scripta Mater,1998,39:1685-1691.
    [118]Biselli C, Morris D G. Microstructure and strength of Cu-Fe in situ composites after very high drawing strains [J]. Acta Mater,1996,4(2):493-504.
    [119]W A Spitzig Effect of deformation mode on the strength of deformation processed Cu-20%Nb composites[J]Scripta Metallurgica,1989,2(7):1177-1179.
    [120]A R Pelton, F C Laabs, W A Spitzig, C C Cheng. Microstructural analysis of in-situ Cu-Nb composite wires[J]. Ultramicroscopy,1987,2(1-4):251-265.
    [121]M F Ashby. Strengthening Methods in Crystals[M]. Applied Science Publishers, London,1971:137.
    [122]P D Funkenbusch, T H Courtney. On the strength of heavily cold worked in situ composites[J]. Acta Metallurgica,1985 33(5):913-922.
    [123]C L Trybus, L S Chumbley, W A Spitzig, J D Verhoeven. Problems in evaluating the dislocation densities in heavily deformed Cu-Nb composites[J]. Ultramicroscopy,1989,3(3):315-320.
    [124]C L Trybus, W A Spitzig. Characterization of the strength and microstructural evolution of a heavily cold rolled Cu-20% Nb composite[J]. Acta Metallurgica,1989,37(7):1971-1981.
    [125]K L Lee, A F Whitehouse, S I Hong, A M Russell. Creep Behavior of Copper-Chromium In-Situ Composite[J]. METALLURGICAL AND MATERIALS TRANSACTIONS A,2004,35A(2):695-705.
    [126]Kwon H J, Hong S I. Superplastic Cu-Ag microcomposites[J]. Journal of Alloys and Compounds, 2001,327(1-2):161-166.
    [127]葛继平,姚再起. 形变Cu-17.5%Fe原位复合材料热稳定性研究[J].大连铁道学院学报,2004,25(2):57-63.
    [128]D Raabe, J Ge. Experimental study on the thermal stability of Cr filaments in a Cu-Cr-Ag in situ composite[J]. Scripta Materialia,2004,51(9):915-920.
    [129]F A Nichols, W W Mullins. Surface (Interface) and Volume Diffusion Contributions to Morphological Changes Driven by Capillarity[J]. Trans AIME,1965,233,1840-1848.
    [130]Cline H E. Shape Instabilities of Eutectic Composites at Elevated Tempera tures[J]. Acta Metall,1971,
    19(6),481-490.
    [131]Wilkinson D S, Weatherly G C. Contribution of Grain Boundary Diffusion and Capillarity Forces to the Diffusional Creep of Wires and Fibres[J]. Met Trans,1975,6A:265-270.
    [132]F Heringhaus, H Muntau, C L Gottstein. Analytical modeling of the electrical conductivity of metal matrix composites application to Ag-Cu and Cu-Nb[J]. Mater Sci Eng,2003, A347:9-20.
    [133]J C M Kampe, T H Courtney, Y Leng. Shape instabilities of plate-like structures-Ⅰ Experimental observations in heavily cold worked in situ composites[J]. Acta Metall,1989,37:1735-1745.
    [134]T H Courtney, J C M Kampe. Shape instabilities of plate-like structures-Ⅱ Analysis[J]. Acta Metall, 1989,37:1747-1758.
    [135]Malzahn Kampe J C, Courtney T H. Elevated temperature microstructural stability of heavily cold-worded in-situ composites[J]. Scripta Materialia,1986,20:285-289.
    [136]Lee J K, Courtney T H. Two-dimensional finite difference analysis of shape instabilities in plates[J]. Metall Trans,1989, A20:1385-1394.
    [137]Sharma G, Ramanujan R V, Tiwari G E. Instability mechanisms in lamellar microstructures[J].
    Acta Materialia,2000,48(4):875-889.
    [138]Qian Ma. A model for the breakup of rod morphologies[J]. Scripta Materialia,1997,36(1):77-82.
    [139]Monchoux J P, Verdu C, Thollet G, Foug res R, Reynaud A. Morphological changes of graphite spheroids during heat treatment of ductile cast irons[J]. Acta Materialia,2001,49(20):4355-4362.
    [140]Jun Ho Choy, Stephen A, Hackney, Jong K Lee. Nonlinear stability analzsis of the diffusional spheroidization of rods[J]. J Appl Phys,1995,77(11):5647-5654.
    [141]W W Mullins, P G Shewmon. The kinetics of grain boundary grooving in copper[J]. Acta Metallurgica, 1959,7(3):163-170.
    [142]Ho E, Weatherly G C. Interface diffusion in the Al-CuAl2 eutectic[J]. Acta Metall,1975,23(12): 1451-1460.
    [143]L Pauling. The nature of the chemical bond[M]. Ithaca:Cornell University Press, 1960:393-436.
    [144]S H Yu. The empirical electron theory of solid and molecules-the hypothesis of equivalent valence electron[J]. Kexue Tongbao,1981,26(7):506-513.
    [145]张瑞林.固体与分子经验电子理论[M].长春:吉林科学技术出版社,1993:275-427.
    [146]S H Yu. Periodic table in the microscopic space of solids and molecules-finestructure of atomic valence:Ⅰ subgroup BⅠ, BⅡ, AⅢ elements in the periodic table[J]. Science reports of Jinan University, 1981, (Supp.1):7-25.
    [147]S H Yu. Periodic table in the microscopic space of solids and molecules-finestructure of atomic valence:Ⅱ subgroup AV elements As, Sb and Bi in the periodictable [J]. Science reports of Jinan University,1981, (Supp.1):26-29.
    [148]S H Yu. Quantum mechanical foundation of discontinuous states hybridization hypothesis in the empirical electron theory of solids and molecules [J]. Science reports of Jinan University,1981, (Supp.1):30-40.
    [149]S H Yu. Analyses of the valence electron structure of Mg and some Mg and Ag hcp solid solutions in phase transformation under critical high pressure-directevidence of the existence of discontinuous hybridization of states in solids [J]. Sciencereports of Jinan University,1981, (Supp.1):41-55.
    [150]余瑞璜.固体与分子经验电子理论-等效价电子假定[J].科学通报,1981,4:206-209.
    [151]张建民.Fe-C马氏体硬度的价电子结构分析[J].陕西师范大学学报,2001,29(1):31-37.
    [152]孙振国,刘志林,李志林.论奥氏体和马氏体中的Fe原子杂化状态的确定[J].中国科学(E),1987,27(1):19-23.
    [153]程开甲,程漱玉.论材料科学的理论基础[J],自然科学进展.1996,6(1):1-4.
    [154]程开甲,程漱玉.TFD模型和余氏理论对材料设计的应用[J].自然科学进展,1993,3(5):417-420.
    [155]刘志林,孙振国.余氏理论和程氏理论在合金研究中的应用[J].自然科学进展,1998,8(2):151-154.
    [156]刘志林,孙振国,李志林.奥氏体/马氏体异相界面电子密度[J].科学通报,1995,40(22):2040-2042.
    [157]陈志成,杨瑞成,伍文宣.余氏理论中原子平均共价电子密度研究[J].甘肃工业大学学报,2000,26(4):23-27.
    [158]Xu Wandong, Zhang Ruilin, Yu Ruihuang. Calculation of the binding energy of the compound crystal of transition elements [J]. Science in China (A),1989,32(3):351-361.
    [159]徐万东,张瑞林,余瑞璜.过渡金属化合物晶体结合能计算[J].中国科学A,1989,35(9):323-330·
    [160]刘志林.合金的价电子结构与成份设计[M].长春:吉林科学技术出版社,2002:124-130.
    [161]Cheng Kaijia. Application of the TFD model and Yu's theory to material design[J]. Progress in natural science,1993,3(3):211-230.
    [162]Sun Zhenguo, Li Zhilin, Liu Zhilin. Calculation of electron density of biphase interface in alloy[J]. Chinese science bulletin,1996,41(9):718-718.
    [163]Liu Zhilin, Sun Zhenguo, Li Zhilin. Application of Yu's theory and Cheng's theory to alloy research[J]. Progress in Natural Science,1998,8(2):134-146.
    [164]李志林. 异相界面的电子结构及其性质[D].北京:北京航空航天大学,2001:24-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700