用户名: 密码: 验证码:
急性颅脑创伤患者脑脊液差异蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     重型颅脑创伤(traumatic brain injury, TBI)患者死亡率很高,在30%-50%左右,存活者中也有相当高的致残率,因此,颅脑创伤严重威胁着人类健康,对社会和家庭造成沉重的经济负担,引起了世界各国的广泛重视。目前如何降低该病的死亡率和致残率仍是神经外科领域的难点和热点,对其致病和修复机制的研究,一直是神经外科领域的热点课题。
     在前期研究中,我们通过承担国家自然科学基金资助项目《急性脑创伤后神经元蛋白质组农达改变的研究》(项目编号:30271331),采用蛋白质组学技术平台,观察了创伤后大脑皮层神经组织内蛋白质组的变化。本研究目的是通过比较脑创伤后脑脊液(cerebrospinal fluid, CSF)蛋白组的改变,从中寻找脑源性差异蛋白,并与脑组织蛋白质组改变进行比较,为研究颅脑创伤的分子机制和生物学标志物的寻找提供宝贵的理论基础。
     方法:
     在第一部分,我们选用从10例人脑创伤后行颅内压监护的患者中获取的脑脊液,通过预冷丙酮除盐浓缩,采用蛋白质均衡技术(ProteoMinerTM试剂盒)去除高丰度蛋白并富集低丰度蛋白之后,进行双向凝胶电泳、硝酸银染色和凝胶图像处理,建立了高重复性的人类脑脊液蛋白质组中的高丰度蛋白去除方法,进行了方法学上的验证。
     在第二部分,我们选取30例颅脑创伤患者和8例破裂动脉瘤致蛛网膜下腔出血(subarachnoid hemorrhage, SAH)但不伴实质内血肿的患者,发病后24小时内行脑室外引流术,收集的脑脊液样本离心取上清-80℃低温保存,混合样本预冷丙酮除盐浓缩,采用ProteoMinerTM试剂盒去除高丰度蛋白并富集低丰度蛋白后,Bradford法测定最终蛋白浓度,由三种荧光(Cy2, Cy3, Cy5)交叉标记的两种50μg样品和内标混合,进行双向差异凝胶电泳(two-dimensional differential in-gel electrophoresis,2D-DIGE),使用DeCyder v.5.02图像分析软件分析电泳结果。差异点通过胰蛋白酶胶内酶切、基质辅助激光解吸/电离-飞行时间串联质谱技术,对肽段的分子量进行测定,通过数据库检索,进行蛋白鉴定,推测其生物学作用。
     结果:
     在第一部分中,人TBI后CSF经ProteoMinerTM处理后,经过PDQuest 7.0软件自动检测到的蛋白质点数为1432±85,与常用的丙酮沉淀法检测到的蛋白质点数1123±114相比,具有统计学意义(P<0.05, F=8.885)。通过比较CSF经ProteoMinerTM处理前后2-DE图谱发现,高丰度蛋白减少,低丰度蛋白的分辨率提高。说明ProteoMinerTM起到了富集低丰度蛋白的作用,可进行下一步研究。
     在第二部分的研究中,两组患者的CSF经过ProteoMinerTM富集低丰度蛋白后进行2D-DIGE分离,得到清晰的脑脊液蛋白图谱。生物学差异分析结果表明,在外伤组与对照组脑脊液蛋白共存在有表达量变化超过1.5倍的差异蛋白质点169个,其中在外伤组中表达上调1.5倍以上的有98个蛋白质点,下调1.5倍以上的有71个蛋白质点。通过质谱鉴定,47个蛋白质点被鉴别出,属于36种蛋白产物。依据蛋白可能存在的生理功能将其分类为:细胞骨架、参与代谢、信号传导、应激反应、蛋白合成与代谢和未知功能蛋白。其中铜蓝蛋白、小白蛋白、KLF6因子、磷脂转运蛋白、SLC25A23、溴区包含蛋白1、F-box蛋白7与中枢神经系统常见疾病有密切关系,在脑创伤急性期内人CSF中首次发现其表达水平出现变化。
     结论:
     人脑创伤后的急性期内,创伤造成的机械破坏使脑脊液蛋白质组发生明显变化,为研究颅脑创伤及其他神经系统疾病提供了最佳窗口。蛋白质均衡技术可以提高双向电泳的分辨率,有利于低丰度蛋白质的检出。伤后蛋白表达水平的升高或降低同时存在,在本次研究中发现的具有显著性差异变化的蛋白中,尽管还需要进一步的验证,但有可能成为评价损伤程度、预测预后的生物学标志物。
Objectives:
     A high mortality rate about 30%-50%is associated with severe traumatic brain injury (TBI), few survived but also disabled. TBI is a major health problem and produces a considerable medical expense to the society and the family worldwide. Despite many researches focus on the pathophysiology and neuroprotective mechanism, there are currently no truly effective therapies for TBI.
     During our research on "Proteomic analysis of the differential protein expression of the human cerebral cortex after acute severe traumatic brain injury" supported by National Natural Science Foundation of China (No.30271331),138 protein spots were found with altered expression,64 distinct proteins were identified by mass spectroscopy. In this study. Cerebrospinal fluid (CSF) from patients with traumatic brain injury was analyzed by differential proteome technique, aiming to identify the brain-derived differential proteins.
     Methods:
     In first section, CSF was gethered from a pool of 10 patients with TBI underwent ICP monitor by extraventricular drainage. CSF sample was desalted and concentrated by ice-cold acetone, thus meeting the requirements of having a concentration>50mg/mL necessary for using the ProteoMinerTM large-capacity kit. Protein equalizer technology (ProteoMinerTM) has been used for the enrichment of low abundant protein biomarkers for TBI and simultaneous reducement of the high abundant proteins in human CSF. The bound proteins were separated by two-dimensional electrophoresis. The silver-stained 2-D gels were scanned, and then analyzed by PDQuest 7.0 software package. We got these high-producible 2D gel proteome maps of human CSF with reducement of high abundant proteins.
     In second section, large volumes of CSF were obtained within 24 hours from a pool of 30 patients with TBI underwent intracranial pressure (ICP) monitor via extraventricular drainage (EVD). Another pool of CSF samples from 8 patients was used as the control. which sufferring from subarachnoid hemorrhage without hemotoma in the parenchyma caused by a ruptured aneurysm. and an EVD was performed to withdraw CSF. Each sample obtained and centrifuged at 2000×g for 10 min to eliminate cells and other insoluble materials. The samples were then stored at-80℃. Low abundant proteins were enriched as mentioned in the first section.50μg bound proteins from each group and the internal standard were cross-labled with different CyDyes. Two-dimensional differential in-gel electrophoresis (2D-DIGE) was performed to get the differential expression protein spots with DeCyder v.5.02 software. These protein spots were digested with trypsin and Peptide Mass Fingerprint (PMF) was analyzed using a 4800 matrix-assisted laser desorption/ionization time-of-flight/time-of-flight (MALDI TOF/TOFTM) Analyzer (Applied Biosystems). Protein identification by PMF was performed using the GPS ExplorerTM V3.5 software by searching in the International Protein Index (IPI) human database V3.23. And data mining about the function of these proteins were also conducted.
     Results:
     In first section, after the treatment by ProteoMinerTM column, the total number of spots in the 2-D gel was 1432±85, whereas 1123±114 spots were observed on the 2-D gels treated by ice-cold acetone. There were significant differences between the two prefractionation methods (P<0.05, F=8.885). Using ProteoMinerTM clearly improved the resolution and increased the intensity of the low abundance proteins compared with 2-D analysis of acetone precipitated CSF samples, and simultaneously reduced the high abundant proteins. Thus this prefractionation method was applicable for further research.
     In second section, low abundant proteins in the CSF of the TBI group and the control group were enriched by ProteoMiner, and separated by 2D-DIGE, the map of CSF proteins was clear. The results of biological variation analysis (BVA) on the TBI group and the control group showed 169 protein spots with an expression change over 1.5-fold.98 up-regulated and 71 down-regulated protein spots were selected for further analysis with MALDI-TOF mass spectrometry.47 spots corresponded to 36 distinct proteins were identified. These identified proteins have been grouped into different categories based on their possible biofunctions:cytoskeleton. intermediary metabolism, signaling transduction, stress response, protein metabolism and unknown. Among these proteins, the ceruloplasmin, parvalbumin, Krueppel-like factor 6. phospholipid transfer protein, SLC25A23, Bromodomain containing protein 1 and F-box protein 7 are associated with central nervous system (CNS) diseases. This study first show expression changes in these proteins in acute TBI patients.
     Conclusion:
     The mechanical injury to the brain apparently affects the protein profile of CSF in the acute phase, and makes CSF a better window to study TBI and other CNS diseases. The use of the protein equalizer technology (ProteoMinerTM) increased 2-DE gel resolution and enabled detection of low abundance proteins compared with the precipitation technique. Up-regulation and down-regulation of proteins existed at the same time. Although further confirmation may need, these differential expressed proteins may become the biomarker for evaluating injury severity or predicting the clinical outcome.
引文
[1]杨树源,只达石.神经外科学[M].北京:人民卫生出版社;2008:807.
    [2]Prieto D. A., Ye X. and Veenstra T. D. Proteomic analysis of traumatic brain injury: the search for biomarkers[J]. Expert Rev Proteomics.2008,5(2):283-91.
    [3]Lescuyer P.. Hochstrasser D. and Rabilloud T. How shall we use the proteomics toolbox for biomarker discovery?[J]. J Proteome Res.2007,6(9):3371-6.
    [4]Sharma A. K., Schultze A. E., Cooper D. M.,et al. Development of a percutaneous cerebrospinal fluid collection technique in F-344 rats and evaluation of cell counts and total protein concentrations[J]. Toxicol Pathol. 2006,34(4):393-5.
    [5]Zuberovic A., Wetterhall M., Hanrieder J., et al. CE MALDI-TOF/TOF MS for multiplexed quantification of proteins in human ventricular cerebrospinal fluid[J]. Electrophoresis.2009.30(10):1836-43.
    [6]Wang E. S., Sun Y., Guo J. G, et al. Tetranectin and apolipoprotein A-I in cerebrospinal fluid as potential biomarkers for Parkinson's disease[J]. Acta Neurol Scand.2010.
    [7]Davidsson P., Jahn R., Bergquist J., et al. Synaptotagmin, a synaptic vesicle protein, is present in human cerebrospinal fluid:a new biochemical marker for synaptic pathology in Alzheimer disease?[J]. Mol Chem Neuropathol.1996, 27(2):195-210.
    [8]张旭华,刘师莲,李玮.脑瘤患者脑脊液肿瘤相关蛋白的蛋白质组学初步研究[J].生物医学工程研究,,2005.24(4):258-260.
    [9]Jiang L., Lindpaintner K.., Li H. F., et al. Proteomic analysis of the cerebrospinal fluid of patients with schizophrenia[J]. Amino Acids.2003,25(1):49-57.
    [10]Maurer M. H. Proteomics of brain extracellular fluid (ECF) and cerebrospinal fluid (CSF)[J]. Mass Spectrom Rev.2009,29(1):17-28.
    [11]王晨,杨树源,张学敏,等.原发性脑创伤后人脑皮层差异蛋白质组研究[J].中华神经外科杂志,2006,22(2):72-75.
    [12]王晨,张学敏,杨树源,等.急性重型脑外伤后脑蛋白表达变化的蛋白质组研究[J].中华神经外科杂志.2005.21(6):363-366.
    [13]Unlu M., Morgan M. E. and Minden J. S. Difference gel electrophoresis:a single gel method for detecting changes in protein extracts[J]. Electrophoresis.1997. 18(11):2071-7.
    [14]Khwaja F. W.. Reed M. S., Olson J. J.. et al. Proteomic identification of biomarkers in the cerebrospinal fluid (CSF) of astrocytoma patients[J]. J Proteome Res.2007,6(2):559-70.
    [15]Righetti P. G. and Boschetti E. The ProteoMiner and the FortyNiners:searching for gold nuggets in the proteomic arena[J]. Mass Spectrom Rev.2008,27(6): 596-608.
    [16]Wetterhall M., Zuberovic A.. Hanrieder J., et al. Assessment of the partitioning capacity of high abundant proteins in human cerebrospinal fluid using affinity and immunoaffinity subtraction spin columns[J]. J Chromatogr B Analyt Technol Biomed Life Sci.2010,878(19):1519-30.
    [17]Righetti P. C, Boschetti E.. Kravchuk A. V., et al. The proteome buccaneers:how to unearth your treasure chest via combinatorial peptide ligand libraries[J]. Expert Rev Proteomics.2010,7(3):373-85.
    [18]Sennels L., Salek M., Lomas L., et al. Proteomic analysis of human blood serum using peptide library beads[J]. J Proteome Res.2007,6(10):4055-62.
    [19]Castagna A., Cecconi D., Sennels L., et al. Exploring the hidden human urinary proteome via ligand library beads[J]. J Proteome Res.2005,4(6):1917-30.
    [20]Guerrier L., Claverol S., Finzi L., et al. Contribution of solid-phase hexapeptide ligand libraries to the repertoire of human bile proteins[J]. J Chromatogr A.2007, 1176(1-2):192-205.
    [21]Roux-Dalvai F.. Gonzalez de Peredo A., Simo C, et al. Extensive analysis of the cytoplasmic proteome of human erythrocytes using the peptide ligand library technology and advanced mass spectrometry[J]. Mol Cell Proteomics.2008, 7(11):2254-69.
    [22]Guerrier L.. Claverol S., Fortis F., et al. Exploring the platelet proteome via combinatorial, hexapeptide ligand libraries[J]. J Proteome Res.2007,6(11): 4290-303.
    [23]Calvete J. J., Fasoli E., Sanz L., et al. Exploring the venom proteome of the western diamondback rattlesnake, Crotalus atrox, via snake venomics and combinatorial peptide ligand library approaches[J]. J Proteome Res.2009,8(6): 3055-67.
    [24]D'Ambrosio C., Arena S., Scaloni A., et al. Exploring the chicken egg white proteome with combinatorial peptide ligand libraries[J]. J Proteome Res.2008, 7(8):3461-74.
    [25]Mann K. and Mann M. The chicken egg yolk plasma and granule proteomes[J]. Proteomics.2008,8(1):178-91.
    [26]Wilkins M. R., Sanchez J. C, Gooley A. A., et al. Progress with proteome projects:why all proteins expressed by a genome should be identified and how to do it[J]. Biotechnol Genet Eng Rev.1996,13(19-50.
    [27]杨树源,王晨.神经蛋白质组学-神经科学研究的新方向[J].中华神经外科杂志,2005,21(7):386-387.
    [28]Maurer M. H., Berger C, Wolf M., et al. The proteome of human brain microdialysate[J]. Proteome Sci.2003,1(1):7.
    [29]Issaq H. J., Xiao Z. and Veenstra T. D. Serum and plasma proteomics[J]. Chem Rev.2007,107(8):3601-20.
    [30]Anderson N. L. and Anderson N. G. The human plasma proteome:history, character, and diagnostic prospects[J]. Mol Cell Proteomics.2002,1(11): 845-67.
    [31]Good D. M., Thongboonkerd V., Novak J.. et al. Body fluid proteomics for biomarker discovery:lessons from the past hold the key to success in the future[J]. J Proteome Res.2007,6(12):4549-55.
    [32]Reiber H. Dynamics of brain-derived proteins in cerebrospinal fluid[J]. Clin Chim Acta.2001,310(2):173-86.
    [33]Weisner B. and Bernhardt W. Protein fractions of lumbar, cisternal, and ventricular cerebrospinal fluid. Separate areas of reference[J]. J Neurol Sci.1978, 37(3):205-14.
    [34]Simonsen A. H., Bech S., Laursen I., et al. Proteomic investigations of the ventriculo-lumbar gradient in human CSF[J]. J Neurosci Methods.2010.
    [35]Wenner B. R.. Lovell M. A. and Lynn B. C. Proteomic analysis of human ventricular cerebrospinal fluid from neurologically normal, elderly subjects using two-dimensional LC-MS/MS[J]. J Proteome Res.2004,3(1):97-103.
    [36]Ogata Y., Charlesworth M. C, Higgins L., et al. Differential protein expression in male and female human lumbar cerebrospinal fluid using iTRAQ reagents after abundant protein depletion[J]. Proteomics.2007.7(20):3726-34.
    [37]Zhang J., Goodlett D. R., Peskind E. R., et al. Quantitative proteomic analysis of age-related changes in human cerebrospinal fluid[J]. Neurobiol Aging.2005, 26(2):207-27.
    [38]Saatman K. E., Duhaime A. C, Bullock R., et al. Classification of traumatic brain injury for targeted therapies[J]. J Neurotrauma.2008,25(7):719-38.
    [39]Ranganathan S., Polshyna A., Nicholl G. et al. Assessment of Protein Stability in Cerebrospinal Fluid Using Surface-Enhanced Laser Desorption/lonization Time-of-Flight Mass Spectrometry Protein Profiling[J]. Clin Proteomics.2006, 2(1-2):91-101.
    [40]Khwaja Fatima W. and Meir Erwin G. Van. Proteomic Discovery of Biomarkers in the Cerebrospinal Fluid of Brain Tumor Patients. In:Meir E.G. Van, ed. CNS Cancer, Cancer Drug Discovery and Development. New York:Springer-Verlag; 2009:577-603.
    [41]Sickmann A., Dormeyer W., Wortelkamp S., et al. Identification of proteins from human cerebrospinal fluid, separated by two-dimensional polyacrylamide gel electrophoresis[J]. Electrophoresis.2000,21(13):2721-8.
    [42]Sickmann A., Dormeyer W., Wortelkamp S., et al. Towards a high resolution separation of human cerebrospinal fluid[J]. J Chromatogr B Analyt Technol Biomed Life Sci.2002,771(1-2):167-96.
    [43]Yuan X. and Desiderio D. M. Proteomics analysis of prefractionated human lumbar cerebrospinal fluid[J]. Proteomics.2005,5(2):541-50.
    [44]Pan S., Zhu D., Quinn J. F., et al. A combined dataset of human cerebrospinal fluid proteins identified by multi-dimensional chromatography and tandem mass spectrometry[J]. Proteomics.2007,7(3):469-73.
    [45]Liu S.. Bai S.. Qin Z.. et al. Quantitative proteomic analysis of the cerebrospinal fluid of patients with multiple sclerosis[J]. J Cell Mol Med.2009.13(8A): 1586-603.
    [46]Berkelman T and Stenstedt T.2D electrophoresis:principles and methods; 1998.
    [47]Raymackers J., Daniels A., De Brabandere V., et al. Identification of two-dimensionally separated human cerebrospinal fluid proteins by N-terminal sequencing, matrix-assisted laser desorption/ionization-mass spectrometry, nanoliquid chromatography-electrospray ionization-time of flight-mass spectrometry, and tandem mass spectrometry[J]. Electrophoresis.2000,21(11): 2266-83.
    [48]Hammack B. N., Owens G. P., Burgoon M. P., et al. Improved resolution of human cerebrospinal fluid proteins on two-dimensional gels[J]. Mult Scler.2003, 9(5):472-5.
    [49]Zolotarjova N.. Martosella J.. Nicol G., et al. Differences among techniques for high-abundant protein depletion[J]. Proteomics.2005.5(13):3304-13.
    [50]李焕敏,邵明,谭红愉,等.脑脊液蛋自质组学高丰度蛋白去除方法的建立与评价[J].现代临床医学生物工程学杂志,2007,13(2):94-96.
    [51]Thouvenot E., Urbach S., Dantec C. et al. Enhanced detection of CNS cell secretome in plasma protein-depleted cerebrospinal fluid[J]. J Proteome Res. 2008,7(10):4409-21.
    [52]Schutzer S. E., Liu T., Natelson B. H., et al. Establishing the proteome of normal human cerebrospinal fluid[J]. PLoS One.2010,5(6):e10980.
    [53]Lin B., White J. T., Wu J., et al. Deep depletion of abundant serum proteins reveals low-abundant proteins as potential biomarkers for human ovarian cancer[J]. Proteomics ClinAppl.2009.3(7):853-861.
    [54]Gronwall C, Sjoberg A., Ramstrom M., et al. Affibody-mediated transferrin depletion for proteomics applications[J]. Biotechnol J.2007,2(11):1389-98.
    [55]Ramstrom M., Zuberovic A., Gronwall C, et al. Development of affinity columns for the removal of high-abundance proteins in cerebrospinal fluid[J]. Biotechnol Appl Biochem.2009,52(Pt 2):159-66.
    [56]Dwivedi R. C. Krokhin O. V., Cortens J. P., et al. Assessment of the reproducibility of random hexapeptide peptide library-based protein normalization[J]. J Proteome Res.2010.9(2):1144-9.
    [57]Hartwig S.. Czibere A.. Kotzka J., et al. Combinatorial hexapeptide ligand libraries (ProteoMiner):an innovative fractionation tool for differential quantitative clinical proteomics[J]. Arch Physiol Biochem.2009.115(3): 155-60.
    [58]Mouton-Barbosa E., Roux-Dalvai F.. Bouyssie D., et al. In-depth exploration of cerebrospinal fluid by combining peptide ligand library treatment and label-free protein quantification[J]. Mol Cell Proteomics.2010,9(5):1006-21.
    [59]Sjodin M. O., Bergquist J. and Wetterhall M. Mining ventricular cerebrospinal fluid from patients with traumatic brain injury using hexapeptide ligand libraries to search for trauma biomarkers[J]. J Chromatogr B Analyt Technol Biomed Life Sci.2010.878(22):2003-12.
    [60]Chiasserini D., Di Filippo M., Candeliere A., et al. CSF proteome analysis in multiple sclerosis patients by two-dimensional electrophoresis[J]. Eur J Neurol. 2008,15(9):998-1001.
    [61]Wait R., Gianazza E., Eberini I., et al. Proteins of rat serum, urine, and cerebrospinal fluid:VI. Further protein identifications and interstrain comparison[J]. Electrophoresis.2001,22(14):3043-52.
    [62]Denslow N., Michel M. E., Temple M. D., et al. Application of proteomics technology to the field of neurotrauma[J]. J Neurotrauma.2003,20(5):401-7.
    [63]Yang X., Yang S., Wang J., et al. Expressive proteomics profile changes of injured human brain cortex due to acute brain trauma[J]. Brain Inj.2009,23(10): 830-40.
    [64]Conti A., Sanchez-Ruiz Y, Bachi A., et al. Proteome study of human cerebrospinal fluid following traumatic brain injury indicates fibrin(ogen) degradation products as trauma-associated markers[J]. J Neurotrauma.2004, 21(7):854-63.
    [65]金涌,沈宏.蛋白质组学技术在颅脑损伤研究中的应用[J].国际神经病学神经外科学杂志,2006,33(6):574-577.
    [66]Ottens A. K., Kobeissy F. H., Golden E. C, et al. Neuroproteomics in neurotrauma[J]. Mass Spectrom Rev.2006.25(3):380-408.
    [67]Posmantur R. M.. Zhao X.. Kampfl A., et al. Immunoblot analyses of the relative contributions of cysteine and aspartic proteases to neurofilament breakdown products following experimental brain injury in rats[J]. Neurochem Res.1998. 23(10):1265-76.
    [68]Posmantur R. M.. Newcomb J. K., Kampfl A., et al. Light and confocal microscopic studies of evolutionary changes in neurofilament proteins following cortical impact injury in the rat[J]. Exp Neurol.2000,161(1):15-26.
    [69]Jenkins L. W., Peters G. W., Dixon C. E., et al. Conventional and functional proteomics using large format two-dimensional gel electrophoresis 24 hours after controlled cortical impact in postnatal day 17 rats[J]. J Neurotrauma.2002, 19(6):715-40.
    [70]You J. S., Gelfanova V., Knierman M. D., et al. The impact of blood contamination on the proteome of cerebrospinal fluid[J]. Proteomics.2005,5(1): 290-6.
    [71]孙太欣.彭国光.薛鹏,等.帕金森病患者脑脊液蛋白质组学分析[J].中国生物化学与分生生物学报.2010.26(1):62-70.
    [72]Hirokawa N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport[J]. Science.1998,279(5350):519-26.
    [73]Howell B. J., McEwen B. F., Canman J. C., et al. Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation[J]. J Cell Biol.2001,155(7):1159-72.
    [74]Gupta A., Tsai L. H. and Wynshaw-Boris A. Life is a journey:a genetic look at neocortical development[J]. Nat Rev Genet.2002,3(5):342-55.
    [75]Caputo E., Lombardi M. L., Luongo V., et al. Peptide profiling in epithelial tumor plasma by the emerging proteomic techniques[J]. J Chromatogr B Analyt Technol Biomed Life Sci.2005,819(1):59-66.
    [76]Koomen J. M., Shih L. N., Coombes K. R., et al. Plasma protein profiling for diagnosis of pancreatic cancer reveals the presence of host response proteins[J]. Clin Cancer Res.2005.11(3):1110-8.
    [77]Villanueva J., Shaffer D. R., Philip J.. et al. Differential exoprotease activities confer tumor-specific serum peptidome patterns[J]. J Clin Invest.2006.116(1): 271-84.
    [78]van Winden A. W., Gast M. C. Beijnen J. H.. et al. Validation of previously identified serum biomarkers for breast cancer with SELDI-TOF MS:a case control study[J]. BMC Med Genomics.2009,2(4.
    [79]Palmieri F. and Pierri C. L. Structure and function of mitochondrial carriers-role of the transmembrane helix P and G residues in the gating and transport mechanism[J]. FEBS Lett.2010,584(9):1931-9.
    [80]Palmieri F. The mitochondrial transporter family (SLC25):physiological and pathological implications[J]. Pflugers Arch.2004,447(5):689-709.
    [81]Andrews Z. B., Diano S. and Horvath T. L. Mitochondrial uncoupling proteins in the CNS:in support of function and survival[J]. Nat Rev Neurosci.2005.6(11): 829-40.
    [82]Fiermontc G, Palmieri L., Todisco S.. et al. Identification of the mitochondrial glutamate transporter. Bacterial expression, reconstitution. functional characterization, and tissue distribution of two human isoforms[J]. J Biol Chem. 2002,277(22):19289-94.
    [83]Palmieri F. Diseases caused by defects of mitochondrial carriers:a review[J]. Biochim Biophys Acta.2008,1777(7-8):564-78.
    [84]Freund T. F. GABAergic septohippocampal neurons contain parvalbumin[J]. Brain Res.1989,478(2):375-81.
    [85]曾玮,徐恩.中枢神经系统中小白蛋白的研究进展[J].神经损伤与功能重建,2009,4(2):136-138.
    [86]Serth J., Weber W., Freeh M., et al. Binding of the H-ras p21 GTPase activating protein by the activated epidermal growth factor receptor leads to inhibition of the p21 GTPase activity in vitro[J]. Biochemistry.1992.31(28):6361-5.
    [87]Capon D. J., Chen E. Y., Levinson A. D.. et al. Complete nucleotide sequences of the T24 human bladder carcinoma oncogene and its normal homologue[J]. Nature.1983,302(5903):33-7.
    [88]Nikiforova M. N., Lynch R. A., Biddinger P. W., et al. RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors:evidence for distinct molecular pathways in thyroid follicular carcinomafJ]. J Clin Endocrinol Metab. 2003.88(5):2318-26.
    [89]Mammas 1. N., Zafiropoulos A., Koumantakis E.. et al. Transcriptional activation of H-and N-ras oncogenes in human cervical cancer[J]. Gynecol Oncol.2004, 92(3):941-8.
    [90]Pearson R., Fleetwood J., Eaton S.. et al. Kruppel-like transcription factors:a functional family[J]. Int J Biochem Cell Biol.2008,40(10):1996-2001.
    [91]Matsumoto N., Kubo A., Liu H., et al. Developmental regulation of yolk sac hematopoiesis by Kruppel-like factor 6[J]. Blood.2006,107(4):1357-65.
    [92]Feinberg M. W., Lin Z., Fisch S., et al. An emerging role for Kruppel-like factors in vascular biology [J]. Trends Cardiovasc Med.2004,14(6):241-6.
    [93]Ghaleb A. M. and Yang V. W. The Pathobiology of Kruppel-like Factors in Colorectal Cancer[J]. Curr Colorectal Cancer Rep.2008,4(2):59-64.
    [94]Jeng Y. M. and Hsu H. C. KLF6. a putative tumor suppressor gene, is mutated in astrocytic gliomas[J]. Int J Cancer.2003,105(5):625-9.
    [95]李索萍,周建光,工鸣目,等.癌蛋白D52家族[J].中国生物工程杂志,2007.27(5):120-124.
    [96]Kushima I., Aleksic B., Ikeda ML et al. Association study of bromodomain-containing 1 gene with schizophrenia in Japanese population[J]. Am J Med Genet B Neuropsychiatr Genet.2010,153B(3):786-91.
    [97]Bjarkam C. R., Corydon T. J., Olsen Ⅰ.M., et al. Further immunohistochemical characterization of BRD1 a new susceptibility gene for schizophrenia and bipolar affective disorder[J]. Brain Struct Funct.2009,214(1):37-47.
    [98]Nyegaard M., Severinsen J. E., Als T. D., et al. Support of association between BRD1 and both schizophrenia and bipolar affective disorder[J]. Am J Med Genet B Neuropsychiatr Genet.2010,153B(2):582-91.
    [99]Takahashi K., Avissar N., Whitin J., et al. Purification and characterization of human plasma glutathione peroxidase:a selenoglycoprotein distinct from the known cellular enzyme[J]. Arch Biochem Biophys.1987,256(2):677-86.
    [100]Flohe L., Andreesen J. R., Brigelius-Flohe R., et al. Selenium, the element of the moon, in life on earth[J]. IUBMB Life.2000,49(5):411-20.
    [101]Iwata K... Nishinaka T., Matsuno K.. et al. Increased gene expression of glutathione peroxidase-3 in diabetic mouse heart[J]. Biol Pharm Bull.2006. 29(5):1042-5.
    [102]Qian Z. M. and Wang Q. Expression of iron transport proteins and excessive iron accumulation in the brain in neurodegenerative disorders[J]. Brain Res Brain Res Rev.1998,27(3):257-67.
    [103]Patel B. N., Dunn R. J. and David S. Alternative RNA splicing generates a glycosylphosphatidylinositol-anchored form of ceruloplasmin in mammalian brain[J]. J Biol Chem.2000,275(6):4305-10.
    [104]Lee K. H., Yun S. J., Nam K. N., et al. Activation of microglial cells by ceruloplasmin[J]. Brain Res.2007,1171(1-8.
    [105]Qian Z. M. and Shen X. Brain iron transport and neurodegeneration[J]. Trends Mol Med.2001.7(3):103-8.
    [106]Mills E., Dong X. P.. Wang F., ct al. Mechanisms of brain iron transport:insight into neurodegeneration and CNS disorders[J]. Future Med Chem.2010,2(1): 51-64.
    [107]Boll M. C, Sotelo J.. Otero E.. et al. Reduced ferroxidase activity in the cerebrospinal fluid from patients with Parkinson's disease[J]. Neurosci Lett. 1999,265(3):155-8.
    [108]Loeffler D. A., LeWitt P. A., Juneau P. L., et al. Increased regional brain concentrations of ceruloplasmin in neurodegenerative disorders[J]. Brain Res. 1996,738(2):265-74.
    [109]Loeffler D. A., DeMaggio A. J., Juneau P. L., et al. Ceruloplasmin is increased in cerebrospinal fluid in Alzheimer's disease but not Parkinson's disease[J]. Alzheimer Dis Assoc Disord.1994.8(3):190-7.
    [110]杨树旭,钱聪,叶红星,等.铜蓝蛋白对脑出血.大鼠脑水肿的影响[J].全科医学临床与教育,2010,4):402-404.
    [111]戴以武,王宪荣,郑文济,等.脑外伤后外周血淋巴细胞产生白介素-2能力与急性期蛋白变化的相关性研究[J].中华创伤杂志,1995,11(4):224-225.
    [112]Dharmasiri N., Dharmasiri S. and Estelle M. The F-box protein TIR1 is an auxin receptor[J]. Nature.2005,435(7041):441-5.
    [113]Kepinski S. and Leyser O. The Arabidopsis F-box protein TIRI is an auxin receptor[J]. Nature.2005.435(7041):446-51.
    [114]吴慧娟,张志刚. 泛素-蛋白酶体途径及意义[J].国际病理科学与临床杂志,2006,26(1):7-10.
    [115]Bai C, Sen P., Hofmann K., et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box[J]. Cell.1996, 86(2):263-74.
    [116]Kipreos E. T. and Pagano M. The F-box protein family[J]. Genome Biol.2000. 1(5):REVIEWS3002.
    [117]Di Fonzo A., Dekker M. C, Montagna P., et al. FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome[J]. Neurology.2009,72(3):240-5.
    [118]Liu M., Doi T. Shen L.. et al. Intestinal satiety protein apolipoprotein AIV is synthesized and regulated in rat hypothalamus[J]. Am J Physio! Regul Integr Comp Physiol.2001.280(5):R1382-7.
    [119]Liu M., Shen L., Doi T.. et al. Neuropeptide Y and lipid increase apolipoprotein A1V gene expression in rat hypothalamus[J]. Brain Res.2003.971(2):232-8.
    [120]Okumura T.. Fukagawa K., Tso P., et al. Intracisternal injection of apolipoprotein A-IV inhibits gastric secretion in pylorus-ligated conscious rats[J]. Gastroenterology.1994,107(6):1861-4.
    [121]Okumura T, Fukagawa K., Tso P., et al. Apolipoprotein A-IV acts in the brain to inhibit gastric emptying in the rat[J]. Am J Physiol.1996,270(1 Pt 1): G49-53.
    [122]Fujimoto K., Fukagawa K., Sakata T, et al. Suppression of food intake by apolipoprotein A-IV is mediated through the central nervous system in rats[J]. J Clin Invest.1993,91(4):1830-3.
    [123]Breslow J. L., Ross D., McPherson J., et al. Isolation and characterization of cDN A clones for human apolipoprotein A-I[J]. Proc Natl Acad Sci U S A.1982, 79(22):6861-5.
    [124]Murdoch S. J., Carr M. C, Hokanson J. E., et al. PLTP activity in premenopausal women. Relationship with lipoprotein lipase, HDL, LDL, body fat, and insulin resistance[J]. J Lipid Res.2000,41(2):237-44.
    [125]Colhoun H. M., Scheek L. M., Rubens M. B., et al. Lipid transfer protein activities in type 1 diabetic patients without renal failure and nondiabetic control subjects and their association with coronary artery calcification[J]. Diabetes. 2001.50(3):652-9.
    [126]Albers J. J. and Cheung M. C. Emerging roles for phospholipid transfer protein in lipid and lipoprotein metabolism[J]. Curr Opin Lipidol.2004.15(3):255-60.
    [127]Vuletic S., Jin L. W., Marcovina S. M, et al. Widespread distribution of PLTP in human CNS:evidence for PLTP synthesis by glia and neurons, and increased levels in Alzheimer's disease[J]. J Lipid Res.2003,44(6):1113-23.
    [128]邓平.脑外伤后脑十组织中血管内皮细胞及血浆蛋白分布改变的免疫组化研究[J].广州医学院学报,2000,28(1):4.
    [129]李卫,徐如祥,张建,等.颅脑损伤患者血液及脑脊液中IgG含量的变化与病情的关系[J】.南方医科大学学报,2006,26(5):703-704.
    [130]黄海能.重型脑外伤患者T细胞亚群与免疫球蛋白的变化及意义[J].中国航天医药杂志,2001,3(1):3.
    [131]彭远强.重型颅脑损伤后患者免疫功能的变化及意义[J].首都医药,2007,14):37-38.
    [132]Plesnila N., von Baumgarten L., Retiounskaia M., et al. Delayed neuronal death after brain trauma involves p53-dependent inhibition of NF-kappaB transcriptional activity[J]. Cell Death Differ.2007,14(8):1529-41.
    [133]Masel B. E. and DeWitt D. S. Traumatic brain injury:a disease process, not an event[J]. J Neurotrauma.2010,27(8):1529-40.
    [1]Gonzalez H., Ottervald J., Nilsson K. C, et al. Identification of novel candidate protein biomarkers for the post-polio syndrome-implications for diagnosis, neurodegeneration and neuroinflammation[J]. J Proteomics.2009,71(6): 670-81.
    [2]Bai S., Liu S., Guo X., et al. Proteome analysis of biomarkers in the cerebrospinal fluid of neuromyelitisopticapatients[J]. Mol Vis.2009,15(1638-48.
    [3]Chiasserini D., Di Filippo M., Candeliere A., et al. CSF proteome analysis in multiple sclerosis patients by two-dimensional electrophoresis[J]. Eur J Neurol. 2008,15(9):998-1001.
    [4]Lehmensiek V., Sussmuth S. D., Tauscher G, et al. Cerebrospinal fluid proteome profile in multiple sclerosis[J]. Mult Scler.2007,13(7):840-9.
    [5]Khwaja F. W., Reed M. S., Olson J. J., et al. Proteomic identification of biomarkers in the cerebrospinal fluid (CSF) of astrocytoma patients[J]. J Proteome Res.2007,6(2):559-70.
    [6]Gao W. M., Chadha M. S., Berger R. P., et al. A gel-based proteomic comparison of human cerebrospinal fluid between inflicted and non-inflicted pediatric traumatic brain injury[J]. J Neurotrauma.2007,24(1):43-53.
    [7]Hammack B. N., Fung K. Y., Hunsucker S. W., et al. Proteomic analysis of multiple sclerosis cerebrospinal fluid[J]. Mult Scler.2004,10(3):245-60.
    [8]Conti A., Sanchez-Ruiz Y., Bachi A., et al. Proteome study of human cerebrospinal fluid following traumatic brain injury indicates fibrin(ogen) degradation products as trauma-associated markers[J]. J Neurotrauma.2004, 21(7):854-63.
    [9]Khwaja Fatima W. and Meir Erwin G. Van. Proteomic Discovery of Biomarkers in the Cerebrospinal Fluid of Brain Tumor Patients. In:Meir E.G. Van, ed. CNS Cancer, Cancer Drug Discovery and Development. New York:Springer-Verlag; 2009:577-603.
    [10]Righetti P. G. and Boschetti E. The ProteoMiner and the FortyNiners:searching for gold nuggets in the proteomic arena[J]. Mass Spectrom Rev.2008,27(6): 596-608.
    [11]Wetterhall M., Zuberovic A., Hanrieder J., et al. Assessment of the partitioning capacity of high abundant proteins in human cerebrospinal fluid using affinity and immunoaffinity subtraction spin columns[J]. J Chromatogr B Analyt Technol Biomed Life Sci.2010,878(19):1519-30.
    [12]Lai Y. L., Smith P. M., Lamm W. J., et al. Sampling and analysis of cerebrospinal fluid for chronic studies in awake rats[J]. J Appl Physiol.1983,54(6):1754-7.
    [13]Schuhmann M. U., Heine G., Skardelly M., et al. Brain injury and proteomics/peptidomics:is it relevant? an overview[J]. Acta Neurochir Suppl. 2005,95(465-70.
    [14]Consiglio A. R. and Lucion A. B. Technique for collecting cerebrospinal fluid in the cisterna magna of non-anesthetized rats[J]. Brain Res Brain Res Protoc.2000, 5(1):109-14.
    [15]Sharma A. K., Schultze A. E., Cooper D. M., et al. Development of a percutaneous cerebrospinal fluid collection technique in F-344 rats and evaluation of cell counts and total protein concentrations[J]. Toxicol Pathol. 2006,34(4):393-5.
    [16]Saso L., Silvestrini B. and Cheng C. Y. The use of high-performance electrophoresis chromatography for the micropurification of cerebrospinal fluid proteins in the rat[J]. Anal Biochem.1993,212(2):315-24.
    [17]Sickmann A., Dormeyer W., Wortelkamp S., et al. Towards a high resolution separation of human cerebrospinal fluid[J]. J Chromatogr B Analyt Technol Biomed Life Sci.2002,771(1-2):167-96.
    118] Rite I., Arguelles S.. Venero J. L., et al. Proteomic identification of biomarkers in the cerebrospinal fluid in a rat model of nigrostriatal dopaminergic degeneration[J]. J Neurosci Res.2007.85(16):3607-18.
    [19]Hanrieder J., Wetterhall M., Enblad P., et al. Temporally resolved differential proteomic analysis of human ventricular CSF for monitoring traumatic brain injury biomarker candidates[J]. J Neurosci Methods.2009.177(2):469-78.
    [20]Mouton-Barbosa E., Roux-Dalvai F., Bouyssie D., et al. In-depth exploration of cerebrospinal fluid by combining peptide ligand library treatment and label-free protein quantification[J]. Mol Cell Proteomics.2010,9(5):1006-21.
    [21]Zhang J., Goodlett D. R., Peskind E. R., et al. Quantitative proteomic analysis of age-related changes in human cerebrospinal fluid[J]. Neurobiol Aging.2005, 26(2):207-27.
    [22]Simonsen A. H.. Bech S., Laursen I., et al. Proteomic investigations of the vcntriculo-lumbar gradient in human CSF[J]. J Neurosci Methods.2010.
    [23]Wenner B. R.. Lovell M. A. and Lynn B. C. Proteomic analysis of human ventricular cerebrospinal fluid from neurologically normal, elderly subjects using two-dimensional LC-MS/MS[J]. J Proteome Res.2004.3(1):97-103.
    [24]Ogata Y.. Charlesworth M. C, Higgins L., et al. Differential protein expression in male and female human lumbar cerebrospinal fluid using iTRAQ reagents after abundant protein depletion[J]. Proteomics.2007,7(20):3726-34.
    [25]Saatman K. E., Duhaime A. C, Bullock R., et al. Classification of traumatic brain injury for targeted therapies[J]. J Neurotrauma.2008,25(7):719-38.
    [26]Ranganathan S., Polshyna A., Nicholl G., et al. Assessment of Protein Stability in Cerebrospinal Fluid Using Surface-Enhanced Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Protein Profiling[J]. Clin Proteomics.2006, 2(1-2):91-101.
    [27]Wang E. S., Sun Y., Guo J. G., et al. Tetranectin and apolipoprotein A-I in cerebrospinal fluid as potential biomarkers for Parkinson's disease[J]. Acta Neurol Scand.2010.
    [28]Liu S., Bai S., Qin Z., et al. Quantitative proteomic analysis of the cerebrospinal fluid of patients with multiple sclerosis[J]. J Cell Mol Med.2009.13(8A): 1586-603.
    [29]Yuan X. and Desiderio D. M. Proteomics analysis of human cerebrospinal fluid[J]. J Chromatogr B Analyt Technol Biomed Life Sci.2005,815(1-2): 179-89.
    [30]Berkelman T and Stenstedt T.2D electrophoresis:principles and methods; 1998.
    [31]李波,王慧,侯立军.颅脑创伤后蛋白质组学研究进展[J].国际神经病学神经外科学杂志,2009,36(1):29-32.
    [32]Siegmund R., Kiehntopf M. and Deufel T. Evaluation of two different albumin depletion strategies for improved analysis of human CSF by SELDI-TOF-MS[J]. Clin Biochem.2009,42(10-11):1136-43.
    [33]Sickmann A., Dormeyer W., Wortelkamp S., et al. Identification of proteins from human cerebrospinal fluid, separated by two-dimensional poiyacrylamide gel electrophoresis[J]. Electrophoresis.2000,21(13):2721-8.
    [34]Hammack B.N., Owens G. P., Burgoon M. P., et al. Improved resolution of human cerebrospinal fluid proteins on two-dimensional gels[J]. Mult Scler.2003, 9(5):472-5.
    [35]Unlu M., de Lange R. P., de Silva R.. et al. Detection of complement factor B in the cerebrospinal fluid of patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy disease using two-dimensional gel electrophoresis and mass spectrometry[J]. Neurosci Lett. 2000,282(3):149-52.
    [36]Yuan X., Russell T., Wood G, et al. Analysis of the human lumbar cerebrospinal fluid proteome[J]. Electrophoresis.2002,23(7-8):1185-96.
    [37]Jiang L., Lindpaintner K., Li H. F., et al. Proteomic analysis of the cerebrospinal fluid of patients with schizophrenia[J]. Amino Acids.2003,25(1):49-57.
    [38]Yuan X. and Desiderio D. M. Proteomics analysis of prefractionated human lumbar cerebrospinal fluid[J]. Proteomics.2005,5(2):541-50.
    [39]Choe L. H., Green A., Knight R. S., et al. Apolipoprotein E and other cerebrospinal fluid proteins differentiate ante mortem variant Creutzfeldt-Jakob disease from ante mortem sporadic Creutzfeldt-Jakob disease[J]. Electrophoresis. 2002,23(14):2242-6.
    [40]Terry D. E. and Desiderio D. M. Between-gel reproducibility of the human cerebrospinal fluid proteome[J]. Proteomics.2003,3(10):1962-79.
    [41]Corthals G. L.. Wasinger V. C. Hochstrasser D. F., et al. The dynamic range of protein expression:a challenge for proteomic research[J]. Electrophoresis.2000, 21(6):1104-15.
    [42]Weisner B. and Bernhardt W. Protein fractions of lumbar, cisternal, and ventricular cerebrospinal fluid. Separate areas of reference[J]. J Neurol Sci.1978, 37(3):205-14.
    [43]Jmeian Y. and El Rassi Z. Liquid-phase-based separation systems for depletion, prefractionation and enrichment of proteins in biological fluids for in-depth proteomics analysis[J]. Electrophoresis.2009,30(1):249-61.
    [44]Davidsson P., Folkesson S., Christiansson M., et al. Identification of proteins in human cerebrospinal fluid using liquid-phase isoelectric focusing as a prefractionation step followed by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionisation mass spectrometry[J]. Rapid Commun Mass Spectrom.2002.16(22):2083-8.
    [45]Davidsson P.. Paulson L.. Hesse C, et al. Proteome studies of human cerebrospinal fluid and brain tissue using a preparative two-dimensional electrophoresis approach prior to mass spectrometry[J]. Proteomics.2001,1(3): 444-52.
    [46]Raymackers J., Daniels A., De Brabandere V., et al. Identification of two-dimensionally separated human cerebrospinal fluid proteins by N-terminal sequencing, matrix-assisted laser desorption/ionization--mass spectrometry, nanoliquid chromatography-electrospray ionization-time of flight-mass spectrometry, and tandem mass spectrometry[J]. Electrophoresis.2000,21(11): 2266-83.
    [47]Zolotarjova N., Martosella J., Nicol G, et al. Differences among techniques for high-abundant protein depletion[J]. Proteomics.2005,5(13):3304-13.
    [48]Callesen A. K., Madsen J. S., Vach W., et al. Serum protein profiling by solid phase extraction and mass spectrometry:a future diagnostics tool?[J]. Proteomics.2009,9(6):1428-41.
    [49]李焕敏,邵明,谭红愉,等.脑脊液蛋白质组学高丰度蛋白上除方法的建立与评价[J].现代临床医学生物工程学杂志,2007.13(2):94-96.
    [50]Thouvenot E., Urbach S., Dantec C. et al. Enhanced detection of CNS cell secretome in plasma protein-depleted cerebrospinal fluid[J]. J Proteome Res. 2008,7(10):4409-21.
    [51]Schutzer S. E., Liu T., Natelson B. H., et al. Establishing the proteome of normal human cerebrospinal fluid[J]. PLoS One.2010,5(6):e10980.
    [52]Lin B., White J. T., Wu J., et al. Deep depletion of abundant serum proteins reveals low-abundant proteins as potential biomarkers for human ovarian cancer[J]. Proteomics Clin Appl.2009,3(7):853-861.
    [53]Gronwall C.,Sjoberg A., Ramstrom M., et al. Affibody-mediated transferrin depletion for proteomics applications[J]. Biotechnol J.2007,2(11):1389-98.
    [54]Ramstrom M, Zuberovic A., Gronwall C. et al. Development of affinity columns for the removal of high-abundance proteins in cerebrospinal fluid[J]. Biotechnol Appl Biochem.2009.52(Pt 2):159-66.
    [55]Righetti P. G., Boschetti E.. Kravchuk A. V., et al. The proteome buccaneers:how to unearth your treasure chest via combinatorial peptide ligand libraries[J]. Expert Rev Proteomics.2010,7(3):373-85.
    [56]Dwivedi R. C, Krokhin O. V., Cortens J. P., et al. Assessment of the reproducibility of random hexapeptide peptide library-based protein normalization[J].Proteome Res.2010,9(2):1144-9.
    [57]Sjodin M. O., Bergquist J. and Wetterhall M. Mining ventricular cerebrospinal fluid from patients with traumatic brain injury using hexapeptide ligand libraries to search for trauma biomarkers[J]. J Chromatogr B Analyt Technol Biomed Life Sci.2010,878(22):2003-12.
    [58]Shores K. S., Udugamasooriya D. G, Kodadek T., et al. Use of peptide analogue diversity library beads for increased depth of proteomic analysis:application to cerebrospinal fluid[J]. J Proteome Res.2008,7(5):1922-31.
    [59]江基尧.蛋白质组技术在神经系统疾病诊治中的价值及前景[J].中国现代神经疾病杂志,2005,5(5):289-291.
    [60]洪桢,陈生弟.人类脑脊液的蛋白质组学研究[J].上海交通大学学报(医学 版),2008.28(5):600-603.
    [61]O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins[JJ. J Biol Chem.1975,250(10):4007-21.
    [62]Bjellqvist B.. Ek K., Righetti P. G., et al. Isoelectric focusing in immobilized pH gradients:principle, methodology and some applications[J]. J Biochem Biophys Methods.1982,6(4):317-39.
    [63]Westbrook J. A.. Yan J. X., Wait R., et al. Zooming-in on the proteome:very narrow-range immobilised pH gradients reveal more protein species and isoforms[J]. Electrophoresis.2001,22(14):2865-71.
    [64]Unlu M., Morgan M. E. and Minden J. S. Difference gel electrophoresis:a single gel method for detecting changes in protein extracts[J]. Electrophoresis.1997, 18(11):2071-7.
    [65]Yang X.. Yang S.. Wang J., et al. Expressive proteomics profile changes of injured human brain cortex due to acute brain trauma[J]. Brain Inj.2009,23(10): 830-40.
    [66]Scollato A., Terreni A.. Caldini A., et al. CSF proteomic analysis in patients with normal pressure hydrocephalus selected for the shunt:CSF biomarkers of response to surgical treatment[J]. Neurol Sci.2010,31 (3):283-91.
    [67]Ramstrom M., Palmblad M, Markides K. E., et al. Protein identification in cerebrospinal fluid using packed capillary liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry[J]. Proteomics.2003,3(2): 184-90.
    [68]杨月红,王丹,卫功宏.蛋白质组学及其在神经科学研究中的应用[J].首都师范大学学报(自然科学版),2006,27(2):57-62.
    [69]李强.胡志东.蛋白质组学技术研究[J].医学综述,2007,13(11):816-818.
    [70]杨彩娥,匡铁吉.蛋白质组学研究技术及进展[J].武警医学,2007,18(1):65-68.
    [71]金涌,沈宏.蛋白质组学技术在颅脑损伤研究中的应用[J].国际神经病学神经外科学杂志,2006,33(6):574-577.
    [72]Agoston D. V., Gyorgy A., Eidelman O., et al. Proteomic biomarkers for blast neurotrauma:targeting cerebral edema, inflammation, and neuronal death cascades[J]. J Neurotrauma.2009,26(6):901-11.
    [73]Ottens A. K., Kobeissy F. H.. Fuller B. F., et al. Novel neuroproteomic approaches to studying traumatic brain injury[J]. Prog Brain Res.2007,161: 401-18.
    [74]Waybright T., Avellino A. M.. Ellenbogen R. G.. et al. Characterization of the human ventricular cerebrospinal fluid proteome obtained from hydrocephalic patients[J]. J Proteomics.2010,73(6):1156-62.
    [75]Zuberovic A., Wetterhall M., Hanrieder J., et al. CE MALDI-TOF/TOF MS for multiplexed quantification of proteins in human ventricular cerebrospinal fluid[J]. Electrophoresis.2009,30(10):1836-43.
    [76]马洁,吴松锋,朱云平.蛋白质组学中新蛋白质鉴定的研究方法和策略[J].生物化学与生物物理进展,2007,34(8):791-799.
    [77]Goldman D., Merril C. R. and Ebert M. H. Two-dimensional gel electrophoresis of cerebrospinal fluid proteins[J]. Clin Chem.1980,26(9):1317-22.
    [78]Siman R., Mclntosh T. K., Soltesz K. M., et al. Proteins released from degenerating neurons are surrogate markers for acute brain damage[J]. Neurobiol Dis.2004,16(2):311-20.
    [79]Reiber H. Dynamics of brain-derived proteins in cerebrospinal fluid[J]. Clin Chim Acta.2001,310(2):173-86.
    [80]Davidsson P., Jahn R., Bergquist J., et al. Synaptotagmin, a synaptic vesicle protein, is present in human cerebrospinal fluid:a new biochemical marker for synaptic pathology in Alzheimer disease?[J]. Mol Chem Neuropathol.1996, 27(2):195-210.
    [81]孙太欣,彭国光,薛鹏,等.帕金森病患者脑脊液蛋白质组学分析[J].中国生物化学与分子生物学报,2010,26(1):62-70.
    [82]Finehout E. J., Franck Z. and Lee K. H. Complement protein isoforms in CSF as possible biomarkers for neurodegenerative disease[J]. Dis Markers.2005,21(2): 93-101.
    [83]Sjogren M., Minthon L., Davidsson P., et al. CSF levels of tau, beta-amyloid(1-42) and GAP-43 in frontotemporal dementia, other types of dementia and normal aging[J]. J Neural Transm.2000,107(5):563-79.
    [84]张旭华,刘师莲,李玮.脑瘤患者脑脊液肿瘤相关蛋白的蛋白质组学初步研究[J].生物医学工程研究,2005,24(4):258-260.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700