用户名: 密码: 验证码:
黑木耳中性多糖片段硫酸酯对辐射诱导氧化应激防护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,由于空间技术和核技术的应用,辐射伤害不仅见于战时,已渗透到各个领域,辐射产生大量自由基能引发机体氧化应激反应,现代医学认为炎症、肿瘤、衰老、血液病、以及心、肝、肺、皮肤等近百余种相关疾病的发生机理与体内自由基产生过多而得不到及时有效清除有着密切的关系,由于合成抗氧化剂存在稳定性差、作用时间短、毒副作用、不适合长期服用等问题,发掘新型天然抗氧化剂已成为食品科学和航天医学的研究重点。本课题采用化学修饰方法制备黑木耳中性多糖片段硫酸酯(Sulfate of neutralAuricularia auricular polysaccharides, SNAAP),采用清除体外自由基进行活性跟踪,经细胞模型确证,SNAAP对氧化应激具有很好的防护作用,进一步建立氧化应激动物模型,从细胞、分子水平系统研究SNAAP辐射防护作用,旨在促进黑木耳及其多糖资源的深度开发利用。
     选用氯磺酸-N, N二甲基甲酰胺(CSA-DMF)作为酯化试剂,采用单因素实验,以硫酸酯化试剂(CSA:DMF)体积比为1:6;酯化温度为50℃,反应时间为3h,进行非选择性修饰制备木耳中性多糖片段硫酸酯:得率为51.89±1.36%,离子色谱法测定其硫酸根含量为31.00±2.79%,计算硫酸基取代度为0.78±0.11;经气相色谱法分析该工艺下制备SNAAP产物中甲酰胺和N, N-二甲基甲酰胺溶剂残留量分别为80.1±7.5μg/L和64.1±4.8μg/L,均符合人用药品注册技术规范国际协调会(ICH)和中国药典(2000版)限量标准。
     采用活性跟踪法,研究了SNAAP的体外抗氧化活性,当受试样品浓度为2.0mg/mL时,SNAAP对超氧自由基清除率为95.71%,而黑木耳中性多糖片段清除率仅为3.75%,表明硫酸酯化能显著提高黑木耳中性多糖片段对超氧自由基的清除能力,筛选得到SNAAP对超氧自由基清除活性最强。红外光谱解析SNAAP在1249cm~(-1)(νS=O)和820cm~(-1)(νC-O-S)处有-OSO_3的S=O伸缩振动和C-O-SO_3基团的伸缩振动特征吸收峰,说明合成产物SNAAP有硫酯键。且硫酸基位于SNAAP中单糖残基平伏位置,并在C_6位上发生取代;紫外光谱显示SNAAP未出现新的特征吸收峰,证明该酯化方法是较为温和的硫酸化修饰手段。原子力显微镜表征SNAAP分子中具有三维空间网状结构,相对分子量为6.53×10~6Da,且与黑木耳中性多糖片段相比,经过硫酸化,SNAAP的分子量分布变窄,分子量较为均一和集中。SNAAP单糖组成分别由D-核糖、D-甘露糖、L-鼠李糖、L-阿拉伯糖、D-木糖、D-葡萄糖、D-半乳糖组成,各单糖之间摩尔比例为1.0:7.0:1.0:1.0:4.0:10:2.0。
     MTT法评价了SNAAP不具有细胞毒性作用,以X射线辐射诱导人外周血为氧化应激模型,采用血常规分析,筛选得到SNAAP对氧化应激防护作用最佳,进一步验证实验研究发现SNAAP中剂量组(60μg/mL)可以将辐射受损的白细胞数维持至对照组水平,减少辐射引起的畸变白细胞数,具有辐射防护功效。
     构建γ辐射诱导的氧化应激动物模型,研究发现SNAAP各剂量组能够直接清除辐射产生的自由基,可有效的促进造血系统恢复和免疫细胞增殖和生长,提高机体的免疫系统功能;能够显著提高小鼠各脏器中超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-Px)和乳酸脱氢酶(LDH)活性,增加还原型谷胱甘肽(GSH)的含量,降低髓过氧化物酶(MPO)活性,降低丙二醛(MDA)水平,证实SNAAP能够有效激活抗氧化酶系,抑制氧化酶系,抑制脂质过氧化,减轻细胞膜损伤,减少骨髓微核和染色体畸变率;揭示SNAAP抗辐射机制与自由基清除、抗氧化酶系水平、细胞增殖、谷胱甘肽水平、脂质氧化、细胞周期停滞等因素有关。因此,SNAAP对辐射诱导氧化应激防护作用这一研究对航天、军事及核辐射接触人员的健康和安全具有十分重要理论意义和实际应用价值。
As technology develops, human beings enjoy life more convenient than everbefore. Yet, at the same time they are suffering ever greater oxidative stress fromfree radicals caused by a variety of genres of radiation. It is believed that inmodern iatrology more than one hundred human diseases are associated withoxidative stress and that synthesized antioxidants are not suitable for long-termuse due to their instability and toxicity. Therefore, the investigation anddevelopment of natural antioxidants has been the focus for researchers in the foodscience and aerospace medicine disciplines.
     In this research, specific chemical methods were applied to synthesize asulfate of neutral Auricularia auricular polysaccharide fragments (SNAAP)together with neutral Auricularia auricular polysaccharide. Their antioxidant andradio-protective effects were assessed by in vitro radical scavenging experiments,oxidative stress cells models and oxidative stress animal models. Correspondingly,the radio-protective effect of SNAAP was systematically examined in levels ofanimal cells and molecules. Therefore, this research promotes exploitation ofAuricularia auricular and its polysaccharides. The main content of this study isdescribed as follows.
     NAAP was prepared through deproteinization, decolorization, purificationand dialysis. The chemical structure analysis of NAAP and its sulfated derivative,SNAAP, revealed the sulfation of the NAAP was successfully achieved.Experiments verified the neutral Auricularia auricular polysaccharide fragmentswere sulfated under a rigorous sulfation using chlorosulfonic acid (DMF volumeratio of1:6) at temperature of50℃, for3hours, then treated by theChloro-sulfonic acid-N, N dimethyl formamide method. With this procedure,SNAAP was produced at a yield of51.89±1.36%with a degree of substitution(DS) of0.78±0.11. The residual amount of formamide and N, N dimethylformamide in the SNAAP was determined by gas chromatography, to be80.1±7.5μg/L and64.1±4.8μg/L, within the limit by ICH and Chinese Pharmacopoeia(2000), signifying the safe use of SNAAP in cell and animal experiments.
     The in vitro antioxidant capacity of the SNAAP was systematically evaluated.The results confirmed that the SNAAP had better superoxide radical scavengingability than the non-sulfated polysaccharides fragments. At a sample concentrationof2.0mg/mL for SNAAP a superoxide radical scavenging rate of95.71%wasobtained; the respective values of the neutral Auricularia auricular polysaccharide fragments was only3.75%. The super scavenging ability of SNAAP was due tosulfate groups. The FTIR analysis established that the SNAAP had specificabsorbing peaks of-OSO_3and C-O-SO_3at both1249cm~(-1)(νS=O) and820cm~(-1)(νC-O-S). A UV spectrum analysis did not find any new absorbing peaks, whichsignified that this sulfating method was mild and that the SNAAP possesses athree dimensional network structure with a molecular mass of6.53×106.Compared with NAAP fragments, the molecular mass of the SNAAP increaseddue to introduction of sulfates, consisting of D-ribose, D-mannose, L-rhamnose,L-arabinose, D-xylose, D-glucose, D-galactose, with a mole ratio of1.0:7.0:1.0:1.0:4.0:10.0:2.0.
     MTT analysis certified that the SNAAP was not cell toxic. X-ray inducedhuman peripheral blood was used as an oxidative stress model. Routine bloodexamination showed that SNAAP possessed the best radio-protective effect, inaccordance with the findings that a mid-level dose of SNAAP (60μg/mL) cansustain the leukocyte level of irradiated rats at the same level as control rats and toreduce the amount of aberrant leukocytes induced by irradiation.
     In addition, animal models with γ-ray induced oxidative stress weremechanistically built to further explore the radiation-protective effect of SNAAP.The improvements of the immune system, are caused by direct scavenge of freeradicals in vitro by SNAAP, enhance by hematopoiesis and promote by the growthand proliferation of the immunocytes. Furthermore, SNAAP can improve theexpression of many important enzymes involved in oxidative stress response suchas superoxide dismutase, catalase, and lactic dehydrogenase and at the same timereduce the expression of marrow peroxidase. Likewise, SNAAP can increase theamount of reduced glutathione and reduce the amount of malondialdehyde intested organs. Consequently, SNAAP can activate the anti-oxidase system, inhibitthe oxidase system, alleviate lipid peroxidation, reduce damage to cell membrane,and decrease the mutation of the micronucleus rate and of chromosomesaberrations.
     The results revealed radioprotection mechanisms of SNAAP as radicalscavenging, anti-oxidases expression, cell proliferation, GSH level, lipid oxidation,cell cycle arrest, DNA-protein binding and chromosome folding. Therefore,SNAAP will be a potential new radio-protector, humans working with radiationexposure.
引文
[1]刘剑英,钟进义.天然抗辐射剂研究进展[G].中国四川成都:2010:324-325.
    [2] Ohnishi, T., Takahashi, A., Ohnishi, K. Biological effects of space radiation[J].Biological Sciences in Space.2001,15:203-210.
    [3] Pratheeshkumar, P., Raphael, T. J., Kuttan, G. Protective Role of Perillic AcidAgainst Radiation-Induced Oxidative Stress, Cytokine Profile, DNA Damage,and Intestinal Toxicity in Mice[J]. Journal of Environmental PathologyToxicology and Oncology.2010,29(3):199-212.
    [4] Heo, S. J., Kim, J. P., Jung, W. K., et al. Identification of chemical structure andfree radical scavenging activity of diphlorethohydroxycarmalol isolated from abrown alga, Ishige okamurae[J]. Journal of Microbiology and Biotechnology.2008,18(4):676-681.
    [5] Kang, H. S., Kim, K. R., Jun, E. M., et al. Cyathuscavins A, B, and, new freeradical scavengers with DNA protection activity from the BasidiomyceteCyathus stercoreus[J]. Bioorganic and Medicinal Chemistry Letters.2008,18:4047-4050.
    [6] Martini, F. H., Bartholomew, E. F. Essentials of Anatomy and Physiology (3rdEdition)[M]. New jersey: Pearson Eduation,2002.
    [7] Fridovich, I. Free radical in biology[M]. New York:New York Academic Press,1976:239-271.
    [8] Ames, B. N. Micronutrients prevent cancer and delay aging[J]. ToxicologyLetters.1998,102–103:5-18.
    [9] Finkel, T., Holbrook, N. J. Oxidants, oxidative stress and the biology ofageing[J]. Nature.2000,408(6809):239-247.
    [10] Fang, Y. Z., Yang, S., Wu, G. Y. Free radicals, antioxidants, and nutrition[J].Nutrition.2002,18(10):872-879.
    [11] Vijayalaxmi, Reiter, R. J., Herman, T. S., et al. Melatonin reduces gammaradiation-induced primary DNA damage in human blood lymphocytes[J].Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis.1998,397(2):203-208.
    [12] Vijayalaxmi, Reiter, R. J., Meltz, M. L. Melatonin Protects HumanBlood-lymphocytes From Radiation-induced Chromodome-damage[J].Mutation Research Letters.1995,346(1):23-31.
    [13] Bodnarchuk, I. A. Analysis of the role of DNA repair, regulation of cell cycleand apoptosis in the radiation-induced adaptive response of mammaliancells[J]. Radiatsionnaia Biologiia, Radioecologiia.2003,43(1):19-28.
    [14]李雪静.松茸多糖对辐射损伤小鼠的防护作用及其机制研究[D].吉林大学,2006.
    [15] Samarth, R. M., Panwar, M., Kumar, M., et al. Evaluation of antioxidant andradical-scavenging activities of certain radioprotective plant extracts[J]. FoodChemistry.2008,106(2):868-873.
    [16] Lee, T. K., Allison, R. R., O Brien, K. F., et al. Ginseng reduces themicronuclei yield in lymphocytes after irradiation[J]. Mutation Research.2004,557:75-84.
    [17] Petushkova, N. A., Bachmanova, G. I.7-Alkoxyphenoxazone and7-Alkoxycoumarin O-dealkylation by human peripheral blood lymphocytes[J].In Vitro Toxicology.1996,9(3):291-295.
    [18] Baron, J. M., Zwakdi-Klarwasser, G., Jugert, F., et al. Cytochrome P4501B1:A major P450isoenzyme in human blood monocytes and macrophagesubsets[J]. Biochemical Pharmacology.1998,56(9):1105-1110.
    [19] Dey, A., Parmar, D., Dhawan, A., et al. Cytochrome P4502E1dependentcatalytic activity and lipid peroxidation in rat blood lymphocytes[J]. Lifesciense.2002,71:2509-2519.
    [20] Sokolov, A. A. The effect of ionising radiation on stored blood[J]. Probl.Hematol. Blood Transfusion (USSR)(English Tranls.).1961,6.
    [21] Lessler, M. A., Herrera, F. M. Electron-microscope studies of X-ray damage tofrog blood cells[J]. Radiation research.1962,17(2):111-117.
    [22]吴旭梅,王良群,李茹莉,等. X射线工作人员染色体畸变与血象变化的相关性[J].工业卫生与职业病.2007,33(1):35-37.
    [23]刘仁文,谢向阳,李秀兰,等. X射线工作人员健康状况分析[J].实用预防医学.2008,15(3):772-773.
    [24]陈正其,姚洪章,刘定理,等.低剂量电离辐射对放射工作人员健康影响的调查[J].中国辐射卫生.2005(2):124-126.
    [25]郎杏彩,李明湘,贾秉义,等.酸枣仁、肉多糖增强小鼠免疫功能和抗放射性损伤的实验研究[J].中国中药杂志.1991(6):48-50.
    [26]骆传环,高月,王作华,等.红景天多糖的抗放实验研究[J].中华放射医学与防护杂志.1994(5):340-341.
    [27]骆传环,王作华,程鲁榕.柴胡多糖抗辐射作用的实验研究[J].中草药.1995(12):645-646.
    [28]田生礼,邴文贵,李健超.人参多糖对X射线照射小鼠骨髓细胞染色体畸变和造血干、祖细胞的影响[J].白求恩医科大学学报.1992(3):230-232.
    [29] Rola, R., Sarkissian, V., Obenaus, A., et al. High-LET radiation inducesinflammation and persistent changes in markers of hippocampalneurogenesis[J]. Radiation research.2005,164(4):556-560.
    [30] Suzuki, M., Tsuruoka, C., Uchihori, Y., et al. Reduction in life span of normalhuman fibroblasts exposed to very low-dose-rate charged particles[J].Radiation Research.2005,164(4):505-508.
    [31] Paulovich, A. G., Hartwell, L. H. A checkpoint regulates the rate ofprogression through S phase in S. cerevisiae in response to DNA damage[J].Cell.1995,82(5):841-847.
    [32] Ak, T., Gül in,. Antioxidant and radical scavenging properties of curcumin[J].Chemico-Biological Interactions.2008,174(1):27-37.
    [33] Shon, M. Y., Kim, T. H., Sung, N. J. Antioxidants and free radical scavengingactivity of Phellinus baumii (Phellinus of Hymenochaetaceae) extracts[J].Food Chemistry.2003,82(4):593-597.
    [34] Xing, R. E., Yu, H. H., Liu, S., et al. Antioxidant activity of differentlyregioselective chitosan sulfates in vitro[J]. Bioorganic&Medicinal Chemistry.2005,13(4):1387-1392.
    [35] Zhu, X. W., Raina, A. K., Lee, H. G., et al. Oxidative stress signalling inAlzheimer's disease[J]. Brain Research.2004,1000(1–2):32-39.
    [36] Taguchi, T. Clinical efficacy of lentinan on patients with stomach cancer:endpoint results of a four-year follow-up survey[J]. Cancer Detect.1987,1:333-349.
    [37] Ohwada, S., Kawate, S., Ikeya, T., et al. Adjuvant therapy with protein-boundpolysaccharide K and tegafur uracil in patients with stage II or III colorectalcancer: randomized controlled trial[J]. Diseases of the Colon&Rectum.2003,46(8):1060-1068.
    [38]冯艳.灵芝多糖对2型糖尿病大鼠心肌组织氧化应激的影响[J].药学与临床研究.2012(5):410-413.
    [39]王稳航,李玉,刘安军.松木层孔菌多糖对正常小鼠体内抗氧化功能的影响[J].现代生物医学进展.2008(8):1439-1441.
    [40]杨江涛.刺梨多糖分离纯化、理化性质及生物活性研究[D].贵州大学,2008.
    [41] Zhang, H., Wang, Z. Y., Zhang, Z. Purified Auricularia auricular-judaepolysaccharide (AAP I-a) prevents oxidative stress in an ageing mousemodel[J]. Carbohydrate Polymers.2011,84:638-648.
    [42] Li, X. L., Zhou, A. G., Li, X. M. Inhibition of Lycium barbarumpolysaccharides and Ganoderma lucidum polysaccharides against oxidativeinjury induced by gamma-irradiation in rat liver mitochondria[J]. CarbohydratePolymers.2007,69(1):172-178.
    [43] Yu, R. M., Yang, W., Song, L. Y., et al. Structural characterization andantioxidant activity of a polysaccharide from the fruiting bodies of culturedCordyceps militaris[J]. Carbohydrate Polymers.2007,70(4):430-436.
    [44] Nishimura, S., Kai, H., Shinada, K., et al. Regioselective syntheses of sulfatedpolysaccharides: specific anti-HIV-1activity of novel chitin sulfates[J].Carbohydrate Research.1998,306(3):427-433.
    [45] Begum, N., Prasad, N. R. Apigenin, a dietary antioxidant, modulates gammaradiation-induced oxidative damages in human peripheral bloodlymphocytes[J]. Biomedicine&Preventive Nutrition.2011,2(1):16-24.
    [46]吕秋军,温利青,张敏,等.白藜芦醇的辐射防护及其分子机理的研究[J].中华放射医学与防护杂志.2004(1):25-26.
    [47] Sherr, C. J. cancer cell cycles[J]. Science.1996,274:1672-1677.
    [48] Benkovic, V., Knezevic, A. H., Dikic, D., et al. Radioprotective effects ofpropolis and quercetin in gamma-irradiated mice evaluated by the alkalinecomet assay[J]. Phytomedicine.2008,15(10):851-858.
    [49] Pulatova, M. K., Sharygin, V. L., Todorov, I. N. The activation ofribonucleotide reductase in animal organs as the cellular response against thetreatment with DNA-damaging factors and the influence of radioprotectors onthis effect[J]. Biochimica et Biophysica Acta.1999,1453(3):321-329.
    [50] Rajagopalan, R., Ranjan, S. K., Nair, C. K. K. Effect of vinblastine sulfate onγ-radiation-induced DNA single-strand breaks in murine tissues[J]. MutationResearch.2003,536:15-25.
    [51] Ivanova, T., Han, Y., Son, H., et al. Antimutagenic effect of polysaccharideginsan extracted from Panax ginseng[J]. Food and Chemical Toxicology.2006,44(4):517-521.
    [52] Pillai, T. G., Nair, C. K. K., Janardhanan, K. K. Polysaccharides isolated fromGanoderma lucidum occurring in Southern parts of India, protects radiationinduced damages both in vitro and in vivo[J]. Environmental Toxicology andPharmacology.2008,26(1):80-85.
    [53] Kim, K. C., Kim, I. G. Ganoderma lucidum extract protects DNA from strandbreakage caused by hydroxyl radical and UV irradiation[J]. InternationalJournal of Molecular Medicine.1999,4(3):273-277.
    [54] Mantena, S. K., Unnikrishnan, M. K., Joshi, R., et al. In vivo radioprotectionby5-aminosalicylic acid[J]. Mutation Research-genetic Toxicology andEnvironmental Mutagenesis.2008,650(1):63-79.
    [55] Sandeep, D., Krishnan, C., Nair, K. Protection of DNA and membrane fromgamma-radiation induced damage by the extract of Acorus calamus Linn.: Anin vitro study[J]. Environmental Toxicology and Pharmacology.2010,29(3):302-307.
    [56] Hui, M. K. C., Wu, W. K. K., Shin, V. Y., et al. Polysaccharides from the rootof Angelica sinensis protect bone marrow and gastrointestinal tissues againstthe cytotoxicity of cyclophosphamide in mice[J]. International Journal ofMedical Sciences.2006,3(1):1-6.
    [57] Sun, Y. X., Wang, S. S., Li, T. B., et al. Purification, structure andimmunobiological activity of a new water-soluble polysaccharide from themycelium of Polyporus albicans (Imaz.) Teng[J]. Bioresource Technology.2008,99(4):900-904.
    [58] Liu, Y. H., Wang, F. S. Structural characterization of an active polysaccharidefrom Phellinus ribis[J]. Carbohydrate Polymers.2007,70(4):386-392.
    [59] Yang, X. B., Zhao, Y., Wang, H. F., et al. Macrophage activation by an acidicpolysaccharide isolated from Angelica sinensis (Oliv.) Diels[J]. Journal OfBiochemistry and Molecular Biology.2007,40(5):636-643.
    [60] Xie, G., Schepetkin, I. A., Quinn, M. T. Immunomodulatory activity of acidicpolysaccharides isolated from Tanacetum vulgare L[J]. InternationalImmunopharmacology.2007,7(13):1639-1650.
    [61] Arora, R., Gupta, D., Chawla, R., et al. Radioprotection by Plant Products:Present Status and Future Prospects[J]. Phytotherapy Research.2005,19(1):1-22.
    [62] Lü, J. M., Peter, H. L., Yao, Q. Z., et al. Chemical and molecular mechanismsof antioxidants: Experimental approaches and model systems[J]. Journal ofCellular and Molecular Medicine.2010,14(4):840-860.
    [63] Blomhoff, R. Dietary antioxidant and cardiovascular disease[J]. CurrentOpemion in Lipidology.2005,16(1):47-54.
    [64] Antoniou, E., Buitrago, C. F., Tsianou, M., et al. Solvent effects onpolysaccharide conformation[J]. Carbohydrate Polymers.2010,79(2):380-390.
    [65] Bae, I. Y., Kim, H. Y., Lee, S., et al. Effect of the degree of oxidation on thephysicochemical and biological properties of Grifola frondosapolysaccharides[J]. Carbohydrate Polymers.2011,83(3):1298-1302.
    [66] Tao, Y. Z., Zhang, L. N., Cheung, P. C. K. Physicochemical properties andantitumor activities of water-soluble native and sulfated hyperbranchedmushroom polysaccharides[J]. Carbohydrate Research.2006,341(13):2261-2269.
    [67] Takata, R., Yanai, T., Yamamoto, R., et al. Improvement of the antitumoractivity of black currant polysaccharide by an enzymatic treatment[J].Bioscience Biotechnology and Biochemistry.2007,71(5):1342-1344.
    [68] Yu, P. Z., Zhang, Q. B., Zhang, H., et al. Preparation of polysaccharides indifferent molecular weights from Ulva pertusa Kjellm (Chorophyta)[J].Chinese Journal of Oceanology and Limnology.2004,22(4):381-385.
    [69] Dicko, M. H., Hilhorst, R., Traore, A. S. Indigenous West African plants asnovel sources of polysaccharide degrading enzymes: application in thereduction of the viscosity of cereal porridges[J]. African Journal ofBiotechnology.2005,4(10):1095-1104.
    [70] Wang, J., Guo, H., Wang, X., et al. Sulfated modification, characterization andstructure-antioxidant relationships of Artemisia sphaerocephalapolysaccharides[J]. Carbohydrate Polymers.2010,81(4):897-905.
    [71] Tao, Y. Z., Zhang, Y. Y., Zhang, L. N. Chemical modification and antitumoractivities of two polysaccharide-protein complexes from Pleurotustuber-regium[J]. International Journal of Biological Macromolecules.2009,45(2):109-115.
    [72] Peng, Y. F., Zhang, L. N. Characterization of a polysaccharide–proteincomplex from Ganoderma tsugae mycelium by size-exclusion chromatographycombined with laser light scattering[J]. Journal of Biochemical andBiophysical Methods.2003,56(1–3):243-252.
    [73] Yang, J. H., Du, Y. M., Huang, R. H., et al. Chemical modification,characterization and structure-anticoagulant activity relationships of Chineselacquer polysaccharides[J]. International Journal of BiologicalMacromolecules.2002,31(1-3):55-62.
    [74] Yuan, H. M., Zhang, W. W., Li, X. G., et al. Preparation and in vitroantioxidant activity of kappa-carrageenan oligosaccharides and theiroversulfated, acetylated, and phosphorylated derivatives[J]. CarbohydrateResearch.2005,340(4):685-692.
    [75] Wang, J. G., Wang, Y. T., Liu, X. B., et al. Free radical scavenging andimmunomodulatory activities of Ganoderma lucidum polysaccharidesderivatives[J]. Carbohydrate Polymers.2013,91(1):33-38.
    [76] Ma, L. S., Chen, H. X., Zhang, Y., et al. Chemical modification andantioxidant activities of polysaccharide from mushroom Inonotus obliquus[J].Carbohydrate Polymers.2012,89(2):371-378.
    [77] Yang, L. Q., Zhao, T., Wei, H., et al. Carboxymethylation of polysaccharidesfrom Auricularia auricula and their antioxidant activities in vitro[J].International Journal of Biological Macromolecules.2011,49(5):1124-1130.
    [78] Rinaudo, M. Non-Covalent Interactions in Polysaccharide Systems[J].Macromolecular Bioscience.2006,6:590-610.
    [79] Nie, X. H., Shi, B. J., Ding, Y. T., et al. Preparation of a chemically sulfatedpolysaccharide derived from Grifola frondosa and its potential biologicalactivities[J]. International Journal of Biological Macromolecules.2006,39(1):228-233.
    [80] Mueller, A., Raptis, J., Rice, P. J., et al. The influence of glucan polymerstructure and solution conformation on binding to (1-->3)-beta-D-glucanreceptors in a human monocyte-like cell line[J]. Glycobiology.2000,10(4):339-346.
    [81] Zhang, M., Cui, S. W., Cheung, P. C. K., et al. Antitumor polysaccharides frommushrooms: a review on their isolation process, structural characteristics andantitumor activity[J]. Food Science&Technology.2007,18(1):4-19.
    [82] Bae, A. H., Lee, S. W., M, I., et al. Rod-like architecture and helicity of thepoly(C)/schizophyllan complex observed by AFM and SEM[J]. CarbohydrateResearch.2004,339(2):251-258.
    [83] Mcintire, T. M., Brant, D. A. Observations of the (1→3)-β-D-Glucan LinearTriple Helix to Macrocycle Interconversion Using Noncontact Atomic ForceMicroscopy[J]. Journal of American Chemical Society.1998,120(28):6909-6919.
    [84] Marszalek, P. E., Li, H., Oberhauser, A. F., et al. Chair-boat transitions insingle polysaccharide molecules observed with force-ramp AFM[J].Proceedings of the National Academy of Sciences of the United States ofAmerica.2002,99(7):4278-4283.
    [85] Liu, Y. H., Chun, H. L., Tan, H. N., et al. Sulfation of a polysaccharideobtained from Phellinus ribis and potential biological activities of the sulfatedderivatives[J]. Carbohydrate Polymers.2009,77:370-375.
    [86] Huang, R. H., Du, Y. M., Yang, J. H., et al. Influence of functional groups onthe in vitro anticoagulant activity of chitosan sulfate[J]. CarbohydrateResearch.2003,338(6):483-489.
    [87]黄雪芳.龙眼肉多糖硫酸酯化修饰及修饰前后体外抗肿瘤活性初步研究[D].2011.
    [88] Liu, C., Chen, H., Chen, K., et al. Sulfated modification can enhance antiviralactivities of Achyranthes bidentata polysaccharide against porcinereproductive and respiratory syndrome virus (PRRSV) in vitro[J]. InternationalJournal of Biological Macromolecules.2013,52(0):21-24.
    [89] Nguyen, T. L., Chen, J., Hu, Y., et al. In vitro antiviral activity of sulfatedAuricularia auricula polysaccharides[J]. Carbohydrate Polymers.2012,90(3):1254-1258.
    [90] Lu, Y., Wang, D., Hu, Y., et al. Sulfated modification of epimediumpolysaccharide and effects of the modifiers on cellular infectivity of IBDV[J].Carbohydrate Polymers.2008,71(2):180-186.
    [91] Wei, D. F., Wei, Y. X., Cheng, W. D., et al. Sulfated modification,characterization and antitumor activities of Radix hedysari polysaccharide[J].International Journal of Biological Macromolecules.2012,51(4):471-476.
    [92]高向东,杨晓兵,韩方,等.一种多糖的硫酸酯化衍生物及其制法和用途[P]. CN200410103087.1.2005-08-10.
    [93] Miller, C. E., Mulard, L. A., Padlan, E. A., et al. Binding of modifiedfragments of the Shigella dysenteriae type1O-specific polysaccharide tomonoclonal IgM3707E9and docking of the immunodeterminant to itsmodeled Fv[J]. Carbohydrate Research.1998,309(3):219-226.
    [94]栗衍华,谭成玉,王秀武,等.硫酸化多糖的制备及其生物活性的研究进展[J].精细与专用化学品.2006,14(16):6-9.
    [95] Pushpamali, W. A., Nikapitiya, C., Zoysa, M. D., et al. Isolation andpurification of an anticoagulant from fermented red seaweed Lomentariacatenata[J]. Carbohydrate Polymers.2008,73(2):274-279.
    [96] Liu, G. G., Borjihan, G., Baigude, H., et al. Synthesis and anti-HIV activity ofsulfated astragalus polysaccharide[J]. Polymers for Advanced Technologies.2003,14(7):471-476.
    [97] Zhang, Y. L., Lu, X. Y., Zhang, Y. N., et al. Sulfated modification andimmunomodulatory activity of water-soluble polysaccharides derived fromfresh Chinese persimmon fruit[J]. International Journal of BiologicalMacromolecules.2010,46(1):67-71.
    [98] Ye, L., Xu, L., Li, J. Preparation and anticoagulant activity of a fucosylatedpolysaccharide sulfate from a sea cucumber Acaudina molpadioidea[J].Carbohydrate Polymers.2012,87(3):2052-2057.
    [99] Mao, W. J., Li, Y., Wu, L. G., et al. Chemical characterization andradioprotective effect of polysaccharide from Monostroma angicava(Chlorophyta)[J]. Journal of Applied Phycology.2005,17(4):349-354.
    [100] Zhang, Y. L., Zhang, J. B., Mo, X. Y., et al. Modification, characterizationand structure–anticoagulant activity relationships of persimmonpolysaccharides[J]. Carbohydrate Polymers.2010,82(2):515-520.
    [101] Chan, W. K., Law, H. K. W., Lin, Z., et al. Response of human dendritic cellsto different immunomodulatory polysaccharides derived from mushroom andbarley[J]. International Immunology.2007,19(7):891-899.
    [102]靳文娟,鲁晓翔.硫酸化鸡油菌多糖的体外抗氧化作用研究[J].食品科技.2012,(10):177-181.
    [103]李公斌,王振宇.黑木耳多糖硫酸酯化制备工艺及红外光谱分析[J].东北林业大学学报.2008(12):66-68.
    [104]张丽萍,汉丽萍,王月秋,等.硫酸化高山红景天多糖(RSASL)的制备及鉴定[J].分子科学学报.1999,15(4):205-210.
    [105] Fan, L. S., Zhang, S. H., Yu, L., et al. Evaluation of antioxidant property andquality of breads containing auricularia auricula polysaccharide flour[J]. FoodChemistry.2007,101(3):1158-1163.
    [106] Acharya, K., Samui, K., Rai, M., et al. Antioxidant and nitric oxide synthaseactivation properties of Auricularia auricula[J]. Indian Journal ofExperimental Biology.2004,42(5):538-540.
    [107] Takeuchi, H., He, P., Mooi, L. Y. Reductive effect of hot-water extracts fromwoody ear (Auricularia auricula-judae Quel.) on food intake and bloodglucose concentration in genetically diabetic KK-Ay mice[J]. Journal ofNutritional Science and Vitaminology.2004,50(4):300-304.
    [108] Ma, Z. C., Wang, J. G., Zhang, L. N., et al. Evaluation of water solublebeta-d-glucan from auricularia auricular-judae as potential anti-tumoragent[J]. Carbohydrate Polymers.2010,80(3):977-983.
    [109] Yoon, S. J., Yu, M. A., Pyun, Y. R., et al. The nontoxic mushroom auriculariaauricula contains a polysaccharide with anticoagulant activity mediated byantithrombin[J]. Thrombosis Research.2003,3(112):151-158.
    [110] Leung, M. Y., Fung, K. P., Choy, Y. M. The isolation and characterization ofan immunomodulatory and anti-tumor polysaccharide preparation fromFlammulina velutipes[J]. Immunopharmacology.1997,35(3):255-263.
    [111]张士国,邵伟国.灰树花子实体多糖提取方法的比较[J].中国林副特产.2005(2):40-41.
    [112]韩永萍,何江川,缪刚.超滤提纯姬松茸多糖的研究[J].中国食用菌.2005,24(2):44-47.
    [113] Sone, Y., Kakuta, M., Misaki, A. Isolation and characterization ofpolysaccharides of "kikurage," fruit body of Auricularia auricula judae[J].Agricultural and Biological Chemistry.1978,42(2):417-422.
    [114]张立娟,于国萍.黑木耳多糖酶法提取条件的优化及脱蛋白工艺的研究[J].食品工业科技.2005(5):109-111.
    [115]唐娟,马永强.超声波技术在黑木耳多糖提取中的应用[J].食品与机械.2005(1):28-29.
    [116]樊黎生.黑木耳多糖AAP-Ⅱa级分的制备及其生物活性的研究[D].华中农业大学,2006.
    [117]刘大纹,李铁柱,孙永海.黑木耳多糖提取工艺的优化[J].农业机械学报.2007,(5):100-103.
    [118] Zeng, W. C., Zhang, Z., Gao, H., et al. Characterization of antioxidantpolysaccharides from Auricularia auricular using microwave-assistedextraction[J]. Carbohydrate Polymers.2012,89(2):694-700.
    [119] Ukai, S., Morisaki, S., Goto, M., et al. Polysaccharides in Fungi. VII. AcidicHeteroglycans from the Fruit Bodies of Auricularia auricula-judae QUEL[J].Chemical&pharmaceutical bulletin.1982,30(2):635-643.
    [120]刘大政.黑木耳多糖的分离纯化及结构分析[D].东北师范大学,2008.
    [121]欧阳天贽,谢九皋.碱溶性黑木耳多糖的分离、纯化和表征[J].华中农业大学学报.1999(1):51-53.
    [122]宋广磊,杜琪珍.黑木耳多糖AAPS-3的化学结构[J].菌物学报.2010(4):576-581.
    [123] Ma, Z., Wang, J., Zhang, L. Structure and chain conformation of beta-glucanisolated from Auricularia auricula-judae[J]. Biopolymers.2008,89(7):614-622.
    [124] Chen, G., Luo, Y. C., Li, B. P., et al. Effect of polysaccharide fromAuricularia auricula on blood lipid metabolism and lipoprotein lipase activityof ICR mice fed a cholesterol-enriched diet[J]. Journal of Food Science.2008,73(6): H103-H108.
    [125] Wu, Q., Tan, Z. P., Liu, H. D., et al. Chemical characterization of Auriculariaauricula polysaccharides and its pharmacological effect on heart antioxidantenzyme activities and left ventricular function in aged mice[J]. InternationalJournal of Biological Macromolecules.2010,46(3):284-288.
    [126]李兴泰,高明波.黑木耳多糖清除活性氧及保护线粒体[J].食品科学.2004,25(1):171-173.
    [127]夏尔宁,陈琼华.黑木耳多糖的生物活性[J].中国药科大学学报.1989(4):227-230.
    [128]樊黎生,龚晨睿,张声华.黑木耳多糖抗辐射效应的动物实验[J].营养学报.2005,27(6):525-526.
    [129]吴春敏,陈琼华.毛木耳多糖对机体细胞的保护作用[J].中国药科大学学报.1991(5):305-307.
    [130] Chang, J. S., Kim, H. J., Bae, J. T., et al. Inhibition effects of A.auricula-judae-judae methanol extract on lipid peroxidation and liverdamage in benzo(α)pyrene-treated mice[J]. Journal of the Korean Societyof Food Science and Nutrition.1998,27:712-717.
    [131] Luo, Y. C., Chen, G., Li, B., et al. Evaluation of anti-oxidative andhypolipidemic properties of a novel functional diet formulation of Auriculariaauricula and Hawthorn[J]. Innovative Food Science and EmergingTechnologies.2009,10(2):215-221.
    [132] Mau, J. L., Chao, G. R., Wu, K. T. Antioxidant properties of methanolicextracts from several ear mushrooms[J]. Journal of Agricultural and FoodChemistry.2001,49(11):5461-5467.
    [133] Yang, L. Q., Zhang, L. M. Chemical structural and chain conformationalcharacterization of some bioactive polysaccharides isolated from naturalsources[J]. Carbohydrate Polymers.2009,76(3):349-361.
    [134] Wang, J., Liu, L., Zhang, Q., et al. Synthesized oversulphated, acetylated andbenzoylated derivatives of fucoidan extracted from Laminaria japonica andtheir potential antioxidant activity in vitro[J]. Food Chemistry.2009,114(4):1285-1290.
    [135] Zhang, H., Wang, Z. Y., Yang, L. In Vitro Antioxidant Activities of SulfatedDerivatives of Polysaccharides Extracted from Auricularia auricula[J].International Journal of Molecular Sciences.2011,12(5):3288-3302.
    [136]张晓波,刘峰,马文琼,等.离子色谱法同时测定饮用水中7种阴离子研究[J].哈尔滨商业大学学报.2008,24(5):614-620.
    [137] Zhang, H., Wang, Z. Y., Zhang, Z. Purified Auricularia auricular-judaepolysaccharide (AAP I-a) prevents oxidative stress in an ageing mousemodel[J]. Carbohydrate Polymers.2011,84:638-648.
    [138] Nishikimi, M., Appaji, R. N., Yagi, K. The occurrence of superoxide anion inthe reaction of reduced phenazine methosulfate and molecular oxygen[J].Biochemical and Biophysical Research Communications.1972,46(2):849-854.
    [139] Smironoff, N., Cumbes, Q. Hydroxyl radical scavenging activity ofcompatible solutes[J]. Phytochemistry.1989,28(4):1057-1060.
    [140] Halliwell, B., Gutteridge, J. M. C., Aruoma, O. I. The deoxyribose method: asimple "test-tube" assay for determination of rate constants for reactions ofhydroxyl radicals[J]. Analytical Biochemistry.1987,165(1):215-219.
    [141] Ajandouz, E. H., Tchiakpe, L. S., Dalle Ore, F., et al. Effects of pH oncaramelization and Maillard reaction kinetics in fructose-lysine modelsystems[J]. Journal of Food Science.2001,66(7):926-931.
    [142] Duh, P. D., Du, P. C., Yen, G. Action of methanolic extract of mung beanhulls as inhibitors of lipid peroxidation and non-lipid oxidative damage[J].Food and Chemical Toxicology.1999,37(11):1055-1061.
    [143] Takahashi, R., Ohmori, R., Kiyose, C., et al. Antioxidant activities of blackand yellow soybeans against low density lipoprotein oxidation[J]. Journal ofAgricultural and Food Chemistry.2005,53(11):4578-4582.
    [144]范能全,王琳,贾琴.评价细胞毒性方法的探讨[J].泸州医学院学报.2005,28(2):132-134.
    [145] Grace, M. B., Mcleland, C., Gagliardi, S. J., et al. Development andassessment of a quantitative reverse transcription-PCR assay for simultaneousmeasurement of four amplicons[J]. Clinical Chemistry.2003,49(9):1467-1475.
    [146] Grace, M. B., Mcleland, C. B., Blakely, W. F. Real-time quantitative RT-PCRassay of GADD45gene expression changes as a biomarker for radiationbiodosimetry[J]. Internationsl Journal of Radiation Biology.2002,78(11):1011-1021.
    [147] Lu, X., Wang, Y., Zhang, Z. Radioprotective activity of betalains from redbeets in mice exposed to gamma irradiation[J]. European Journal ofPharmacology.2009,1-3(615).
    [148] Mosmann, T. Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assays[J]. Journal ofImmunological Methods.1983,65(1-2):55-63.
    [149] Dincer, Y., Kankaya, S. Comet Assay for Determining of DNA Damage:Review[J]. Turkiye Klinikleri Tip Bilimleri Dergisi.2010,30(4):1365-1373.
    [150]邹晓莉,曾红燕,谢祺,等.全血中维生素E和辅酶Q10含量的高效液相色谱法测定[J].分析测试学报.2008(6):660-662.
    [151]曹佳,林真,余争平,等.微核试验:原理、方法及其在人群监测和毒性评价中的应用[M].北京军事医学科学出版社,2000:12-15.
    [152]吕坤,钟民,张梦莹.皖南地区放射工作人员外周血淋巴细胞染色体畸变和微核分析[J].检验医学与临床.2011,8(3):267-268.
    [153]保健食品检验与评价技术规范[M].中国卫生监督,2003:12-20.
    [154]董鹏,卢延旭,张晓宇,等.大麻对正常小鼠脾淋巴细胞的免疫损伤作用[J].中国法医学杂志.2010(5):301-304.
    [155] Kulicke, W. M., Lettau, A. I., Thielking, H. Correlation betweenimmunological activity, molar mass, and molecular structure of different(1->3)-beta-D-glucans[J]. Carbohydrate Research.1997,297(2):135-143.
    [156] Mcintire, T. M., Penner, R. M., Brant, D. A. Observations of a circular,triple-helical polysaccharide using noncontact atomic force microscopy[J].Macromolecules.1995,28(18):6375-6377.
    [157] Kim, G. Y., Park, H. S., Nam, B. H., et al. Purification and characterization ofacidic proteo-heteroglycan from the fruiting body of Phellinus linteus (Berk.&M. A. Curtis) Teng[J]. Bioresource Technology.2003,89(1):81-87.
    [158] Gül na, I., Oktayb, M., K re c c, E., et al. Screening of antioxidant andantimicrobial activities of anise (Pimpinella anisum L.) seed extracts [J].Food Chemistry.2003,83(3):371-382.
    [159] Makris, D. P., Psarra, E., Kallithraka, S., et al. The effect of polyphenoliccomposition as related to antioxidant capacity in white wines [J]. Foodresearch international.2003,36(8):805-814.
    [160] Chung, Y. C., Chang, C. T., Chao, W. W., et al. Antioxidative activity andsafety of the50%ethanolic extract from red bean fermented by Bacillussubtilis IMR-NKI [J]. Journal of Agricultural and Food Chemistry.2002,50(8):2454-2458.
    [161] Meir, S., Kanner, J., Akiri, B., et al. Determination and involvement ofaqueous reducing compounds in oxidative defense systems of varioussenescing leaves[J]. Journal of agricultural and food chemistry.1995,43(7):1813-1819.
    [162] Fourth International Conference on Harmonisation.1997, Jul16~18, Brussels.Step4draft page24[Z].24.
    [163] Hong, L., Altdorfer, H. R. A comparison study of sample dissolution media inheadspace analysis of organic volatile impurities in pharmaceuticals[J].Pharmaceutica Acta Helvetiae.1997,72(2):95-104.
    [164] Zhbankov, R. G., Andrianov, V. M., Marchewka, M. K. Fourier transform IRand Raman spectroscopy and structure of carbohydrates[J]. Journal ofMolecular Structure.1997,436-437:637-654.
    [165] Jin, M. L., Wang, Y. M., Xu, C. L., et al. Preparation and biological activitiesof an exopolysaccharide produced by Enterobacter cloacae Z0206[J].Carbohydrate Polymers.2010,81(3):607-611.
    [166]靳明亮. Entenobacter cloacae Z0206硫酸酯化多糖的制备、抗氧化功能及机理研究[D].浙江大学博士论文,2011.
    [167]张惟杰.糖复合物生化技术研究[M].杭州:浙江大学出版社,1999:57-81.
    [168]张汉辉.波谱学原理及应用[M].北京:化学工业出版社,2011.
    [169] Lloyd, A. G., Dodgson, K. S., Price, R. G., et al. Infrared studies on sulphateesters. I. Polysaccharide sulphates[J]. Biochimica et Biophysica Acta.1961,46:108-115.
    [170] Sun, Y., Liang, H., Cai, G., et al. Sulfated modification of the water-solublepolysaccharides from Polyporus albicans mycelia and its potential biologicalactivities[J]. International Journal ofBiological Macromolecules.2009,44:14-17.
    [171] Gelder, J. D., Gussem, K. D., Vandenabeele, P., et al. Reference database ofRaman spectra of biological molecules[J]. Journal of Raman spectrose.2007,9(38):1133-1147.
    [172] Zhbankov, R. G., Firsov, S. P., Korolik, E. V., et al. Vibrational spectra andthe structure of medical biopolymers[J]. Journal of Molecular Structure.2000,1-3(555):85-96.
    [173] Bell, A. F., Hecht, H., Barron, L. D. Disaccharide solution stereochemistryfrom vibrational raman opticL activity[J]. Journal of the American ChemicalSociety.1994,12(116):5155-5161.
    [174]林文硕,荣陈,李永增,等.山药近红外拉曼光谱分析[J].光谱学与光谱分析.2008,5(8):1095-1097.
    [175]陈健,肖凯军,林福兰.拉曼光谱在食品分析中的应用[J].食品科学.2007,12(28):554-558.
    [176] Suzuki, T., Ohno, N., Saito, K., et al. Activation of the complement system by(1----3)-beta-D-glucans having different degrees of branching and differentultrastructures[J]. Journal of Pharmacobio-dynamics.1992,15(6):277-285.
    [177]杨世平,陈润广,陈国梁,等.红枣多糖微结构的原子力显微镜观测[J].陕西师范大学学报(自然科学版).2005,33(3):59-61.
    [178] Rouhier, P., Kopp, M., Begot, V., et al. Structural features of fungal β-D-glucans for the efficient inhibition of the initiation of virus infection onNicotiana tabacum[J]. Phytochemistry.1995,39(1):57-62.
    [179]诸葛健,赵振锋,方慧英.功能性多糖的构效关系[J].无锡轻工大学学报.2002,21(2):209-212.
    [180] Leung, M. Y. K., Liu, C., Koon, J. C. M., et al. Polysaccharide biologicalresponse modifiers[J]. Immunology Letters.2006,105(2):101-114.
    [181] Gamal-Eldeen, A. M., Amer, H., Helmy, W. A., et al. Chemically-modifiedpolysaccharide extract derived from Leucaena leucocephala alters Raw264.7murine macrophage functions[J]. International Immunopharmacology.2007,7(6):871-878.
    [182] Lee, K. W., Lee, H. J. Biphasic effects of dietary antioxidants on oxidativestress-mediated carcinogenesis[J]. Mechanisms of Ageing and Development.2006,127(5):424-431.
    [183] Halliwell, B., Gutteridge, J. M., Cross, C. E. Free radicals, antioxidants, andhuman disease: where are we now?[J]. The Journal of Laboratory and ClinicalMedicine.1992,119(6):598-620.
    [184] Wade, C. R., Jackson, P. G., Highton, J., et al. Lipid peroxidation andmalondialdehyde in the synovial fluid and plasma of patients with rheumatoidarthritis[J]. Clinica Chimica Acta; International Journal of Clinical Chemistry.1987,164(3):245-250.
    [185] Yoshida, T. Synthesis of polysaccharides having specific biologicalactivities[J]. Progress in Polymer Science.2001,26(3):379-441.
    [186] Alban, S., Schauerte, A., Franz, G. Anticoagulant sulfatedpolysaccharides:Part I Synthesis and structure-activity relationships of newpullulan sulfates[J]. Carbohydrate Polymers.2002,47(3):267-276.
    [187] Franz, G., Alban, S. Structure-activity relationship of antithromboticpolysaccharide derivatives[J]. International Journal of BiologicalMacromolecules.1995,17(6):311-314.
    [188] Chen, S., Wang, J., Xue, C., et al. Sulfation of a squid ink polysaccharide andits inhibitory effect on tumor cell metastasis[J]. Carbohydrate Polymers.2010,81:560-566.
    [189] Zhang, Y. L., Lu, X. Y., Zhang, Y. N., et al. Sulfated modification andimmunomodulatory activity of water-soluble polysaccharides derived fromfresh Chinese persimmon fruit[J]. International Journal of BiologicalMacromolecules.2010,46(1):67-71.
    [190] Tsiapali, E., Whaley, S., Kalbfleisch, J., et al. Glucans exhibit weakantioxidant activity, but stimulate macrophage free radical activity[J]. FreeRadical Biology&Medicine.2001,30(4):393-402.
    [191] Nishino, T., Nagumo, T. Anticoagulant and antithrombin activities ofoversulfated fucans[J]. Carbohydrate Research.1992,229(2):355-362.
    [192] Bloknina, O., Virolainen, E., Fagerstedt, K. V. Antioxidants, OxidativeDamage and Oxygen Deprivation Stress: a Review[J]. Annals of Botany.2003,91(2):179-194.
    [193] Liu, W., Wang, H. Y., Pang, X. B., et al. Characterization and antioxidantactivity of two low-molecular-weight polysaccharides purified from thefruiting bodies of Ganoderma lucidum[J]. International Journal of BiologicalMacromolecules.2010,46(4):451-457.
    [194] Yangchao, L., Chen, G., Li, B., et al. Evaluation of antioxidative andhypolipidemic properties of a novel functional diet formulation of Auriculariaauricula and Hawthorn[J]. Innovative Food Science and EmergingTechnologies.2009,10:215-221.
    [195] Jin, M. L., Lu, Z. Q., Huang, M., et al. Sulfated modification and antioxidantactivity of exopolysaccahrides produced by Enterobacter cloacae Z0206[J].International Journal of Biological Macromolecules.2011,48(4):607-612.
    [196] Lee, Y. L., Yen, M. T., Mau, J. L. Antioxidant properties of various extractsfrom Hypsizigus marmoreus[J]. Food Chemistry.2007,104(1):1-9.
    [197]柳红.南瓜多糖的修饰、结构分析及抗氧化活性分析[D].陕西师范大学,2008.
    [198]沃尔默特, B.高分子化学基础[M].化学工业出版社,1986:117.
    [199]沃尔默特, B.高分子化学基础[M].化学工业出版社,1986:117.
    [200]闫亚美,冉林武,刘兰英,等.硫酸酯化多糖生物活性及其构效关系研究进展[J].安徽农业科学.2009,37(24):11374-11375.
    [201]陈景耀,张卫明,王习达,等.白岌多糖硫酸酯化及生物学活性的比较研究[J].食品科学.2007,28(7):27-29.
    [202] Macdonald, J., Galley, H. F., Webster, N. R. Oxidative stress and geneexpression in sepsis[J]. British Journal of Anaesthesia.2003,90(2):221-232.
    [203] Qi, H., Zhang, Q., Zhao, T., et al. In vitro antioxidant activity of acetylatedand benzoylated derivatives of polysaccharide extracted from Ulva pertusa(Chlorophyta)[J]. Bioorganic&Medicinal Chemistry Letters.2006,16(9):2441-2445.
    [204] Mantle, D., Eddeb, F., Pickering, A. T. Comparison of relative antioxidantactivities of British medicinal plant species in vitro[J]. Journal ofEthnopharmacology.2000,72(1-2):47-51.
    [205] Westerlund, C., Ostlund-Lindqvist, A. M., Sainsbury, M., et al.Characterization of novel indenoindoles. Part I. Structure-activityrelationships in different model systems of lipid peroxidation[J]. BiochemicalPharmacology.1996,51(10):1397-1402.
    [206] Tepe, B., Sokmen, M., Akpulata, H. A., et al. Screening of antioxidativeproperties of the methanolic extracts of Pelargonium endlicherianum Fenzl.,Verbascum wiedemannianum Fisch.&Mey., Sideritis libanotica Labill.subsp. linearis (Bentham) Borm., Centaurea mucronifera DC. and Hieraciumcappadocicum Freyn from Turkish flora[J]. Food Chemistry.2006,98(1):9-13.
    [207] Su, X. Y., Wang, Z. Y., Liu, J. R. In vitro and in vivo antioxidant activity ofPinus koraiensis seed extract containing phenolic compounds[J]. FoodChemistry.2009,117(4):681-686.
    [208] Hogan, S., Chung, H., Zhang, L., et al. Antiproliferative and antioxidantproperties of anthocyanin-rich extract from a ai[J]. Food Chemistry.2010,118(2):208-214.
    [209] Smith, H. J., Eshagi, N. Current imaging in peptic ulcer disease[J]. Seminarsin Gastrointestinal.1993,4(1):21-26.
    [210] Wang, J. G., Wang, Y. T., Liu, X. B., et al. Free radical scavenging andimmunomodulatory activities of Ganoderma lucidum polysaccharidesderivatives[J]. Carbohydrate Polymers.2013,91(1):33-38.
    [211]马菲,熊鸿燕,张耀,等.高强度电磁辐射对长期暴露人群血液成分的损伤效应研究[J].疾病控制杂志.2005(5):75-78.
    [212] Blakey, D. H., Duncan, A. M., Wargovich, M. J., et al. Detection of nuclearanomalies in the colonic epithelium of the mouse[J]. Cancer Research.1985,45(1):242-249.
    [213]薛开先,王苏,周平,等.人体外周血淋巴细胞核损伤指标的比较研究[J].遗传学报.1990,17(1):70-74.
    [214]程文英,杨家宽,丁志圣,等.快中子照射诱发人淋巴细胞微核的剂量效应以及微核和染色体畸变的关系[J].遗传.1981,3(3):11-13.
    [215] Augustine, A. D., Gondré-Lewis, T., Mcbride, W., et al. Animal Models forRadiation Injury, Protection and Therapy[J]. Radiation Research.2005,164(1):100-109.
    [216]郑旭,王莉芳,陈芳,等. MTT法评价4种医用材料的细胞毒性[J].西北药学杂志.2011,26(5):363-364.
    [217] United States Pharmacopeial Convention, I. USP XXII, NF XVII[S].1990.
    [218]谢祥红,王斌,周建丽,等.高原驻训官兵1097人外周血淋巴细胞比例变化分析[J].武警医学.2010,21(10):890-891.
    [219]许燕群,周红,温伟荣.五例重、中度急性放射病病人造血功能远后效应随访观察报告[J].中华放射医学与防护杂志.1998,18(1):57-58.
    [220] Li, J. M., Giver, C. R., Lu, Y., et al. Separating graft-versus-leukemia fromgraft-versus-host disease in allogeneic hematopoietic stem celltransplantation[J]. Immunotherapy.2009,1(4):599-621.
    [221] Dowben, R. M., Walker, J. K. Methemoglobinemia induced byX-irradiation[J]. Proceedings of The Society for Experimental Biology andMedicine.1955,90(2):398-400.
    [222]黄益民,赵辉,虞欣.自由基损伤红细胞膜分子的机理研究[J].生物物理学报.1997,13(2):165-173.
    [223]王凤计,曲垣瑞.血液病治疗学[M].天津:天津科学技术出版社,1997:48.
    [224] Ramachandran, L., Nair, C. K. K. Radioprotection by tempol: Studies ontissue antioxidant levels, hematopoietic and gastrointestinal systems, in micewhole body exposed to sub-lethal doses of gamma radiation[J]. IranianJournal of Radiation Research.2012,10(1):1-10.
    [225] Parihar, V. K., Dhawan, J., Kumar, S., et al. Free radical scavenging andradioprotective activity of dehydrozingerone against whole body gammairradiation in Swiss albino mice[J]. Chemico-Biological Interactions.2007,170(1):49-58.
    [226] Mozdarani, H., Salimi, M., Froughizadeh, M. Effect of cimetidine andfamotidine on survival of lethally gamma irradiated mice[J]. Iranian Journalof Radiation Research.2008,5(4):187-194.
    [227] Mozdarani, H., Taheri, A., Haeri, S. A. Assessment of radioprotective effectsof amifostine, on human lymphocytes irradiated in vitro by gamma-rays usingcytokinesis-blocked micronucleus assay[J]. Iranian Journal of RadiationResearch.2007,5(1):9-16.
    [228] Hsu, Y. K., Chang, C. P., Hsien, C. K., et al. Effect of Roentgen rays on thepermeability of the barrier between blood and cerebrospinal[J]. ChineseJournal of Physiology.1936,10(3):379-390.
    [229] Terasako, K., Sato, K., Sato, M., et al. The effect of different ATGpreparations on immune recovery after allogeneic hematopoietic stem celltransplantation for severe aplastic anemia[J]. Hematology.2010,15(3):165-169.
    [230]贾永峰,王水明,陈建魁,等. γ射线与微波复合作用对小鼠造血系统功能及形态学的影响[J].解放军医学杂志.2006(8):790-793.
    [231]毛秉智,陈家佩.辐射血液学——基础与临床[M].北京:军事医学科学出版社,2001:13-14.
    [232] Ooi, V. E. C., Liu, F. Immunomodulation and anti-cancer activity ofpolysaccharide-protein complexes[J]. Current Medicinal Chemistry.2000,7(7):715-729.
    [233] Kim, W. S., Ordija, C. M., Freeman, M. W. Activation of signaling pathwaysby putative scavenger receptor class A (SR-A) ligands requires CD14but notSR-A[J]. Biochemical and Biophysical Research Communications.2003,310(2):542-549.
    [234]方蓉,李芳秋,武建国. MTT比色法的条件探讨[J].临床检验杂志.2003(1):34-35.
    [235]储岳峰,李祥瑞,胡元亮.9种中药成分对小鼠免疫细胞活性的影响[J].南京农业大学学报.2004,27(1):97-100.
    [236] Matsumoto, T., Yamada, H. The Pectic Polysaccharide from Bupleurumfalcatum L. Enhances Clearance of Immune Complexes in Mice[J]. PhytotherRes.1996,10(7):51-58.
    [237]李予蓉,韩苇,任冬青.不同剂量60Coγ射线照射对小鼠脾细胞DNA含量的影响[J].中华放射医学与防护杂志.1994,14(6):387-388.
    [238]童新,孙志贤.辐射所致程序性细胞死亡的机制[J].国外医学(分子生物学分册).1995(3):131-135.
    [239] Tian, J., Yu, J. Changes in ultrastructure and responses of antioxidant systemsof algae (Dunaliella salina) during acclimation to enhanced ultraviolet-Bradiation[J]. Journal of Photochemistry and Photobiology B: Biology.2009,97(3):152-160.
    [240]崔玉芳,高亚兵,杨红等.小鼠胸腺淋巴细胞辐射损伤特点和机理研究[J].中国体视学与图像分析.1998,(4):208-213.
    [241] Hwang, J. S., Chung, H. K., Bae, E. K., et al. The polysaccharide fractionAIP1from Artemisia iwayomogi suppresses apoptotic death of the mousespleen cells in culture[J]. Archives of Pharmacal Research.2003,26(4):294-300.
    [242]高临路,崔玉芳,杨红.大剂量γ射线照射后小鼠脾脏淋巴细胞凋亡的病理形态学观察[J].中华放射医学与防护杂志.2000,20(5):327.
    [243]侯颖一,朱莉,韩志武,等.青紫心甘薯黄酮减轻~(60)Co辐射诱导的小鼠胸腺淋巴细胞损伤的超微结构研究[J].电子显微学报.2007(1):64-68.
    [244]毛晓明,刘志民.氧化应激在糖尿病糖代谢中的作用[J].江苏医药.2005,31(3):212-213.
    [245] Wu, Q., Tan, Z. P., Liu, H. D., et al. Chemical characterization of Auriculariaauricula polysaccharides and its pharmacological effect on heart antioxidantenzyme activities and left ventricular function in aged mice[J]. InternationalJournal of Biological Macromolecules.2010,46(3):284-288.
    [246] Masztalerz, M., W odarczyk, Z., Czuczejko, J., et al. Superoxide Anion as aMarker of Ischemia-Reperfusion Injury of the Transplanted Kidney[J].Transplantation Proceedings.2006,38(1):46-48.
    [247] Karlsson, K., Marklund, S. L. Heparin-induced release of extracellularsuperoxide dismutase to human blood plasma[J]. The Biochemical Journal.1987,242(1):55-59.
    [248] Lee, E. K., Kim, J. M., Choi, J., et al. Modulation of NF-κB and FOXOs bybaicalein attenuates the radiation-induced inflammatory process in mousekidney[J]. Free Radical Research.2011,45(5):507-517.
    [249] Yao, D. C., Shi, W. B., Gou, Y. L., et al. Fatty Acidmediated IntracellularIron Translocation:a Synergistic Mechanism of Oxidative Injury[J]. FreeRadical Biology and Medicine.2005,39(10):1385-1398.
    [250] Chiba, Y., Muraoka, R., Ihaya, A., et al. The significance of glutathioneperoxidase on myocardial protection in the rat hearts: the key of clarify thecause of vulnerability to reperfusion injury in infantile cardiac operations[J].Nihon Geka Hokan. Archiv Für Japanische Chirurgie.1994,63(4):139-141.
    [251] Urso, M. L., Clarkson, P. M. Oxidative stress, exercise, and antioxidantsupplementation[J]. Toxicology.2003,189(1-2):41-54.
    [252] Buffon, A., Biasucci, L. M., Liuzzo, G., et al. Widespread coronaryinflammation in unstable angina[J]. The New England Journal of Medicine.2002,347(1):5-12.
    [253] Zhang, R. L., Brennan, M. L., Fu, X. M., et al. Association betweenmyeloperoxidase levels and risk of coronary artery disease[J]. JAMA:theJournal of the American Medical Association.2001,286(17):2136-2142.
    [254] Sugiyama, S., Kugiyama, K., Aikawa, M., et al. Hypochlorous acid, amacrophage product, induces endothelial apoptosis and tissue factorexpression-Involvement of myeloperoxidase-mediated oxidant in plaqueerosion and thrombogenesis[J]. Arteriosclerosis Thrombosis and VascularBiology.2004,24(7):1309-1314.
    [255] Ximenes, V. F., Maghzal, G. J., Turner, R., et al. Serotonin as a physiologicalsubstrate for myeloperoxidase and its superoxide-dependent oxidation tocytotoxic tryptamine-4,5-dione[J]. Biochemical Journal.2010,425(1):285-293.
    [256] Wainstein, R. V., Wainstein, M. V., Ribeiro, J. P., et al. Association betweenmyeloperoxidase polymorphisms and its plasma levels with severity ofcoronary artery disease[J]. Clinical Biochemistry.2010,43(1-2):57-62.
    [257] Cespedes, C. L., Valdez-Morales, M., Avila, J. G., et al. Phytochemicalprofile and the antioxidant activity of Chilean wild black-berry fruits,Aristotelia chilensis (Mol) Stuntz (Elaeocarpaceae)[J]. Food Chemistry.2010,119(3):886-895.
    [258]梁仁哲,贺永贵,尹明浩,等.黄芪水提液对小鼠的抗疲劳作用研究[J].陕西中医.2009(4):500-501.
    [259]张绍章,姚素臣,孙素芳等.地龙胶囊对大鼠移植瘤荧光产物和GR, CA, TGSH-PX, SOD酶活性的影响[J].中国肿瘤临床.1991,18(3):144-145.
    [260] Morillas-Ruiz, J. M., García, J. A. V., López, F. J., et al. Effects ofpolyphenolic antioxidants on exercise-induced oxidative stress[J]. ClinicalNutrition.2006,25(3):444-453.
    [261]蔡冰娜,吴园涛,孙恢礼.牡蛎肽肠内营养制剂对小鼠免疫功能的影响[J].时珍国医国药.2010,21(11):2816-2818.
    [262] Kelso, G. F., Porteous, C. M., Hughes, G., et al. Prevention of mitochondrialoxidative damage using targeted anti oxidants[J]. Annals of the New YorkAcademy of Sciences.2002,959:263-274.
    [263] Gupta, V. K., Sharma, S. K. Plants as natural antioxidants[J]. Natural ProductRadiance.2006,5(4):326-334.
    [264] Konings, A. W., Damen, J., Trieling, W. B. Protection of liposomal lipidsagainst radiation induced oxidative damage[J]. International Journal ofRadiation Biology and Related Studies in Physics, Chemistry, and Medicine.1979,35(4):343-350.
    [265] You, B. R., Park, W. H. The effects of antimycin A on endothelial cells in celldeath,reactive oxygen species and GSH levels[J]. Toxicology in Vitro.2010,24(4):1111-1118.
    [266] Trevisan, M., Browne, R., Ram, M., et al. Correlates of markers of oxidativestatus in the general population[J]. American Journal of Epidemiology.2001,154(4):348-356.
    [267] Armstrong, J. S., Steinauer, K. K., Homung, B., et al. Role of glutathionedepletion and reactive oxygen species generation in apoptotic signaling in ahum an B lymphoma cell line[J]. Cell Death and Differentiation.2002,9(3):252-263.
    [268] Drail, J., Bannier, E., Chazot, C., et al. Oxidants and antioxidants inlong-term haemodialysis Patients[J]. Farmaco (Società chimica italiana).2001,56(5-7):463-465.
    [269]顾取良,吴梧桐.谷胱甘肽药理和临床研究新进展[J].药物生物技术.2001(1):47-50.
    [270] Mf, L. Thio regulation in the lens[J]. Journal of Ocular Pharmacology andTherapeutics: the Official Journal of the Association for OcularPharmacology and Therapeutics.2000,16(2):137-148.
    [271] Nugao, S., Yoshinouchi, M., Miyagi, Y. Rapid and sensitive detection ofphysical status of human papillomavirus type16DNA by quantitativereal-time PCR[J]. Journal of Clinical Microbiology.2002,40(3):863-867.
    [272]韩春山,梁军,姚如永.电离辐射效应与细胞凋亡的调控研究进展[J].齐鲁医学杂志.2004(6):556-557.
    [273] Malhomme, H., Roche, H., Seagrove, S. Using natural dietary sources ofantioxidants to protect against ultraviolet and visible radiation-induced DNAdamage: An investigation of human green tea ingestion[J]. Journal ofPhotochemistry and Photobiology B: Biology.2010,101(2):169-173.
    [274] Choucroun, P., Gillet, D., Dorange, G., et al. Comet assay and earlyapoptosis[J]. Mutation Research-fundamental and Molecular Mechanisms ofMutagenesis.2001,478(1-2):89-96.
    [275] Pillai, T. G., Nair, C. K. K., Janardhanan, K. K. Janardhanan Enhancement ofrepair of radiation induced DNA strand breaks in human cells by Ganodermamushroom polysaccharides[J]. Food Chemistry.2010,119(3):1040-1043.
    [276] Belka, C., Jendrosse, K. V., Pruschy, M. Apoptosis-modulating agents incombination with radiotherapy-current status and outlook[J]. InternationalJournal of Radiation Oncology, Biology, Physics.2004,58(2):54.
    [277] Choi, J. A., Park, M. T., Kang, C. M. Opposite effects of Ha-Ras and Ki-Rason radiation-induced apoptosis via differential activation of PI3K/Akt andRac/p38mitogen-activated protein kinase signaling pathways[J]. Oncogene.2004,23(1):9-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700