用户名: 密码: 验证码:
具有3-2-1并联结构地震模拟器的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震模拟器系统是地震工程研究工作中的重要试验设备之一。并联结构的振动台具有刚度大、对称性好、速度高、机构紧凑、动力学性能好等优点。本文提出一种应用于地震模拟器的具有3-2-1结构的冗余驱动并联机构,并对此机构的构型、运动学、静力学、工作空间、空间模型等方面进行了比较全面的研究,具体内容为:
     1.建立了机构的位置反解方程,并利用对反解方程进行求导的方法,得到了机构的逆雅可比矩阵J~(-1)的解析表达式,这个表达式是分析机构各种性能指标的基础。
     2.在机构位置反解和速度雅可比矩阵的基础上,利用数值迭代的方法对机构进行了正解求解,每次可以求得机构的一组正解。
     3.建立了机构的静力学模型,得到了力与力矩传递矩阵G的解析表达式,并根据虚功原理导出了G与J的关系:G=(J~T)~(-1)。
     4.建立了机构的空间模型,为今后的优化设计奠定了基础。
     5.用解析和数值两种方法对机构的工作空间进行了详细的分析,得到在z=860附近可达工作空间截面积最大,在z=807附近灵活工作空间截面积最大。
     6.利用机构的空间模型,分析了机构工作空间的大小与其结构参数的关系,得到了为获得最大工作空间r_1、r_2、r_3、r_4的最佳取值。
The earthquake simulator is one of the most important test equipment in the research of the earthquake engineering. The earthquake simulator with parallel structure shows several advantages, such as, higher stiffness, better symmetry, higher velocity, better dynamics and compact structure. In this dissertation, a new redundant activate parallel mechanism with 3-2-1 structure applied in the earthquake simulator is presented and studied in many fields, such as structure, kinematics, statics, workspace, physical model of the solution space and so on.
    1. Drive the inverse position equation. Based on the differentiation to the inverse position equation, we get the analytic expression of the inverse jacobian matrix' J-1', the expression is the foundation of the research in many performance indexes.
    2. Based on the inverse position equation and the jacobian matrix, the solution of direct position is obtained through the numerical iteration method.
    3. The statics equation and the force/moment transmission matrix 'G' are obtained, then base on the principle of virtual work, the relationship between the two matrix 'G' and 'J' is obtained.
    4. The physical model of the solution space are established and that grounds the foundation for the optimum design.
    5. Detailed analysis in workspace is made by two means: numerical and analytic method. The conclusion is: The sectional view of reachable workspace reach its maximum area when z = 860, The sectional view of dexterous workspace reach its maximum area when z = 807.
    6. Based on the physical model of the solution space, analyze the relationship between the workspace and the parameters of the manipulator, the optimal value of the parameters is obtained.
引文
1.陈学生,陈在礼,孔民秀.并联机器人研究的进展与现状.机器人,2002,Vol.24,No.5:464-470
    2. Stewart D A. Platform with 6-DoF Proc. on Institution of Mechanical Engineering. 1965, 18(1): 371-386
    3. K.H. Hunt. Structural Kinematics of In-Parallel-Actuated Robot Arm. Trans. ASME J. Mechanisms, rransmissions, and Automation in Design, 1983,105: 705-712
    4.邱志成,谈大龙,赵明扬.并联机器人研究现状.研究开发,2000,38(4):27-29
    5.曲义远,黄真.空间六自由度多回路机构位置的三维搜索方法.机器人,1989,Vol.3,No.5:24-29
    6.黄真,孔令富,方跃法.并联机器人机构学理论及控制.北京:机械工业出版社,1997
    7. Z. Geng, L.S. Haynes, j.D. Lee, R. L. Caroll. Robotics and Autonomous Systems 9(1992)237-254
    8. C.M. Gosselin, Trans. ASME. J. Dyn. Sys. Meas. Control. 1996.118: 22-28
    9.王洪瑞.液压6-DOF并联机器人操作手运动和力控制研究.保定:河北大学出版社,2001
    10. J. K. Salisbury, and J. J. Craig. Articulated hands: force control and kinematic issues. Int. J. Robot, 1982, Res. 1(1):4-12
    11. T. Yoshikawa. Analysis and control of robot manipulators with redundancy. 1st International Symposium on Robotics Research. MIT Press, 1984:pp. 735-747,
    12.李庆扬,数值分析,华中理工大学出版社,1986
    13. Strang. Linear algebra and its application. Academic Press, New York, 1976
    14. Gosselin and J. Angeles. A global performance index for the kinematic optimization of robotic manipulators. Transaction of the ASME, Journal of Mechanical Design, Sep. 1991, Vol.113: pp220-226
    15. Feng Gao, Xin-Jun Liu and W.A. Gruver. The global condition index in the solution space of two-DOF planar parallel wrists. IEEE SMC' 95, Canada, 1995
    16.刘辛军.并联机器人机构性能与尺寸关系分析及其设计理论研究.燕山大学,博士学位论文,1999
    17. M.V. Kircanski. Robotic isotropy and optimal robot design of planar manipulators. IEEE, 1994: 1100-1105
    18. C. Gosselin. Kinematic analysis, optimization and programming of parallel robotic manipulators. PH.D. thesis, McGill University, Montreal, Quebec, Canada, 1988
    19. R. Kerr. Analysis, Properites, and Design of a Stewart-Platform Transducer. ASME J. Mech. Transm. Autom. Des., Vol. 111, pp. 25-28, 1989
    20. Farhad Tahmasedbi, and Lung-Wen Tsai. On the stiffness of a novel six-degree-of-freedom parallel minimanipulator. Journal of Robotic Systems, 1995, Vol. 12, No. 12: 845-856
    21.李敏霞,杨泽群,陈建秋.地震模拟振动台技术的开发与应用.世界地震工程,1996(2):49-54
    22.胡宝生.我国自行研制的第一个大型三向地震模拟振动台.世界地震工程,1995(4):44-46
    23.韩俊伟,李玉亭,胡宝生.大型三向六自由度地震模拟振动台.地震学报,1998,20(3):327-331
    
    
    24.孟吉复,杨国平,陈安元.模拟地震振动台的动力特性试验及分析.武汉水利电力学院学报,1990,23(6):25-31
    25.中国水利水电科学研究院工程抗震研究中心
    26.方重.模拟地震振动台的近况及其发展.世界地震工程,1999,15(2):89-91,96
    27. Innocenti. C, Parenti-Castelli. V. Forward kinematics of the general 6-6 fully parallel mechanism: an exhaustive numerical approach via a mono-dimensional-search algorithm. American Society of Mechanical Engineers, Design Engineering Division (Publication) DE, v45, Robotics, Spatial Mechanisms, and Mechanical Systems, 1992: 545-552
    28. Innocenti. C, Parenti-Castelli. V. Direct kinematics of the reverse Stewart platform mechanism. IFAC Symposia Series, n7, 1992: 75
    29. Ait-Ahmed M, Renaud M, Vidyasagar M(Ed.). Proc Int Symp IntelRobot, Intelligent robotics, Tara McGraw-Hill, New DeL hi, 1993, 13-24
    30. Innocenti C, Parenti-Castelli Forward kinematics of the general 6-6 fully parallel mechanism: an exhaustive numerical approach via a mono-dimensional-search algorithm Trans ASME, J Mech Des, 1993, 115: 932-937
    31. Dasgupta B, Mruthyunjaya T S. Mech. Mach. Theory, 1996, 31 (6): 799-811
    32.黄真,孔宪文.6-SPS并联机器人机构运动分析.东北重型机械学院学报,1992,16(4):283-289
    33.陈永,严静.同伦迭代法及应用于一般6-SPS并联机器人机构正位置问题.机械科学与技术,1997,16(2):189-194
    34.李维嘉.六自由度并联运动机构正向解的研究.华中理工大学学报,1997,25(4):38-40
    35.刘安心,杨廷力.求一般6-SPS并联机器人机构的全部位置正解.机械科学与技术,1996,15(4):543-546
    36. Lin, W. Griffis. M. Duffy. J. Forward displacement analyses of the 4-4 Stewart Platforms. Trans ASME, J Mech Des v 114, n3, Sep, 1992: 444-450
    37. Lin W, Griffs M, Dully J. Forward displacement analyses of the 4-4 Stewart Platforms.Trans ASME, J Mech Des, 1992, 114: 444-450
    38. Lin, W. Crane, Carl D. Ⅲ. Duffy. J. Closed-form forward displacement analyses of the 4-5 in-parallel platforms. American Society of Mechanical Engineers, Design Engineering Division (Publication) DE, v 45, Robotics, Spatial Mechanisms, and Mechanical Systems, 1992, p 521-527
    39. Innocenti C, Parenti-Castelli V. Forward kinematics of the general 6-6 fully parallel mechanism: an exhaustive numerical approach via a mono-dimensional-search algorithm. Mech Mach Theory, vl15, n4, Dec, 1993, p:932-937
    40. Sreenivasan S.V, Waldron K. J, Nanua, P. Closed-form direct displacement analysis of a 6-6 Stewart platform. Mechanism & Machine Theory, v29, n6, Aug, 1994:855-864
    41. Murthy V, Waldron K J. Position kinematics of the generalized lobster arm and its series-parallel dual. Trans ASME, J Mech Des, 1992,114: 406-413
    42. Merlet J P. Direct kinematics and assembly modes of parallel manipulators. Int J Robot Res, 1992, 11(2): 150-162
    
    
    43. Chou, L.S; Dragenich, L.F, Song, S.M. Predicting the kinematics and kinetics of gait using dynamic programming. American Society of Mechanical Engineers, Bioengineering Division (Publication) BED, v 26, Advances in Bioengineering, 1993:523-526
    44. Liao Q, Seneviratne L D, Forward positional analysis for the general 4-6 in-parallel platform .Earles S W E. Proc Instn Mech. Engrs, 1995, 209(Pt C): 55-67
    45. Innocenti C. Direct kinematics in analytical form of the 6-4 fully-parallel mechanismTrans. ASME, J Mech Des, 1995, 117: 89-95
    46. Innocenti C, Parenti-Castelli V. in: Ninth CISM-IFToMMSymposium on Theory and Practice of Robots and Manipulators. Udine, Italy, 1992
    47. Innoeenti C. Parenti-Castelli V. Closed-form direct position analysis of a 5-5 parallel mechanism. Trans ASME, J Mech Des, 1993, 115: 515-521
    48. Innocenti C. Parenti-Castelli V. Singularity-free evolution from one configuration to another in serial and fully-parallel manipulators. Mech. Mach. Theory, 1993, 28 (4): 553-561
    49. Husain M, Waldron K J. Direct position kinematics of the 3-1-1-1 Stewart Platforms .Trans ASME, J Mech Des, 1994,116:1102-1107
    50. Baker, J. Eddie, Wohlhart, K. On the single screw reciprocal to the general line-symmetric six-screw linkage. Mechanism & Machine Theory, v29, nl, Jan, 1994:p 169-175
    51. Geng Z, Haynes L. Neural network solution for the forward kinematics problem of a Stewart platform. Proc IEEE Int Conf Robot Automn, 1991: 2650-2655
    52. Fieher E F. A Stewart platform-Based Manipulator: General Theory and Practical Construction. Int J Of Rob Res, 1986, 5 (2): 157-182
    53. Merlet, J.P, Assembly modes and direct kinematics of parallel manipulators. Proceedings of the International Symposium on Robotics and Manufacturing: Research, Education and Applications - ISRAM, 1990: 43
    54. Ropponen, T, Nakamura, Y. Performance analysis of kinematic and actuation redundancy in a closed link manipulator. Symposium on Advances in Robot Kinematics, 1990: 416
    55.黄真,孔令富,方跃法.并联机器人机构学理论及控制.北京:机械工业出版社,1997
    56.姜虹,贾嵘,董洪智,王小椿.六自由度并联机器人位置正解的数值解法.上海交通大学学报,2000,Vol.34,No.3:351-353
    57.赵新华,彭商贤,张伟军,李春书.一种分析并联机器人位置正解的高效算法.天津大学学报,2000,Vol.33,No.2:134-137
    58.刘辛军,张立杰,高峰.基于AutoCAD平台的六自由度并联机器人位置工作空间的解析求解方法.机器人,2000,Vol.22,No.6:457-469
    59.南开人学数学系《空间解析几何引论》编写组.空间解析几何引论M..下册.北京:人民教育出版社,1978.218-222
    60.郭祖华,陈五一,陈鼎昌.6杆并联机构运动学及杆受力的仿真.北京航空航天大学学报,2001,Vol.27.Nol:101-104
    61.姚建初,丁希仑,战强,张启先.冗余度机器人基于任务的方向可操作度研究.机器人,2000,
    
    Vol.22.No6:501-505
    62.吴宇列,吴学忠,李圣怡.冗余并联机构的PD控制.国防科技大学学报,2001,Vol.23.No.3:111-114
    63. Kokkinis T. et Millies P., A parallel robot-arm regional structure with actuational redundancy. Mechanism and Machine Theory, 1991, 26(6): 629-641
    64. Dasgupta B., Mruthyunjaya T.S. Force redundancy in parallel manipulators, theoretical and ractical issues. Mechanism and Machine Theory, August 1998, 33(6): 727-742
    65. Kock S., Schumacher W., A parallel x-y manipulator with actuation redundancy for high-speed and active stiffness applications. IEEE Int. Conf. On Robotics and Automation, Leuven, Belgium. May 1998, Vol. 3:2295-2300
    66. Kock S., Schumacher W., A mixed elastic and rigid body dynamic model of an actuation redundant parallel robot with highreduction gears, IEEE Int. Conf. On Robotics and Automation, April 2000
    67. B. Roth, "Performance evaluation of manipulators from a kinematic viewpoint" NBS Special Publication No. 459, Performance Evaluation of Programmable Robots and Manipulators, pp. 39-61, 1975
    68.杨基厚,铰链四杆机构空间模型和尺寸型,机械工程学报,NO.2,1979
    69. C. R. Barker and G. Ao Weeks, "A physical model of the solution space for four bar mechanism" 8th Applied Mechanism Conference of USA ,Nov. 1983
    70. Ji-Hou Yang, "The space model and dimensional types of the four-bar mechanisms", M.M .T, Vol. 22 (1) : 71-76, 1987
    71. Ji-Hou Yang and Feng Gao, "About the diagrams of max. and min. kiematic influence coeficients of four-bar mechanisms" The 4th IFToMM , Inter. Sym. on Linkages and CAD Methods, Vol. Ⅰ- 1, Paper 19, pp141-152, 1985
    72.杨基厚,高峰,四杆机构的空间模型和性能图谱,机械工业出版社,1989
    73. Kumar V. Characterization of Workspace of Parallel Manipulators. ASME J Mech Des, 1992a, 114: 368-375
    74. Kumar V. Instantaneous Kinematics of Parallel Chain Robtic Mechanisms. J Mech Des, 1992b, 114: 349-358
    75. 姜兵,黄田.6-PSS并联机器人操作机平动工作空间解析.机器人, 2000, Vol. 22. No. 2:136-142
    76. Gosselin C M, Angeles J. Singularity Analysis of Closed-Loop. Kinematic Chains. IEEE Trans on Rob and Aut, 1990, 6(3): 281-290
    77. Gosselin, C.M, Guillot, M. Synthesis of manipulators with prescribed workspace. Journal of Mechanical Design, vl13, n4, Dec, 1991:451-455
    78. Gosselin C M, Angeles J. Kinematic Inversion of Parallel Manipulator in the Presence of Incompletely Specified. Tasks ASME J Of Mech Des, U9Ob, 112:454-500
    79. Gosselin C M. Determination of the Workspace of 6-DOF Parallel Manipulators. J Of Mech Des, 1990c, 112: 331-336
    80. Gosselin C M, Lavoie E, Toutant P. Robotics Spatial Mechanisms and Mechanical
    
    Systems. ASME-45(1992): 323-328
    81. Masory O, Wang J. Workspace Evalution of Stewart Platforms ASME, 1992, DE-VOL. 45:337-346
    82. Merlet J P. Trajectory verification in the workspace for parallel manipulators. Int J Robot Res, 1994, 13(4): 326-333
    83.汗劲松,黄田等.6-YHS并联机床结构参数设计理论与方法.清华大学学报,1999,39(8):25-29
    84.金振林.新型六自由度正交并联机器人设计理论与应用技术研究.工学博士学位论文.燕山大学.2001年

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700