用户名: 密码: 验证码:
非小细胞肺癌患者尿液中潜在生物标志物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     以非小细胞肺癌(NSCLC)临床患者尿液中可溶性蛋白质组和exosomes蛋白质组为研究对象,筛选可能存在于尿液中的与非小细胞肺癌相关的潜在生物标志物,为临床实施NSCLC个体化治疗和早期诊断及预后提供新的理论基础和技术策略。
     策略与方法
     1.非小细胞肺癌患者与健康对照者尿液中可溶性蛋白质组的比较分析:分别收集3例非小细胞肺癌临床患者的尿样与3例健康对照者的混合尿样,通过1D SDS-PAGE对其可溶性蛋白质组进行分离,用Quantity One软件分析电泳结果,筛选差异蛋白条带。候选差异蛋白条带经胰酶胶内酶解,HPLC-CHIP-MS/MS分析,得到的数据以Spectrum Mill Proteomics Workbench Rev A.03.03.078 (Agilent Technologies)自动分析MS和MS/MS数据,搜索UniProtKB/SWISS-PORT, Homo Sapiens(Human)数据库,并对差异蛋白质进行生物信息学分析。
     2.候选差异蛋白AACT的western blot和免疫组织化学验证:分别提取3例非小细胞肺癌临床患者与3例正常对照者尿样中可溶性蛋白质组,通过western blot对尿液中AACT的表达水平进行分析;收集20例非小细胞肺癌组织标本和20例配对癌旁正常肺组织标本,通过免疫组织化学技术对AACT在肺癌组织内表达情况进行分析。
     3.尿液exosomes中低丰度蛋白质组的分析:以超速离心法分离人尿液中的exosomes,通过透射电镜观察其形态,通过免疫电镜观察exosomes上AQP-2的表达情况。通过组合肽配体库技术(CPLL)去除尿液exosomes中的高丰度蛋白,将得到的低丰度蛋白质经胰酶酶解后通过OFFGEL电泳进行分级,采用HPLC-CHIP-MS/MS对分离后的样品进行蛋白质鉴定,最后对鉴定出的蛋白质进行基因本体(Gene ontology, GO)和相关生物信息学分析。
     4.非小细胞肺癌患者与健康对照者尿液中exosomes蛋白质组的比较分析:分别收集10例健康志愿者的混合尿样和8例NSCLC初诊未进行化疗患者的尿样,以超速离心法分离尿液中的exosomes,通过1D SDS-PAGE对exosomes蛋白质组进行分离,用Quantity One软件分析电泳结果,筛选差异蛋白条带。候选差异蛋白条带经胰酶胶内酶解后进行HPLC-CHIP-MS/MS分析,得到的数据以Spectrum Mill Proteomics Workbench Rev A.03.03.078 (Agilent Technologies)自动分析MS和MS/MS数据,搜索UniProtKB/SWISS-PORT, Homo Sapiens(Human)数据库,并对鉴定出的差异蛋白质进行生物信息学分析。
     5.候选差异蛋白LRG1的western blot和免疫组织化学验证:分别提取6例非小细胞肺癌临床患者与6例健康对照者尿样的exosomes蛋白质组,通过western blot对exosomes中的LRG1蛋白表达水平进行分析;收集20例非小细胞肺癌组织标本和10例配对癌旁正常肺组织标本,通过免疫组织化学技术对LRG1在肺癌组织内的表达情况进行分析。
     结果
     1.通过对非小细胞肺癌患者与健康对照者尿液中可溶性蛋白质组的比较分析,从差异条带中共鉴定出40种蛋白质,值得关注的是,其中8种蛋白质与非小细胞肺癌相关:半乳凝素-3-结合蛋白、凝聚素、锌-a2-糖蛋白、α-1-抗胰凝乳蛋白酶、α-1-抗胰蛋白酶、激肽释放酶、凝溶胶蛋白、富亮氨酸α-2-糖蛋白。
     2.western blot结果表明:非小细胞肺癌患者尿液中AACT的表达水平明显高于健康对照者,与质谱结果相符合。免疫组织化学染色结果表明:AACT主要定位于细胞浆,其在非小细胞肺癌组织中的阳性表达显著高于癌旁正常肺组织。
     3.通过透射电镜对分离到的尿液exosomes进行观察表明:尿液exosomes为呈明显异质性的圆形或椭圆形小囊泡,直径约30~100nm,有完整的包膜,内为低电子密度物质。在标记金颗粒的AQP-2作用于exosomes后,许多exosomes小体上有金颗粒附着,与文献报道相符。
     4.通过1D SDS-PAGE对CPLL处理前后的exosomes蛋白质组分析表明:尿液exosomes中含有种类丰富的蛋白质,经CPLL处理后,高丰度蛋白条带明显减弱,且出现了许多清晰的低丰度蛋白条带。
     5.将得到的exosomes低丰度蛋白质经胰酶酶解后通过OFFGEL电泳进行分级,采用HPLC-CHIP-MS/MS对分离后的样品进行蛋白质鉴定,共鉴定出512种非冗余蛋白质,其中374种在之前的尿蛋白质组研究中未见报道。GO分析结果显示,其中55.36%为可溶性蛋白,44.93%为膜蛋白。
     6.通过比较非小细胞肺癌患者与健康对照者尿液中exosomes蛋白质组的差异表达情况,从45kD~35kD条带中共鉴定出18种蛋白质,其中,11种仅来源于NSCLC患者组,4种仅来源于健康对照者组,3种同时来源于健康对照者组和NSCLC患者组。
     7.western blot结果表明:非小细胞肺癌患者尿exosomes中LRG1的表达水平明显高于正常对照者,与质谱结果相符合。免疫组织化学染色结果表明:LRG1主要定位于细胞浆,其在非小细胞肺癌组织中的阳性表达显著高于癌旁正常肺组织。
     结论
     1.本实验中建立的一维电泳结合二维纳流液相色谱-串联质谱的分析方法可有效地用于比较蛋白质组研究。
     2.AACT在NSCLC患者尿液中的高表达可能来源于肺癌组织,可作为NSCLC在尿液中检测的潜在生物标志物。
     3.CPLL技术能有效地去除exosomes蛋白质组中的高丰度蛋白质,使低丰度蛋白质得到有效富集。
     4.尿液exosomes中含有种类异常丰富的低丰度蛋白质,本研究的结果丰富了我们对尿液exosomes蛋白质组的认识。
     5.LRG1在NSCLC患者尿液exosomes中的高表达可能与非小细胞肺癌相关,可能作为其在尿液中检测的潜在生物标志物。
Objective
     In the present study, we aimed to screen for candidate NSCLC-related biomarkers in urine by researching on the urinary soluble and exosomal proteome of non-small cell lung cancer (NSCLC) patients, and to lay new theoretical basis for the diagnosis, prognosis and personal therapy of NSCLC patients and provide new technological strategy.
     Methods
     1. Comparative analysis of soluble urinary proteins of normal individuals and NSCLC patients: Urinary proteomes between 3 normal persons and 3 NSCLC patients were compared by 1D SDS-PAGE. After 1D SDS-PAGE analysis, Agilent nanoHPLC-chip-MS/MS ION TRAP 6330 was used to characterize differentially expressed proteins in the bands. The MS/MS data was then automatically searched against UniProtKB/Swiss-Prot protein database by Spectrum Mill Proteomics Workbench Rev A.03.03.078 software.
     2. Validation of putative urinary biomarker by western blot and immunohistochemistry staining : To validate the LC-MS/MS data, we analyzed the levels of AACT in three healthy and NSCLC urine samples by western blot;To verify the expression level of AACT in lung tissues, immunohistochemistry staining was performed on paraffin-embedded tissue sections that contained both tumor tissue and adjacent non-tumor lung tissue from 20 NSCLC patients.
     3. Comprehensive analysis of low abundance proteome in human urinary exosomes:We employed differential ultracentrifugation to purify urinary exosomes. To verify whether the sediments separated from normal human urine were exosomes, the vesicles were concentrated and visualized by immunogold electron microscopy using antibodies reacting with water channel aquaporin-2 (AQP2). To comprehensively explore the low abundance proteome, combinatorial peptide ligand libraries, combined with peptide OFFGEL electrophoresis were employed for the enrichment and separation of relatively low abundant proteins in urinary exosomes. After peptide OFFGEL electrophoresis, separated peptides were analyzed by nanoHPLC-chip-MS/MS. Gene ontology (GO) analysis was also employed to analyze the biological process, molecular function, and cellular component of the low abundance proteome of urinary exosomes.
     4. Comparative analysis of urinary exosomal proteins of normal individuals and NSCLC patients: Urinary exosomal proteomes were compared by 1D SDS-PAGE between 10 normal persons and 8 NSCLC patients. After 1D SDS-PAGE analysis, Agilent nanoHPLC-chip-MS/MS ION TRAP 6330 was utilized to characterize differentially expressed proteins in the bands. Peptide and protein identifications were run automatically with the Spectrum Mill Proteomics Workbench Rev A.03.03.078 software.
     5. Validation of candidate urinary exosomal biomarker by western blot and immunohistochemistry staining:To validate the LC-MS/MS data, we analyzed the levels of LRG1 in six healthy and NSCLC urinary exosomes by Western blot;To verify the expression level of LRG1 in lung tissues, immunohistochemistry staining was performed on paraffin-embedded tissue sections that contained 20 tumor tissue and 10 adjacent non-tumor lung tissue from NSCLC patients.
     Results
     1. A total of 40 unique proteins were identified by comparative analysis of urinary soluable proteins from normal individuals and NSCLC patients. Among these proteins, eight proteins were related with NSCLC, they were: CLU, KLK1, Gelsolin, LRG1, Galectin-3-binding protein, ZAG, AACT, and AAT.
     2. The level of AACT was higher on the whole in the urine from three NSCLC patients compared to samples from normal healthy individuals by western blot analysis. The result of immunohistochemistry staining showed significantly increased AACT level in lung cancer tissues compared with normal lung tissues.
     3. Purified exosomes are relatively round vesicles ranging from approximately 30–100 nm in diameter. The expression of AQP2 on the vesicles also argues positively for the presence of exosomes, as has been previously reported in human urine samples.
     4. 1D SDS-PAGE analysis of all fractions under reducing conditions revealed different patterns of proteins. After treatment with CPLL, very different patterns were obtained for the column eluates, which showed a large decrease of the intense bands, and the apparition of many new protein bands.
     5. The combinatorial peptide ligand library treated urinary exosomes were predigested and fractionated by peptide OFFGEL electrophoresis and characterized by mass detection of HPLC-CHIP-MS/MS analysis. By using this strategy, 512 non-redundant proteins were identified from the human urinary exosomes, and 374 proteins had not been reported. GO analysis showed that 55.36% of identified proteins were soluble proteins, and 44.93% were membrane proteins.
     6. A total of 18 proteins were identified in the 45kD~35kD band by comparative analysis of urinary exosomal proteins from normal individuals and NSCLC patients. Among them, 4 were only from normal individuals, 11 were only from NSCLC patients, and the other 3 were from both normal individuals and NSCLC patients.
     7. The result of western blot showed that the level of LRG1 was higher on the whole in the urinary exosomes from NSCLC patients compared to samples from healthy individuals. The result of immunohistochemistry staining showed significantly increased AACT level in lung cancer compared with normal lung tissue.
     Conclusions
     1. In the present research, using a comparative proteomic discovery approach combined 1D SDS-PAGE and nano-HPLC-chip-MS/MS, we effectively identified and validated candidate urinary biomarkers for objective and non-invasive diagnosis of NSCLC.
     2. The higher expression level ofAACT in urine may be associated with lung tissue of NSCLC patients, and the results suggested that LRG1 may be a candidate biomarker for non-invasive diagnosis of NSCLC in urine.
     3. The CPLL technology can effectively remove the abundant proteins and enrich the relatively low abundance proteome of exosmes.
     4. The urinary exosomal proteome contains exceedingly rich low abundance proteins, and the research result contributes a lot to our understanding of the urinary exosomal proteome.
     5. The higher expression level of LRG1 in urinary exosomes may be associated with lung tissue of NSCLC patients, and the results suggested that LRG1 may be a candidate biomarker for non-invasive diagnosis of NSCLC in urine.
引文
[1] Trairak Pisitkun, Rong-Fong Shen, and Mark A. Knepper. Trairak Pisitkun, Rong-Fong Shen, and Mark A. Knepper. Identification and proteomic profiling of exosomes in human urine [J]. Proc Natl Acad Sci USA, 2004,101(36): 13368–13373
    [2] Tetsuya Okano, Tadashi Kondo, Professor, Tatsuhiko Kakisaka, Kiyonaga Fujii, Masayo Yamada, Harubumi Kato, Toshihide Nishimura, Akihiko Gemma, Shoji Kudoh, Setsuo Hirohashi, A. Gemma, S. Kudoh and S. Hirohashi. Plasma proteomics of lung cancer by a linkage of multi-dimensional liquid chromatography and two-dimensional difference gel electrophoresis [J]. Proteomics, 2006, 6 (13), 3938–3948
    [3]李峰;杨芳;肖志强等.临床蛋白质组学——蛋白质组学在临床研究中的应用[J].生物化学与生物物理进展.2006,2(2):163-166
    [4] Massimo Papale, Maria Carmela Pedicillo, Bradley J. Thatcherc, Salvatore Di Paolo, Lorenzo Lo Muzio b, Pantaleo Bufo, Maria Teresa Rocchetti, Marta Centra, Elena Ranieri, Loreto Gesualdo. Urine profiling by SELDI-TOF/MS: Monitoring of the critical steps in sample collection, handling and analysis [J]. Journal of Chromatography B, 856 (2007) 205–213
    [5] Iacobelli S, ArnòE, D'Orazio A, Coletti G. Detection of antigens recognized by a novel monoclonal antibody in tissue and serum from patients with breast cancer [J]. Cancer Res,1986,46(6):3005-3010
    [6] Li H, Zhu X, Zhang Y, Xiang J, Chen H. Arsenic trioxide exerts synergistic effects with cisplatin on non-small cell lung cancer cells via apoptosis induction [J]. J Exp Clin Cancer Res, 2009 ,28(1):110
    [7] Cao C, Shinohara ET, Li H, Niermann KJ, Kim KW, Sekhar KR, Gleave M, Freeman M, Lu B. Clusterin as a therapeutic target for radiation sensitization in a lung cancer model [J]. Int J Radiat Oncol Biol Phys 2005, 63(4):1228-1236
    [8] Scaltriti M, Santamaria A, Paciucci R, Bettuzzi S. Intracellular clusterin induces G2-M phase arrest and cell death in PC-3 prostate cancer cells [J]. Cancer research, 2004, 64(17):6174-6182
    [9] Chi KN, Siu LL, Hirte H, Hotte SJ, Knox J, Kollmansberger C, Gleave M, Guns E, Powers J, Walsh W, Tu D, Eisenhauer E. A phase I study of OGX-011, a 2'-methoxyethyl phosphorothioate antisense to clusterin, in combination with docetaxel in patients with advanced cancer [J]. Clin Cancer Res, 2008, 14(3):833-839
    [10] Higashiyama M, Doi O, Yokouchi H, Kodama K, Nakamori S, Tateishi R. Alpha-1-antichymotrypsin expression in lung adenocarcinoma and its possible association with tumor progression [J]. Cancer, 1995,76(8):1368–1376
    [11] Laursen I, Lykkesfeldt AE. Purification and characterization of an alpha 1-antichymotrypsin-like 66 kDa protein from the human breast cancer cell line, MCF-7 [J]. Biochim Biophys Acta, 1992,1121(1–2):119–129
    [12] Chris Planque,Lin Li, Yingye Zheng. Multiparametric Serum Kallikrein Panel for Diagnosis of Non–Small Cell Lung Carcinoma [J]. Clinical Cancer Research, 2008,14(5):1355-1362
    [13] N Sagawa,H Fujita, Y Banno,Y Nozawa. Gelsolin suppresses tumorigenicity through inhibiting PKC activation in a human lung cancer cell line, PC10 [J]. Br J Cancer, 2003,88(4): 606–612
    [14] Hirotoshi Dosaka-Akita1, Fumihiro Hommura, Hisakazu Fujita. Frequent Loss of Gelsolin Expression in Non-Small Cell Lung Cancers of Heavy Smokers [J]. Cancer Research, 1998,58(2):322-327
    [15] K.H. Yu, A.K. Rustgi and I.A. Characterization of Proteins in Human Pancreatic Cancer Serum Using Differential Gel Electrophoresis and Tandem Mass Spectrometry [J]. J Proteome Res, 2005,4(5):1742–1751
    [16] Tatsuhiko Kakisaka, Tadashi Kondo, Tetsuya Okano. Plasma proteomics of pancreatic cancer patients by multi-dimensional liquid chromatography and two-dimensional difference gel electrophoresis (2D-DIGE): Up-regulation of leucine-rich alpha-2-glycoprotein in pancreatic cancer [J]. Journal of Chromatography B, 2007,852(1-2):257-267
    [1] Ewout J H, Trairak P, Robert Z, et al .Prospects for urinary proteomics: Exosomes as a source of urinary biomarkers [J]. Nephrology, 2005, 10 (3):283-290.
    [2] Kanno, K., Sasaki, S., Hirata, Y., Ishikawa, S., et al., Urinary excretion of aquaporin-2 in patients with diabetes insipidus [J]. N. Engl. J. Med. 1995, 332(23): 1540–1545.
    [3] Wen, H., Frokiaer, J., Kwon, T. H., Nielsen, S., Urinary excretion of aquaporin-2 in rat is mediated by a vaso-pressin-dependent apical pathway [J]. J. Am. Soc. Nephrol.1999, 10(7): 1416–1429.
    [4] Pisitkun T, Shen R, Knepper M: Identification and proteomic profiling of exosomes in human urine [J]. Proc Natl Acad Sci USA, 2004, 101:13368-13373.
    [5] Zhou H, Pisitkun T, Aponte A, Yuen PST, Hoffert JD, Yasuda H, Hu X, Chawla L, Shen R-F, Knepper MA, Star RA: Exosomal Fetuin-A identified by proteomics: A novel urinary biomarker for detecting acute kidney injury [J]. Kidney Int. 2006, 70:1847-1857.
    [6] Hoorn EJ, Pisitkun T, Zietse R et al. Prospects for urinary proteomics: exosomes as a source of urinary biomarkers [J]. Nephrology (Carlton), 2005; 10(3): 283–290.
    [7] Boschetti E, Giorgio Righetti P. Hexapeptide combinatorial ligand libraries: the march for the detection of the low-abundance proteome continues [J]. Biotechniques, 2008, 44(5): 663-665.
    [8] Giovanni Candiano, Veronica Dimuccio , Maurizio Bruschi , Laura Santucci , Rosanna Gusmano, Egisto Boschetti, Pier Giorgio Righetti, Gian Marco Ghiggeri. Combinatorial peptide ligand libraries for urine proteome analysis: Investigation of different elution systems [J]. Electrophoresis, 2009, 30(14): 2405-2411.
    [9] Castagna, A., Cecconi, D., Sennels, L., Rappsilber, J., Guerrier, L., Fortis, F., Boschetti, E., Lomas, L. and Righetti, P. G. Exploring the hidden human urinaryproteome via ligand library beads [J]. J Proteome Res, 2005, 4(6): 1917-1930
    [10] Sennels, L., Salek, M., Lomas, L., Boschetti, E., Righetti, P. G. and Rappsilber, J. Proteomic Analysis of Human Blood Serum Using Peptide Library Beads [J]. J Proteome Res, 2007, 6 (10): 4055-4062
    [11] Guerrier, L., Claverol, S., Fortis, F., Rinalducci, S., Timperio, A. M., Antonioli, P., Jandrot-Perrus, M., Boschetti, E. and Righetti, P. G. Exploring the platelet proteome via combinatorial, hexapeptide ligand libraries [J]. J Proteome Res, 2007, 6 (11): 4290-4303
    [12] Roux-Dalvai, F., Gonzalez de Peredo, A., Simo, C., Guerrier, L., Bouyssie′,D., Zanella, A., Citterio, A., Burlet-Schiltz, O., Boschetti, E., Righetti, P. G., Monsarrat, B. Extensive analysis of the cytoplasmic proteome of human erythrocytes using the peptide ligand library technology and advanced mass spectometry [J]. Mol. Cell. Proteomics, 2008, 7, 2254-2269.
    [13] Essader AS, Cargile BJ, Bundy JL Jr: A comparison of immobilized pH gradient isoelectric focusing and strong-cation-exchange chromatography as a first dimension in shotgun proteomics [J]. Proteomics, 2005, 5(1): 24-34
    [14] Michel, P. E., Reymond, F. Arnaud, I. L., Josserand, J., Girault, H. H., and Rossier, J. S. Protein fractionation in a multicompartment device using Off-Gel isoelectric focusing [J]. Electrophoresis, 2003, 24(1-2):3-11
    [15] Heller, M., Michel, P. E., Morier, P., Crettaz, D., Wenz, C., Tissot, J. D., Reymond, F., and Rossier, J. S. Two-stage Off-Gel isoelectric focusing: protein followed by peptide fractionation and application to proteome analysis of human plasma [J]. Electrophoresis 2005 , 26(6):1174-1188
    [16] Heller, M., Ye, M., Michel, P. E., Morier, P., Stalder, D., Junger ,M. A., Aebersold, R., Reymond, F., and Rossier, J. S. Added value for tandem mass spectrometry shotgun proteomics data validation through isoelectric focusing of peptides. J. Proteome Res. 2005, 4 (6): 2273–2282
    [17] Michel, P. E., Crettaz, D., Morier, P., Heller ,M., Gallot, D., Tissot, J. D., Reymond, F., and Rossier, J. S. Proteome analysis of human plasma and amnioticfluid by Off-Gel TM isoelectric focusing followed by nano-LC-MS/MS [J]. Electrophoresis 2006, 27(5-6):1169-1181
    [18] Essader, A. S., Cargile, B. J., Bundy, J. L., and Stephenson, J. L., Jr. A comparison of immobilized pH gradient isoelectric focusing and strong-cation-exchange chromatography as a first dimension in shotgun proteomics [J]. Proteomics 2005; 5(1):24–34
    [19] Cargile, B. J., Bundy, J. L., and Stephenson, J. L,. Jr. Potential for false positive identifications from large databases through tandem mass spectrometry [J]. J. Proteome Res. 2004, 3(5): 1082–1085
    [20] Cargile BJ, Bundy JL, Freeman TW, Stephenson JL Jr. Immobilized pH gradients as a first dimension in shotgun proteomics and analysis of accuracy of pI predictability of peptides [J]. J Proteome Res 2004, 3(1): 112-119
    [21] Burgess JA, Lescuyer P, Hainard A, Burkhard PR, Turck N, Michel P, Rossier JS, Reymond F, Hochstrasser DF, Sanchez JC. Identification of brain cell death associated proteins in human post-mortem cerebrospinal fluid [J]. J Proteome Res, 2006, 5(7): 1674-1681
    [22] Hoerth P., Miller C. A., Preckel T. and Wenz C. Efficient fractionation and improved protein identification by peptide OFFGEL electrophoresis [J]. Mol. Cell. Proteomics, 2006, 5: 1968-1974.
    [23] Jun Adachi, Chanchal Kumar, Yanling Zhang, Jesper V Olsen and Matthias Mann. The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins [J]. Genome Biology 2006, 7:R80
    [24] Ewout J Hoorn, Pisitkun T, Robert Zietse. Prospects for urinary proteomics: Exosomes as a source of urinary biomarkers [J]. NEPHROLOGY 2005; 10, 283–290
    [1]袁雪宇,吴国亭,韩玉麒。差异蛋白质组学技术和应用前[J].同济大学学报(医学版),2004,4(25):349-352
    [2] Gygi S P , Rochon Y, Franza B , et al. Correlation between protein and mRNA abundance in yeast [J ]. Mol Cell Biol , 1999 , 19(3) :1 720
    [3]何大澄肖雪媛。差异蛋白质组学及其应用[J].北京师范大学学报(自然科学版),2002,38(4):558-562
    [4] Jensen P K, Pasa2Tolic L , Peden K K, et al. Mass spectrometric detection for capillary isoelectric focusing separations of complex protein mixtures [J]. Electrophoresis, 2000 , 21 :1372
    [5] K.H. Yu, A.K. Rustgi and I.A. Characterization of Proteins in Human Pancreatic Cancer Serum Using Differential Gel Electrophoresis and Tandem Mass Spectrometry [J]. J Proteome Res, 2005,4(5):1742–1751
    [6] Tatsuhiko Kakisaka, Tadashi Kondo, Tetsuya Okano. Plasma proteomics of pancreatic cancer patients by multi-dimensional liquid chromatography and two-dimensional difference gel electrophoresis (2D-DIGE): Up-regulation of leucine-rich alpha-2-glycoprotein in pancreatic cancer [J]. Journal of Chromatography B, 2007,852(1-2):257-267
    [7] Tetsuya Okano, Tadashi Kondo, Professor, Tatsuhiko Kakisaka, Kiyonaga Fujii, Masayo Yamada, Harubumi Kato, Toshihide Nishimura, Akihiko Gemma, Shoji Kudoh, Setsuo Hirohashi, A. Gemma, S. Kudoh and S. Hirohashi. Plasma proteomics of lung cancer by a linkage of multi-dimensional liquid chromatography and two-dimensional difference gel electrophoresis [J]. Proteomics, 2006, 6 (13), 3938–3948
    [1] Ste′phane Decramer, Anne Gonzalez de Peredo, Benjamin Breuil, Harald Mischak, Bernard Monsarrat, Jean-Loup Bascands, and Joost P. Schanstra. Urine in Clinical Proteomics [J]. Molecular & Cellular Proteomics 7:1850–1862, 2008.
    [2] Thongboonkerd, V., and Malasit, P. (2005) Renal and urinary proteomics: current applications and challenges [J]. Proteomics 5, 1033–1042
    [3] Trairak Pisitkun, Rose Johnstone and Mark A. Knepper. Discovery of Urinary Biomarkers [J]. Molecular & Cellular Proteomics 5:1760-1771, 2006
    [4] Erik Ils? Christensen. Pathophysiology of protein and vitamin handling in the proximal tubule [J]. Nephrol Dial Transplant (2002) 17 [Suppl 9]: 57–58
    [5] Richard J. Baines, Nigel J. Brunskill. The Molecular Interactions between Filtered Proteins and Proximal Tubular Cells in Proteinuria [J]. Nephron Exp Nephrol 2008;110:e67–e71
    [6] Matthew J. Lazzara and William M. Deen. Model of albumin reabsorption in the proximal tubule [J]. Am J Physiol Renal Physiol 292: F430–F439, 2007
    [7] Hoyer JR, Seiler MW. Pathophysiology of Tamm-Horsfall protein [J]. Kidney Int. 1979 Sep; 16(3):279-89.
    [8] A. P. Fletcher, A. Neuberger, and Wendy A. Ratcliffe.Tamm–Horsfall urinary glycoprotein. The chemical composition [J]. Biochem J. 1970 November; 120(2): 417–424.
    [9] Zager RA, Cotran RS, Hoyer JR.Pathologic localization of Tamm-Horsfall protein in interstitial deposits in renal disease [J]. Lab Invest. 1978 Jan; 38(1):52-7.
    [10] Berdon WE, Schwartz RH, Becker J, Baker DH.Tamm-Horsfall proteinuria. Its relationship to prolonged nephrogram in infants and children and to renal failure following intravenous urography in adults with multiple myeloma [J]. Radiology. 1969 Mar; 92(4):714-22.
    [11]赵丽华,范华骅. exosome及其在免疫耐受方面的作用[J].生命科学, 2007, 19(2): 174~178
    [12] Kanno, K., Sasaki, S., Hirata, Y., Ishikawa, S. et al., Urinary excretion of aquaporin-2 in patients with diabetes insipidus [J]. N. Engl. J. Med. 1995, 332(23): 1540–1545.
    [13] Wen, H., Frokiaer, J., Kwon, T. H., Nielsen, S., Urinary excretion of aquaporin-2 in rat is mediated by a vaso-pressin-dependent apical pathway [J]. J. Am. Soc. Nephrol.1999, 10(7): 1416–1429.
    [14] Pisitkun T, Shen R, Knepper M: Identification and proteomic profiling of exosomes in human urine [J]. Proc Natl Acad Sci USA, 2004, 101:13368-13373.
    [15] Zhou H, Pisitkun T, Aponte A, Yuen PST, Hoffert JD, Yasuda H, Hu X, Chawla L, Shen R-F, Knepper MA, Star RA: Exosomal Fetuin-A identified by proteomics: Anovel urinary biomarker for detecting acute kidney injury [J]. Kidney Int. 2006, 70:1847-1857.
    [16] Hoorn EJ, Pisitkun T, Zietse R et al. Prospects for urinary proteomics: exosomes as a source of urinary biomarkers [J]. Nephrology (Carlton), 2005; 10(3): 283–290.
    [17] Rao, P. V., Lu, X., Standley, M., Pattee, P., Neelima, G., Girisesh, G., Dakshinamurthy, K. V., Roberts, C. T., Jr., and Nagalla, S. R. (2007) Proteomic identification of urinary biomarkers of diabetic nephropathy [J]. Diabetes Care 30, 629-637.
    [18] Orenes-Pinero, E., Corton, M., Gonzalez-Peramato, P., Algaba, F., Casal, I., Serrano, A., and Sanchez-Carbayo, M. (2007) Searching urinary tumor markersfor bladder cancer using a two-dimensional differential gel electrophoresis (2D-DIGE) approach [J]. J Proteome Res 6, 4440-4448.
    [19] Coon, J. J., Zurbig, P., Dakna, M., Dominiczak, A. F., Decramer, S., Fliser, D., Frommberger, M., Golovko, I., Good, D. M., Herget-Rosenthal, S., Jankowski, J., Julian, B. A., Kellmann, M., Kolch, W., Massy, Z., Novak, J., Rossing, K., Schanstra, J. P., Schiffer, E., Theodorescu, D., Vanholder, R., Weissinger, E. M., Mischak, H., and Schmitt-Kopplin, P. (2008) CE-MS analysis of the human urinary proteome for biomarker discovery and disease diagnostics [J]. Proteomics Clin Appl. 2008 July 10; 2(7-8): 964.
    [20] Naturally Occurring Human Urinary Peptides for Use in Diagnosis of Chronic Kidney Disease [J]. Mol Cell Proteomics 2010 9: 2424-2437. doi:10.1074/mcp.M110.001917
    [21] Theodorescu D, Fliser D, Wittke S, et al. Pilot study of capillary electrophoresis coupled to mass spectrometry as a tool to define potential prostate cancer biomarkers in urine [J]. Electrophoresis, 2005, 26: 2797—2808
    [22] Wittke S, Mischak H, Walden M, Kolch W, R?dler T, Wiedemann K.Discovery of biomarkers in human urine and cerebrospinal fluid by capillary electrophoresis coupled to mass spectrometry: towards new diagnostic and therapeuticapproaches [J]. Electrophoresis. 2005 Apr; 26(7-8):1476-87.
    [23] Cutillas P R, Norden AG, Cramer R, et a1. Detection and analysis of urinary peptides by on-line liquid chromatography and mass spectrometry:application to patients with renal Fanconi syndrome [J]. Clin Sci (Lond),2003,104(5):483-490.
    [24] Sun W, Li F, Wu S ,et a1. Human urine proteome analysis by three separation approaches [J]. Proteomics,2005,5(18):4994-5001
    [25] De Godoy, L. M., Olsen, J. V., de Souza, G. A., Li, G., Mortensen, P., and Mann, M. (2006) Status of complete proteome analysis by mass spectrometry: SILAC labeled yeast as a model system [J]. Genome Biol 7, R50.
    [26] Rifai, N., Gillette, M. A., and Carr, S. A. (2006) Protein biomarker discovery and validation: the long and uncertain path to clinical utility [J]. Nat Biotechnol 24, 971-983.
    [27] Domon, B., and Aebersold, R. (2006) Challenges and opportunities in proteomics data analysis [J]. Mol Cell Proteomics 5, 1921-1926.
    [28] Keshishian, H., Addona, T., Burgess, M., Kuhn, E., and Carr, S. A. (2007) Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution [J]. Mol Cell Proteomics 6, 2212-2229.
    [29] Issaq HJ,Conrads TP,Prieto DA, et a1.SELDI—TOF MS for di—agnostic proteomics [J]. Anal Chem,2003,75(7):148 A一155 A.
    [30] Neuhoff N,Kaiser T,Wittke S, et a1.Mass spectrometry for the detection of differentially expressed proteins: a comparison of surface-enhanced laser desorption/ionization and capillary electropho-resis/mass spectrometry [J]. Rapid Commun Mass Spectrom,2004,18(2):149—156.
    [31] Baggerly KA,Morris J S,Coombes KR .Reproducibility of SELDI-TOF protein patterns in serum : comparing datasets from different experiments [J]. Bioinformatics,2004,20(5):777—785.
    [32] Kimia Sobhani. Urine Proteomic Analysis: Use of Two-Dimensional GelElectrophoresis, Isotope Coded Affinity Tags, and Capillary Electrophoresi[sM]. The Urinary Proteome: Methods and Protocols. 325-346. Humana Press, 2010
    [33] Maryam Afkarian, ET AL. Optimizing a Proteomics Platform for Urine Biomarker Discovery [J]. Mol Cell Proteomics 2010 9: 2195-2204.
    [34] Ono M,Shitashige M,Honda et al.Label-free quantitative proteomics using large peptide data sets generated by nanoflow liquid chromatography and mass spectrometry [J]. Mol Cell Proteomics,2006,5(7):1338~1347
    [35] Gao J, Opiteck G J, Friedrichs M S,et al.Changes in the protein expression of yeast as a function of carbon source [J]. J Proteome Res,2003,2(6):643~649
    [36] Anderson L, Hunter C L.Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins [J]. Mol Cell Proteomics,2006,5 (4):573~588
    [37] Nagarjuna Nagaraj and Matthias Mann. Quantitative Analysis of the Intra- and Inter-Individual Variability of the Normal Urinary Proteome [J]. J Proteome Res. 2011, 10 (2):637–645
    [38] Coon J, ZURBIG P, DAKNA M, et al. CE-MS analysis of the human urinary proteome for biomarker discovery and disease diagnostics [J]. PROTEOMICS - Clinical Applications, 2008, 2: 964-973
    [39] Heine G, Raida M, Forssmann WG.Mapping of peptides and protein fragments in human urine using liquid chromatography-mass spectrometry [J]. J Chromatogr A. 1997 Jul 25; 776 (1):117-24.
    [40] Pieper, R., Gatlin, C. L., McGrath, A. M., Makusky, A. J., Mondal, M., Seonarain, M., Field, E., Schatz, C. R., Estock, M. A., Ahmed, N., Anderson, N. G., and Steiner, S. (2004) Characterization of the human urinary proteome: a method for high-resolution display of urinary proteins on two-dimensional electrophoresis gels with a yield of nearly 1400 distinct protein spots [J]. Proteomics 4, 1159-1174.
    [41] Jun Adachi, Chanchal Kumar, Yanling Zhang, Jesper V Olsen and Matthias Mann. The human urinary proteome contains more than 1500 proteins, including a largeproportion of membrane proteins [J]. Genome Biology, 2006, 7:R80
    [42] Vrooman O P, Witjes J A. Urinary markers in bladder cancer [J]. Eur Urol, 2008, 53: 909-916
    [43] Goodison S, Rosser C J, Urquidi V. Urinary proteomic profiling for diagnostic bladder cancer biomarkers [J]. Expert Rev Proteomics, 2009, 6: 507—514
    [44] Irmak S, Tilki D, Heukeshoven J, et al. Stage-dependent increase of orosomucoid and zinc-alpha2-glycoprotein in urinary bladder cancer [J]. Proteomics, 2005, 5: 4296-4304
    [45] Iwaki H, Kageyama S, Isono T, Wakabayashi Y, Okada Y, Yoshimura K, Terai A, Arai Y, Iwamura H, Kawakita M, Yoshiki T.Diagnostic potential in bladder cancer of a panel of tumor markers (calreticulin, gamma -synuclein, and catechol-o-methyltransferase) identified by proteomic analysis [J]. Cancer Sci. 2004 Dec;95(12):955-61.
    [46] Stamey, T. A., Yang, N., Hay, A. R., McNeal, J. E. et al., Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate [J]. N. Engl. J. Med. 1987, 317, 909–916.
    [47] Stamey, T. A., Yang, N., Hay, A. R., McNeal, J. E. et al., Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate [J]. N. Engl. J. Med. 1987, 317, 909–916.
    [48] Goo Y A, Goodlett D R. Advances in proteomic prostate cancer biomarker discovery [J]. J Proteomics, 2010 Apr 14[Epub ahead of print]
    [49] Rehman I, Azzouzi A R, Catto J W, et al. Proteomic analysis of voided urine after prostatic massage from patients with prostate cancer: a pilot study [J]. Urology, 2004, 64: 1238—1243
    [50] Theodorescu D, Schiffer E, Bauer HW, Douwes F, Eichhorn F, Polley R, Schmidt T, Sch?fer W, Zürbig P, Good DM, Coon JJ, Mischak H. Discovery and validation of urinary biomarkers for prostate cancer [J]. Proteomics Clin Appl. 2008 Mar 7;2(4):556-570.
    [51] Rogers M A, Clarke P, Noble J, et al. Proteomic profiling of urinary proteins inrenal cancer by surface enhanced laser desorption ionization and neural-network analysis: identification of key issues affecting potential clinical utility [J]. Cancer Res, 2003, 63: 6971—6983
    [52] Wu D L, Zhang W H, Wang W J, et al. Proteomic evaluation of urine from renal cell carcinoma using SELDI-TOF-MS and tree analysis pattern [J]. Technol Cancer Res Treat, 2008, 7: 155—160
    [53] Ward D G, Nyangoma S, Joy H, et al. Proteomic profiling of urine for the detection of colon cancer [J]. Proteome Sci, 2008, 6: 19
    [54] Petri A L, Simonsen A H, Yip T T, et al. Three new potential ovarian cancer biomarkers detected in human urine with equalizer bead technology [J]. Acta Obstet Gynecol Scand, 2009, 88: 18—26
    [55] Ye B, Skates S, Mok S C, et al. Proteomic-based discovery and characterization of glycosylated eosinophil-derived neurotoxin and COOH-terminal osteopontin fragments for ovarian cancer in urine [J]. Clin Cancer Res, 2006, 12: 432—441
    [56] Payungsak Tantipaiboonwong, Supachok Sinchaikul, Supawadee Sriyam, et al.Different techniques for urinary protein analysis of normal and lung cancer patients [J]. Proteomics 2005, 5, 1140–1149
    [57] Thongboonkerd V, Mungdee S, Chiangjong W.Should urine pH be adjusted prior to gel-based proteome analysis [J]. J Proteome Res. 2009 Jun;8(6):3206-11.
    [58] Thongboonkerd V, Chutipongtanate S, Kanlaya R.Systematic evaluation of sample preparation methods for gel-based human urinary proteomics: quantity, quality, and variability [J]. J Proteome Res. 2006 Jan;5(1):183-91.
    [59] Yamamoto, T., Langham, R. G., Ronco, P., et al.Towards standard protocols and guidelines for urine proteomics: a report on the Human Kidney and Urine Proteome Project (HKUPP) symposium and workshop, 6 October 2007, Seoul, Korea and 1 November 2007, San Francisco, CA, USA [J]. Proteomics 8, 2156-2159.
    [60] Vlahou, A., Schanstra, J. P., Frokiaer, J., et al.Establishment of a European Network for Urine and Kidney Proteomics [J]. J Proteome Res in press.
    [61] Fliser, D., Novak, J., Thongboonkerd, V., et al.Advances in urinary proteome analysis and biomarker discovery [J]. J Am Soc Nephrol 18, 1057-1071.
    [62] Mischak, H. A., R.; Banks, R. E.; Conaway, M., et al.A need to define the field and to begin to set standards [J]. Proteomics Clin Appl 1, 148-156.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700