用户名: 密码: 验证码:
电离辐射致肠上皮损伤与修复相关蛋白的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肠上皮是实现肠道消化、免疫、内分泌等功能的主要组织细胞,也是构筑肠道粘膜屏障的主要成分,同时它对辐射敏感。作为腹腔恶性肿瘤治疗主要手段之一,电离辐射对正常小肠上皮细胞具有毒副作用,限制了其在治疗上的应用。超过一定剂量照射可形成的肠型放射病,导致病死率极高,故对辐射诱导的小肠上皮损伤的研究受到极大的关注。
    为深入阐明电离辐射致肠上皮损伤的分子机制,寻找促进肠上皮损伤修复和具有辐射保护作用的蛋白质,本研究以离体培养的IEC-6细胞(正常大鼠空肠上皮细胞)和小鼠9Gyγ-射线全身照射所致肠型放射病为模型,采用双向电泳技术分别比较了IEC-6细胞和小鼠小肠上皮细胞照射前后蛋白质表达的差异,通过MALDI-TOF-MS鉴定双向电泳图谱上差异的蛋白质点,采用Western blot和RT-PCR技术进行了部分验证,并集中研究了两个差异蛋白质PrxI和ERP29在电离辐射中的作用。取得了如下的主要结果:
    一、 损伤模型的确定
    利用IEC-6细胞作为体外研究模型是合理可行的。首先根据IEC-6细胞在不同照射剂量照射(15-35Gy)和照射后不同时相(1-3d)细胞增殖以及细胞凋亡量来确定合适的照射剂量。结果显示:利用25Gy照射后1天的细胞来研究细胞对电离辐射的反应是较为适合的。体内研究是以肠型放射病为模型。采用不同剂量的γ-射线(7-10Gy)全身照射小鼠,复制肠型放射病模型。结果表明:9Gy照射可导致小鼠出现典型的肠型放射病。9Gy照射3h后,小肠上皮隐窝高度和绒毛高度未见明显缩短,但细胞核分裂相消失,呈严重的损伤性改变;照射后72h,绒毛明显缩短,隐窝明显增高,表明有大量再生上皮细胞,以增殖修复为主。因此,该条件下小鼠能存活一定时间,其早期辐射损伤严重,后期修复明显,是较为适合的研究模型。利用含尿素的细胞裂解液能够较为完全地提取细胞的总蛋白,适合双向电泳制备蛋白样品的要求。
    二、 IEC-6细胞照射前后蛋白质表达谱的差异
    采用宽pH范围3-10L的干胶条(IPG、18cm),上样量为500-1000(g,聚焦6-8h,千伏时不低于32000。各选取3张照射前后的蛋白图谱,应用PDQUEST软件进行图像分析,在pH3-10L和Mr 14000-97400Da范围内检测蛋白。电泳图像经过PDQuest处理后,结果表明:在正常IEC-6细胞中检测到608±40个蛋白点,细胞照射后的样
    
    品中检测到595±31个蛋白点,其中匹配的蛋白点为396个,电泳图谱的相关系数为0.78。然后,选择了部分差异明显的蛋白点进行肽质量指纹图谱鉴定。在未匹配的蛋白点中选择清晰、较浓的点做好标记,从凝胶上准确切割后进行脱色、酶解、肽片段提取,并测定肽质量指纹图谱。根据质谱图中的肽片段质量进行检索,再结合双向电泳中蛋白点的表观分子量、等电点进行综合分析。本实验共对16个蛋白点进行了肽质量指纹图谱分析,其中11个蛋白点得到相应的蛋白质,这包括一些与代谢、自由基清除、细胞骨架相关的蛋白。其中,电离辐射后降低的蛋白质包括:STRESS-70 PROTEIN,Tubulin beta-5 chain,ATP SYNTHASE BETA CHAIN,Vimentin,PDZ and LIM domain protein 1等;而PEROXIREDOXIN 1,ERP29,Peptidyl-prolyl cis-trans isomerase,RGS4,Aldehyde dehydro- genase(mitochondrial precursor)等在照射后升高。在此基础上,对其中部分蛋白质进行了验证。Western blot结果显示:STRESS-70 PROTEIN在照射后确实被降低了。RT-PCR结果显示:ERP29基因在照射后基因表达增高,这与其蛋白质在照射后升高相吻合。
    三、 小鼠全身照射前后小肠上皮细胞蛋白质表达谱的差异
    在9Gy的剂量照射后,分离小肠上皮细胞,并采用Percoil细胞分离液对上皮细胞进行了纯化,得到相对较为单纯的肠上皮细胞。利用含尿素的细胞裂解液提取细胞的总蛋白,对同一样品进行多次电泳。总蛋白的分布模式非常相似:蛋白质斑点相对集中于pH4~7,极端酸性蛋白与碱性蛋白数量较少;蛋白质相对分子质量集中于(15~100)×103,超出此范围的斑点较少。采用PDQuest软件比较各组图谱,在正常对照组、照射后3h组以及照射后72h组分别检测到638±39、566±32和591±29个蛋白质点,总蛋白质点在照射后有所减少。照射后3h组与正常对照组相比有360个点相匹配,电泳图谱的平均相关系数为0.78;照射后72h组与正常对照组相比有312个点相匹配,电泳图谱的平均相关系数为0.82;照后3h组与照后72h组相比有282个相匹配,电泳图谱的平均相关系数为0.76。不匹配的斑点主要为低丰度蛋白质。在差异的蛋白点中选择清晰、较浓的点做好标记,从凝胶上准确切割后进行脱色、酶解、肽片段的提取,并测定肽质量指纹图谱。根据肽质量指纹图中肽片段的质量数进行检索,再结合蛋白质点的表观分子量、进行综合分析。共对28个蛋白点进行了肽质量指纹图谱分析,19个蛋白点得到相应的蛋白质,这包括一些与代谢、过氧化应急、信号转导相关的蛋白。其中,电离辐射后降低的蛋白质包括:Transforming protein RhoB,Antioxidant Protein 2,Q8VC72,O70619等;而PEROXI- REDOXIN 1,ERP29,Rho GDP-dissociation inhibitor 1,Alpha enolase,Prolactin receptor precursor,Glutathione S-transferase P2,Truncated
Intestinal epithelial cells (IECs) are the major component of the intestinal mucomembranous barrier, and play important roles in the body owing to its many kinds of functions such as absorption, immunity, and secretion, and so on. However, IECs are sensitive to ionizing radiation (IR), and they are one of the main targets in case of whole-body irradiation. Although much success has been documented with pelvic cancer patients, certain side effects and complications have been encountered which limit its applications in cancer radiotherapy. Intestinal wound induced by large dose of IR can form, thus make the intestine lose its barrier function. This results in gastrointestinal syndrome including intestinal infection of endogenous bacteria, diarrhea and bloody stools. It is the main reason of high death rate of intestinal-type radiation disease. However, its etiology remains unclear. Some studies have showed intestinal epithelial can reconstruct to some extent after IR (non-lethal). This suggested survival IECs can differentiate and re-epithelize intestinal wound. It is possible to study the proteins related to injury and reconstruction of small intestinal epithelium irradiated by γ-Ray. With the accumulating evidence in the literature that new proteins are found to be implicated in radiation response, the molecular mechanism underlying the radiation response of the small intestine remains unknown.
    Our aim was to identify those proteins in the early-stage of irradiation injury. To achieve this purpose, we have chosen to use comparative proteome approach to identify mouse proteins whose expression is regulated by ionizing irradiation. First, we compare the proteome of normal intestinal epithelial cell line IEC-6 with that of irradiated one at 24h post irradiation. Then, the proteomes of sham irradiated mice and irradiated mice were compared at 3h and 72h post-irradiation. The differential displayed proteins were subject to MALDI-TOF-MS to establish identity. Furthermore, we confirm some differential proteins with the technique such as Western blot and RT-PCR. At last, we focus on the function of 2 proteins, which are up-regulated by ionizing irradiation. New clues are provided to understand the molecular mechanism of the intestinal type of radiation sickness. Main results are listed below.
    
    
    
    1. Establishment of experimental models
    It is reasonable and availble to use rat IEC-6 cell line as a vitro model. Dose and time-point was chosen based on our preliminary data of cell death rate and apoptosis rate under different radiation dose and time course. Our results demonstrated that a dose of 25Gy and 24hr post-radiation were suitable to study the proteome of ICE-6 cells. The extent of mouse intestinal injury post-radiation was dose-dependent. Our data showed whole-body radiation at a dose of 9Gy could lead to intestinal type of radiation sickness. Under this condition, the height of intestinal crypts and villi were unchanged 3h post-radiation. However, cell division of intestinal epithelial ceased, and intestine showed severely morphological injury. Further study showed the height of intestinal crypts was obviously increased 72h post-radiation, with villi decreased. This indicated many survival epithelial cells proliferated.
    2. Compare the proteome of IEC-6 cell line post-irradiation
    Isolated total proteins of IEC-6 cells and irradiated cells, and separated them according to the guide-book of 2-dimensional electrophoresis. For isoelectric focusing (IEF), precast IPG strips were used. Samples were applied via rehydration of IPG strips in sample solution more than 12 hours. 500-1000ug of protein was loaded onto an 18cm IPG strip (pH3-10, linear), and isoelectric focusing was run for 32 KVh at a focusing temperature of 20℃. For the second dimensional separation, the concentration of homogeneous SDS-polyacrylamide gels was 13%. We separated the same sample for 3 times. After electrophoresis, the resolved proteins in the 2-DE gels were visualized by Coomassie blue R-250. The gels were scanned, and the ima
引文
1. Carr KE. Effects of radiation damage on intestinal morphology. Int Rev Cytol, 2001, 208:1-119.
    2. Potten CS, Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development. 1990, 110(4):1001-1020.
    3. 彭毅志, 肖光夏, 马利, 等. 严重烫伤大鼠肠粘膜结构的变化及早期肠道营养的保护作用. 肠外与肠内营养, 1995, 2(1): 11-14.
    4. Hoffmann P, Dignass AU, Zeeh JM, et al. Epithelial cell-derived components induce transforming growth factor-alpha mRNA expression and epithelial cell proliferation in vitro. Eur J Gastroenterol Hepatol, 2001, 13(11):1333-1340.
    5. Lee KH. Proteomics: a technology-driven and technology-limited discovery science. Trends Biotechnol, 2001, 19(6):217-222.
    6. Cordwell SJ, Nouwens AS, Verrills NM, et al. Subproteomics based upon protein cellular location and relative solubilities in conjunction with composite two-dimensional electrophoresis gels. Electrophoresis 2000, 21(6):1094-1103.
    7. Gorg A, Obermaier C, Boguth G,et al. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis. 2000, 21(6):1037-1053.
    8. Goverman J. 2-D diagonal gel electrophoresis. Methods Mol Biol. 1999, 112:265-270.
    9. Griffin TJ, Aebersold R. Advances in proteome analysis by mass spectrometry. J Biol Chem, 2001, 276 (49): 45497-45500.
    10. Pappin DJ. Peptide mass fingerprinting using MALDI-TOF mass spectrometry. Methods Mol Biol, 2003, 211:211-219.
    11. Wroblewski R, Jalnas M, Van Decker G, et al. Effects of irradiation on intestinal cells in vivo and in vitro. Histol Histopathol, 2002, 17(1):165-177.
    12. Swinbanks D. Government backs proteome proposal, Nature, 1995, 378:653
    13. O'Farrell PH, High resolution two-dimensional electrophoresis of proteins, The journal of Biological Chemistry, 1975, 250(10): 4007-4021
    14. Bjellqvist B, Ek K, Righetti PG, et al, Isoelectric focusing in immobilized pH gradients: principle, methodology and some application, J Biochem Biophys Methods, 1982, 6:317-339.
    15. Wilkins MR, Gasteiger E, Sanchez JC, et al. Protein identification with sequence tags. Curr Biol. 1996, 6(12):1543-1544.
    16. Jonsson AP. Mass spectrometry for protein and peptide characterisation. Cell Mol Life Sci. 2001, 58(7): 868-884.
    
    
    17. Somosy Z, Horvath G, Telbisz A, et al. Morphological aspects of ionizing radiation response of small intestine. Micron. 2002, 33(2):167-178.
    18. Quaroni A, Wands J, Trelstad RL, et al. Epithelioid cell cultures from rat small intestine. Characterization by morphologic and immunologic criteria[J]. J Cell Biol. 1979 , 80(2):248-265.
    19. F.奥斯伯,RE金斯顿,JG塞德曼等. 精编分子生物学实验指南. 北京:科学出版社, 1999,742-748.
    20. F.奥斯伯,RE金斯顿,JG塞德曼等. 精编分子生物学实验指南. 北京:科学出版社, 1999,332-362.
    21. Pageot LP, Perreault N, Basora N, et al. Human cell models to study small intestinal functions: recapitulation of the crypt-villus axis. Microsc Res Tech, 2000 , 49(4): 394-406.
    22. Perreault N, Beaulieu JF. Primary cultures of fully differentiated and pure human intestinal epithelial cells. Exp Cell Res, 1998, 245(1):34-42.
    23. Quaroni A, Beaulieu JF. Cell dynamics and differentiation of conditionally immortalized human intestinal epithelial cells. Gastroenterology, 1997,113(4):1198-1213.
    24. Ran XZ, Su YP, Wei YJ, et al. Influencing factors of rat small intestinal epithelial cell cultivation and effects of radiation on cell proliferation. World J Gastroenterol, 2001, 7(1):140-142.
    25. Cheng H, Bjerknes M. Patterns of gene expression along the crypt-villus axis in mouse jejunal epithelium. Anat Rec, 1996, 244(1):78-94.
    26. 王军平,胡川闽,粟永萍,等. 用mRNA差异显示技术进行小鼠肠上皮细胞辐射损伤相关基因的克隆. 中华放射医学与防护杂志,1999, 19: 372-374.
    27. Park SH, Chung YM, Lee YS, Kim HJ, Kim JS, Chae HZ, Yoo YD. Antisense of human peroxiredoxin II enhances radiation-induced cell death[J]. Clin Cancer Res, 2000, 6(12): 4915-4920.
    28. Lee K, Park J, Kim Y, Soo Lee Y, Sook Hwang T, Kim D, Park E, et al. Differential expression of Prx I and II in mouse testis and their up-regulation by radiation[J]. Biochem Biophys Res Commun, 2002, 296(2):337-342.
    29. Demmer J, Zhou C, Hubbard MJ. Molecular cloning of ERp29, a novel and widely expressed resident of the endoplasmic reticulum. FEBS Lett, 1997, 402(2-3):145-150.
    30. Hubbard MJ, McHugh NJ, Carne DL. Isolation of ERp29, a novel endoplasmic reticulum protein, from rat enamel cells evidence for a unique role in secretory-protein synthesis. Eur J Biochem, 2000, 267(7):1945-1957.
    Heal RD, McGivan JD. Induction of the stress protein Grp75 by amino acid deprivation in CHO cells does not involve an increase in Grp75 mRNA levels. Biochim Biophys Acta, 1997,
    
    31. 1357(1):31-40.
    32. Sadekova S, Lehnert S, Chow TY. Induction of PBP74/mortalin/Grp75, a member of the hsp70 family, by low doses of ionizing radiation: a possible role in induced radioresistance. Int J Radiat Biol. 1997, 72(6):653-660.
    33. 刘伟,张亚历。RT-PCR技术在胃肠癌外周血微转移检测中的应用。中国癌症杂志,2000,10(2): 175-177.
    34. Potten CS. A comprehensive study of the radiobiological response of the murine (BDF1) small intestine. Int J Radiat Biol. 1990, 58(6):925-973.
    35. 粟永萍,程天民,刘贤华. 放射损伤及烧伤复合伤对小肠皮损害的量效研究. 第三军医大学学报,1994, 16: 313-315.
    36. Evans GS, Flint N, Somers AS, et al. The development of a method for the preparation of rat intestinal epithelial cell primary cultures. J Cell Sci, 1992, 101: 219-231.
    37. 李元敏,胡风华,刘雪桐. 小白鼠全小肠切片制作法及其在电离辐射效应研究中的应用. 中国人民解放军军事医学科学院院刊,1979,127-130.
    38. Perreault N, Jean-Francois B. Use of the dissociating enzyme thermolysin to generate viable human normal intestinal epithelial cell cultures. Exp Cell Res, 1996, 224(2):354-364.
    39. Hartmann F, Owen R, Bissell DM. Characterization of isolated epithelial cells from rat small intestine. Am J Physiol, 1982, 242(2):G147-155.
    40. 王军平,胡川闽,粟永萍,等。辐射小鼠肠上皮细胞损伤相关基因的初步鉴定。第三军医大学学报 1999, 21: 387-389.
    41. Lee YS, Lee MJ, Lee MS, et al. Maternal or paternal exposure to radiation increases susceptibility to the induction of glutathione S-transferase-positive hepatic foci in offspring rats. Cancer Lett, 1998, 132(1-2): 31-36.
    42. Lee YS, Lee MJ, Lee M, et al. Susceptibility to the induction of glutathione S-transferase positive hepatic foci in offspring rats after gamma-ray exposure during gestation. Oncol Rep, 2000, 7(2):387-390.
    43. 沈同,王镜岩. 生物化学. 北京: 高等教育出版社. 1991, 79-90.
    44. Dutta SK, Verma M, Blackman CF. Frequency-dependent alterations in enolase activity in Escherichia coli caused by exposure to electric and magnetic fields.Bioelectromagnetics, 1994, 15(5):377-383.
    45. Rhee SG, Kang SW, Chang TS, et al. Peroxiredoxin, a novel family of peroxidases. IUBMB Life. 2001, 52(1-2):35-41.
    Fujii J, Ikeda Y. Advances in our understanding of peroxiredoxin, a multifunctional, mammalian
    
    46. redox protein. Redox Rep, 2002, 7(3):123-130.
    47. Phelan SA. AOP2 (antioxidant protein 2): structure and function of a unique thiol-specific antioxidant. Antioxid Redox Signal. 1999, 1(4):571-584.
    48. Imai K, Kijima T, Noda Y, et al. A Rho GDP-dissociation inhibitor is involved in cytokinesis of Dictyostelium. Biochem Biophys Res Commun, 2002, 296(2):305-312.
    49. Chen WC, McBride WH, Iwamoto KS, et al. Induction of radioprotective peroxiredoxin-I by ionizing irradiation. J Neurosci Res, 2002, 15;70(6):794-798.
    50. Paul CP, Good PD, Winer I, et al. Effective expression of small interfering RNA in human cells. Nat Biotechnol, 2002, 20(5):505-508.
    51. 金冬雁,黎孟枫译. 分子克隆实验指南(第二版). 北京:科学出版社. 1999, 1-69.
    52. 易善红. 实体瘤的基因转移技术. 国外医学.泌尿系统分册, 1998, 18(5): 214-217.
    53. Ishii T, Yamada M, Sato H, et al. Cloning and characterization of a 23-kDa stress-induced mouse peritoneal macrophage protein. J Biol Chem, 1993, 268(25):18633-18636.
    54. Kawai S, Takeshita S, Okazaki M, et al. Cloning and characterization of OSF-3, a new member of the MER5 family, expressed in mouse osteoblastic cells. J Biochem, 1994, 115(4):641-643.
    55. Yang KS, Kang SW, Woo HA, et al. Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. J Biol Chem, 2002, 277(41): 38029-38036.
    56. Koo KH, Lee S, Jeong SY, et al. Regulation of thioredoxin peroxidase activity by C-terminal truncation. Arch Biochem Biophys, 2002, 397(2):312-318.
    57. Shau H, Merino A, Chen L, et al. Induction of peroxiredoxins in transplanted livers and demonstration of their in vitro cytoprotection activity. Antioxid Redox Signal, 2000, 2(2):347-354.
    58. Chang JW, Jeon HB, Lee JH, et al. Augmented expression of peroxiredoxin I in lung cancer. Biochem Biophys Res Commun, 2001, 289(2):507-512.
    59. Liepinsh E, Baryshev M, Sharipo A, et al. Thioredoxin fold as homodimerization module in the putative chaperone ERp29: NMR structures of the domains and experimental model of the 51 kDa dimer. Structure, 2001, 9(6):457-471.
    60. Shnyder SD, Hubbard MJ. ERp29 is a ubiquitous resident of the endoplasmic reticulum with a distinct role in secretory protein production. J Histochem Cytochem, 2002, 50(4):557-566.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700