用户名: 密码: 验证码:
像机链位姿传递摄像测量方法及船体变形测量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的摄影/摄像测量技术的应用基础是摄像机能够直接拍摄到被测物体的图像,因此对不通视目标三维位置与姿态的测量无能为力。为了解决不通视目标位姿测量问题,本文提出了“像机链位姿传递摄像测量”的新概念,并将其应用于船体变形测量问题,该问题一直是海军装备研究和全球造船行业的难点之一。基于像机链位姿传递摄像测量方法,本文研制了船体变形摄像测量系统,并进行了海上试验。论文的主要工作及创新点如下:
     1.在国际上首次提出了像机链位姿传递摄像测量方法。该方法使用多个摄像机和标志物组成像机链,将不通视的待测目标和测量基准联系起来,进而传递测量待测目标相对测量基准的三维位置、姿态及其变化量。本文系统研究了像机链位姿传递摄像测量方法的原理,探讨了测量传递站的形式,进行了精度分析和实验验证。像机链位姿传递摄像测量方法解决了传统摄像测量原理和方法无法完成的两个或多个不通视物体间或超大视角物体间相对位置、姿态及其变化量的测量问题,能够应用于船体及其它大型结构的变形测量。
     像机链位姿传递摄像测量方法在传递测量位置姿态的同时也会传递测量误差。围绕着提高该方法的测量精度和实用性,本文对摄像机标定、特征标志定位和多摄像机同步等几个关键技术展开了研究。
     2.针对常用摄像机标定方法中存在的参数过度耦合问题,提出了一种基于可控旋转的摄像机标定方法。控制摄像机围绕光心(或光心附近)做旋转运动,能够将等效焦距与其他参数分离开来,求解精确的等效焦距;并在此基础上提出了传统标定方法与基于可控旋转方法相结合的摄像机标定技术,用于高精度标定包含像差系数在内的摄像机内外参数。
     3.设计和制作了能够适应全天候测量要求的由多个十字型红外光源组成的合作目标。针对摄像测量时可能出现的不规则十字丝情况,提出了灰度投影积分和数字相关相结合的方法,首先利用灰度投影积分得到十字丝两臂的宽度及其与图像坐标轴之间的夹角,然后据此生成模板进行相关,并利用相关系数拟合极值法进行亚像素定位。实验证明本方法鲁棒性好,噪声较小的情况下定位精度优于0.05像素。
     4.设计了一种基于硬件同步触发和软件同步策略的多摄像机同步采集和处理系统。通过简单的编程控制将一种即插即用的数字输出模块作为同步信号发生装置;在硬件同步的基础上,通过一定的同步策略实现多台摄像机拍摄图像的同步处理。该方案具有通用性,并且操作简便,能够解决连接在一台或多台计算机上的多个摄像机之间的同步问题。
     5.在原理研究、关键技术研究和方案论证的基础上,设计了基于像机链位姿传递摄像测量方法的船体变形摄像测量系统,并用于实船变形测量,进行了海上试验,得到了甲板上某部位与舰船选定基准之间和船体艏艉之间的长时间、连续的三维位置和姿态变形测量数据。经过更加深入的研究和完善,该方法将在船体及其他大型结构的变形测量和长期监测领域有广阔的应用前景。
Traditional photogrammetry/videometrics methods and techniques are invalid to measure three-dimensional positions and attitudes of nonintervisible objects, for the basis that the camera must capture images of objects to be measured. An innovative prinple of“pose relay videometrics with camera-series”is proposed in this dissertation to resolve the problem of pose measurement between nonintervisible objects. The new method has been applied in ship deformations measurement, which has been one difficulty in navy equipment research and ship building industry. The prototype system for ship deformation measurement based on pose-raly videometrics is developed, and then sea trials are carried on. The main contents and innovations of this dissertation are as follows:
     1. Pose relay videometrics with camera-series method is proposed for the first time internationally. The method uses a series of cameras and markers to build up camera-series and connect the nonintervisible measuring target and reference, and then the three-dimensional positions, attitudes and their changes are obtained by pose relay. Principles of pose relay videometrics method by camera-series are studied systemicly, and the forms of relay stations are discussed. In succession, precision analysis and validation experiments are carried on. The method can resolve the problem of pose and deformation measurement of two or more nonintervisible objects, and those of objects with a very large angle of view, which cannot be processed by conventional principles and methods of videometrics, so that it can be applied in deformations measurement of ships and other large structures.
     The pose relay videometrics method with camera-series relays errors while relaying pose. Surrounding how to improve the precison and practicality, several key techniques such as camera calibratioin, marker detection and cameras synchronization are studied in this dissertation.
     2. A camera calibration method based on controllable rotation is proposed to resolve the problem of overmuch coupled parameters with many commonly used calibration methods. The camera is controlled to rotate a known angle around (or around nearby) the optical center to calculate the accurate efficient focus length departed from other parameters. And then a camera calibration method combined by controllable rotation and traditional two steps calibration is put forward to get all parameters including distortion coefficients.
     3. A cooperative marker combined by several infrared crosses is designed to suit the all-condition measurement requirements. Aiming at detection of random and irregular cross, a new sub-pixel detection method based on gray projecting integration (GPI, in short) and correlation is put forward. GPI method is applied to get the line width and the angles between each cross’arm and the image horizontal axis, and then digital correlation model is created according to the angles, at last, high-accurate sub-pixel location is obtained by fitting the correlation coefficients. Experiments show that the proposed detection method is robust and can locate cross center with the accuracy prior to 0.05 pixels.
     4. A synchronous image acquisition and processing system for multiple cameras is designed and implemented. A general digital output module is adopted as the synchronous trigger signal generator and controlled by computer program. On the basis of hardware-level synchronization, a certain software synchronous strategy is designed to ensure the synchronous frames of every camera to be processed synchronously. The method is universal, easy to operate, and able to resolve the synchronous problem of multiple cameras connected in one or more computers.
     5. On the ground of principle and key techniques research and project demonstration, a prototype videometrics system for ship deformation measurement is developed and applied in ship deformations measurement. Sea trials are carried on, from which long time and continuous data of position and attitude deformations between some point on the deck and the ship reference, and those between the ship head and stern, are achieved. The proposed method therefore has the potential to be applied in deformation measurement of ships and other large structures after more thorough researches and improvements.
引文
[1]于起峰,尚洋.摄像测量学原理与应用研究[M].北京:科学出版社, 2009.
    [2]万德钧,刘玉锋.消除舰船变形的影响和为全舰提供高精度姿态基准[J].中国惯性技术学报. 2005, 13(4): 77-82.
    [3] Mochalov A V, Kazantasev A V. Use of the ring laser units for measurement of the moving object deformation[C]. in Proceedings of SPIE, 4680, 2002, Vol 4680: 85-92.
    [4] Titterton D H, Weston J L. Strapdown inertial navigation technology[M]. London: Peter Peregrinus Ltd., 1997.
    [5]周永余,许江宁,高敬东.舰船导航系统[M].北京:国防工业出版社, 2006.
    [6]郑梓祯,刘德耀,蔡迎波.船用惯性系统试验安装标校与变形测量[J].中国惯性技术学报. 2004, 12(4): 1-6.
    [7] Roy J P, Liu T, Britcher C P. Extracting Dynamic Loads from Optical Deformation Measurements[R]. 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Con, AIAA 2006-2187, 2006.
    [8] Morris M J, Brown M, Spreeman J. Measurement of the Bending and Twist in a Deforming Airfoil Using Laser-Based Imaging[R]. Reno, Nevada: 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2006-1031, 2005.
    [9]郑荣才,陈超英,杨功流.大型舰船甲板变形测量[J].天津大学学报. 2006, 39(9): 1077-1081.
    [10]汪顺亭,汪湛清,朱昀炤,等.船体变形的监测方法及其对航向姿态信息的修正[J].中国惯性技术学报. 2007, 15(6): 635-641.
    [11]朱昀炤,汪顺亭,缪玲娟,等.粒子滤波在船体大角度变形测量中的应用[J].北京理工大学学报. 2008, 28(4): 343-346.
    [12]柳爱利,卢伟.甲板变形测量技术研究[J].海军航空工程学院学报. 2009, 24(2): 178-180.
    [13] Baldwin C, Kiddy J, Salter T, et al. Fiber optic structural health monitoring system: rough sea trials testing of the RV Triton[C]. in OCEANS 2002, Proceedings of MTS/IEEE, 2002: 1806-1813.
    [14] Kiddy J, Baldwin C, Salter T. Hydrostatic Testing of a Manned Underwater Vehicle using Fiber Optic Sensors[C]. in OCEANS 2005, Proceedings of MTS/IEEE, 2005, Vol 2: 1876-1881.
    [15] Prane K, Johnson G, Jensen A E, et al. Instrumentation of a high-speed surface effect ship for structural response characterisation during seatrials[C]. in Proceedings of SPIE, 2000, Vol 3986: 372-379.
    [16] Murawski L. Shaft line alignment analysis taking ship construction flexibility and deformations into consideration[J]. Marine Structures. 2005(18): 62-84.
    [17]裴福俊,万德钧.一种基于应变模态分析的舰船分布式挠曲姿态测量方法[J].中国惯性技术学报. 2005, 13(1): 15-20.
    [18]金晓宏,吴峻.甲板变形测量系统的研究[J].江苏船舶. 2004, 21(1): 1-3.
    [19] Okada T, Takeda Y, Maeda T. On board measurement of stresses and deflections of a Post-Pannamax containership and its feedback to rational design[J]. Marine Structures. 2006(19): 141-172.
    [20]张尧禹,李岷,于萍,等.测量船船体变形测量系统的研究[J].仪器仪表学报.2006, 27(6): 1505-1506.
    [21]李岷,张尧禹,李岩,等.基于测量船角变形光电测量系统的研究[J].长春理工大学学报. 2006, 29(3): 14-15.
    [22]李向荣,乔彦峰,李清安,等.干涉法在船体角度变形测量中的应用[J].计量技术. 2005(4): 26-28.
    [23]李向荣,乔彦峰,刘微,等.船体三维角度变形的自准直干涉测量方法[J].光学技术. 2005, 31(5): 761-763.
    [24]李向荣.基于莫尔条纹法的船体扭转角测量技术研究[J].仪器仪表学报. 2008, 29(10): 2211-2215.
    [25]郑梓祯,刘德耀,蔡迎波.船用惯性系统试验安装标校与变形测量[J].中国惯性技术学报. 2004, 12(4): 1-6.
    [26]魏学通,马利民,庄伟东,等.一种舰船变形测量方法的研究与应用[J].中国惯性技术学报. 2006, 14(3): 74-77.
    [27] Liu T, Radeztsky R, Garg S, et al. A Videlogrammetric Model Deformation Systenn and its Integration with Pressure Paint[R]. AIAA 99-0568, 1999.
    [28] Liu T, Barrows D A, Burner A W, et al. Determining Aerodynamic Loads Based on Optical Deformation Measurements[R]. 39th AlAA Aerospace Sciences Meeting and Exhibit, AIAA 2001-0560, 2001.
    [29] Sant Y L, Durand A, Merienne M. Image Processing Tools Used for PSP and Model Deformation Measurements[R]. 35th AIAA Fluid Dynamics Conference and Exhibit, AIAA 2005-2007, 2005.
    [30] Conley E, Morgan C. Speckle photography applied to measure deformations of very large structures [C]. in Proceedings of SPIE, 1995, Vol 2446: 161-168.
    [31]张明慧,张尧禹,黄廉卿.基于视频图像的实时测量技术的实现[J].微计算机信息. 2004(03): 57-58.
    [32]李兴民,王国田,严兵. GPS用于船体变形的测量研究[J].零八一科技. 2007(1): 1-4.
    [33]于起峰,姜广文,丁晓华,等.测量大型船体变形的折线光路摄像测量方法与系统研究[C].中国力学学会学术大会, 2007
    [34] Yu Q, Jiang G, Fu S, et al. Broken-ray videometric method and system for measuring the three-dimensional position and pose of the non-intervisible object[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science. 2008, 37(B5): 145-148.
    [35] Yu Q, Jiang G, Fu S, et al. Measuring deformation of large vessels with innovative broken-ray videometrics[C]. in the 22nd International Congress of Theoretical and Applied Mechanics, Adelaide, Australia: 2008
    [36] Yu Q, Jiang G, Fu S, et al. Fold-ray videometrics method for the deformation measurement of nonintervisible large structures[J]. Applied Optics. 2009, 48(24): 4683-4687.
    [37] Luhmann T, Robson S, Kyle S, et al. Close Range Photogrammetry: Principles, Methods and Applicatioins[M]. Dunbeath, Scotland, UK: Whittles Publishing, 2006.
    [38] Mikhail E M, Bethel J S, Mcglone J C. Introduction to Modern Photogrammetry[M]. New York: John Wiley & Sons. Inc., 2001.
    [39]张剑清,潘励,王树根.摄影测量学[M].武汉:武汉大学出版社, 2003.
    [40] (美) Shapiro L G, Stockman G C.著.赵清杰,钱芳,蔡利栋译.计算机视觉[M].机械工业出版社, 2005.
    [41]马颂德,张正友.计算机视觉:计算机理论与算法基础[M].北京:科学出版社, 1998.
    [42]郑南宁.计算机视觉与模式识别[M].北京:国防工业出版社, 1998.
    [43] Shiu Y C, Ahmad S. Calibration of Wrist-Mounted Robotic Sensors by Solving Homogeneous Transform Equations of the Form AX=XB[J]. IEEE Transactions on Robotics and Automation. 1989, 5(1): 16-29.
    [44] Park F C, Martin B J. Robot Sensor Calibration: Solving AX = XB on the Euclidean Group[J]. IEEE Transactions on Robotics and Automatioin. 1994, 10(5): 717-721.
    [45] Ansar A, Daniilidis K. Linear pose estimation from points or lines[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2003, 25(5): 578-589.
    [46] Campa G, Mammarella M, Napolitano M R, et al. A comparison of Pose Estimation algorithms for Machine Vision based Aerial Refueling for UAVs[C]. in 14th Mediterranean Conference on Control and Automation, 2006
    [47] Lu C P, Hager G D, Mjolsness E. Fast and gloabally convergent pose estimation from video images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2000, 22(6): 610-622.
    [48] Haralick R M, Joo H, Lee C N, et al. Pose estimation from corresponding point data[J]. IEEE Trans. Systems, Man, and Cybernetics. 1989, 19(6): 1426-1446.
    [49] Tsai R Y. An Efficient and Accuration Camera Calibration Technique for 3D Machine Vision[C]. in Proceedings of IEEE Conference of Computer Vision and Pattern Recognition, 1986: 364-374.
    [50] Chou J C K, Kamel M. Finding the Position and Orientation of a Sensor on a Robot Manipulator Using Quaternions[J]. The International Journal of Robotics Research. 1989, 10(3): 240-254.
    [51] Zhuang H, Roth Z S. Comments on "Calibration of Wrist-mounted Robotics Sensor by Solving Homobeneous Transform Equation of the Form AX=XB"[J]. IEEE Transactions on Robitics and Automation. 1994, 7(6): 877-878.
    [52] Daniilidis K. Hand-Eye Calibration Using Dual Quaternions[J]. International Journal of Robotics Research. 1999, 18(3): 286-298.
    [53]匡萃方,冯其波,张志锋,等.同时测量物体六自由度的方法[J].激光技术. 2005, 29(5): 491-493.
    [54]张世杰,曹喜滨,李晖.交会对接航天器间相对位姿参数单目视觉测量的解析算法[J].光学技术. 2005, 31(1): 6-10.
    [55]张志勇,张靖,朱大勇.一种基于视觉成像的快速收敛的位姿测量算法及实验研究[J].航空学报. 2007, 28(4): 943-947.
    [56]陈思,仲思东.基于CCD的桥梁变形三维实时监测系统[J].计算机测量与控制. 2006, 14(5): 583-586.
    [57]于起峰,孙祥一,陈国军.用光测法测量空间目标三维姿态[J].国防科技大学学报. 2000, 22(02): 505-510.
    [58]于起峰,孙祥一,邱志强.从单站光测图像确定空间目标三维姿态[J].光学技术. 2002, 28(1): 77-79.
    [59]唐自力,马彩文,刘波,等.单站光测图像确定空间目标三维姿态[J].光子学报. 2004, 33(12): 1480-1485.
    [60] Haralick R M, Lee C, Ottenberg K, et al. Analysis and solutions of the three point perspective pose estimation problem[C]. in Proc. IEEE Conf. Computer Vision andPattern Recognition, 1991: 592-598.
    [61] Quan L, Lan Z D. Linear N-Point Camera Pose Determination[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1999, 21(8): 774-780.
    [62]吴福朝,胡占义. PnP问题的线性求解算法[J].软件学报. 2003, 14(3): 682-688.
    [63] Lowe D G. Three-Dimensional Object Recognition from Single Two-Dimensional Image[J]. Artificial Intelligence. 1987, 31: 355-395.
    [64] Lowe D G. Fitting Parameterized Three-Dimensional Models to Images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1991, 13(5): 441-450.
    [65] Horn B K P. Closed-form solution of absolute orientation using unit quaternions[J]. Optical Soc. Am. 1987(4): 629-642.
    [66] Horn B K P, Hilden H M, Negahdaripour S. Closed-form solution of absolute orientation using orthonomal matrices[J]. Optical Soc. Am. 1988(5): 1127-1135.
    [67] Zhang Z, Zhu D, Zhang J. An Improved Pose Estimation Algorithm For Real-time Vision Applications[C]. in International Conference on Communications, Circuits and Systems Proceedings, 2006, Vol 1: 402-406.
    [68]武汉大学测绘学院测量平差学科组.误差理论与测量平差基础[M].武汉:武汉大学出版社, 2003.
    [69] Tsai R Y. A Versatile Camera Calibration Techniaue for High-Accuracy 3D Machine Vision Metrology Using Off-the-shelf TV Cameras and Lenses[J]. IEEE Transactions on Robotics and Automation. 1987, RA-3(4): 323-344.
    [70] Weng J, Cohen P, Herniou M. Camera Calibration with Distortion Models and Accuracy Evaluation[J]. IEEE Transactions on Pattern Analysis And Machine Intelligence. 1992, 10(4): 965-980.
    [71]晁志超,姜广文,伏思华,等.机载武器三维运动姿态摄像测量系统[J].中国激光(光学前沿专刊). 2009, 36(S2): 120-124.
    [72]邱茂林,马颂德,李毅.计算机视觉中摄像机定标综述[J].自动化学报. 2000, 26(1): 43-55.
    [73]尚洋.基于视觉的空间目标位置姿态测量方法研究[D].国防科技大学博士学位论文, 2006.
    [74] Zhang Z. A Flexible New Technique for Camera Calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2000, 22(11): 1330-1334.
    [75]张永军,张祖勋,张剑清.利用二维DLT及光束法平差进行数字摄像机标定[J].武汉大学学报(信息科学版). 2002, 27(6): 18-23.
    [76] Maybank S, Faugeras O. A Theory of Self-calibration of a Moving Camera[J]. International Journal of Computer Vision. 1992, 8(2): 123-151.
    [77] Hartley R I. Euclidean Reconstruction and Invariants from Multiple Images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1994, 16(10): 1036-1041.
    [78]胡占义,吴福朝.基于主动视觉摄像机标定方法[J].计算机学报. 2002, 25(11): 1149-1156.
    [79] Ma S D. A Self-calibration Technique for Active Vision System[J]. IEEE Transactions on Robot Automation. 1996, 12(1): 114-120.
    [80]李为民,俞巧云,刘超.采用分离式差分标定靶的单摄像机标定方法[J].光学学报. 2006, 26(5): 697-704.
    [81]徐巧玉,车仁生.基于光学测棒的立体视觉坐标测量系统的研究[J].光学学报. 2008, 28(11): 2181-2186.
    [82]徐巧玉,姚怀,车仁生.立体视觉测量系统现场校准技术[J].光学学报. 2009, 29(6): 1546-1552.
    [83] Xu G, Sugimoto N. A Linear Algorithm for Motion from Three Weak Perspective Images Using Euler Angles[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1998, 20(12): 54-57.
    [84] Abdel-Aziz Y I, Karara H M. Direct Linear Transformation into Object Space Coordinates in Close-Range Photogrammetry[C]. in Proceeding Symp Close-Range Photogrammetry, Urbana: 1971: 1-18.
    [85] Point Grey Research Inc., Grasshopper Technical Reference Manual[DB/OL]. http://www.ptgrey.com/support/downloads/documents/Grasshopper%20Technical%20Reference.pdf
    [86]于起峰,陆宏伟,刘肖琳.基于图像的精密测量与运动测量[M].北京:科学出版社, 2002.
    [87]李立春,冯卫东,于起峰.根据边缘梯度方向的十字丝目标快速自动检测[J].光学技术. 2004, 30(3): 389-393.
    [88] Canny J. A computational approach to edge detection[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence. 1986, 8(6): 679-698.
    [89] Prince J, Illingworth J, Kittler J. A formal definition of the Hough transform: Properties and relationships[J]. Journal of Mathematical Imaging and Vision. 1992(1): 153-168.
    [90] Leaves V F. Which Hough transform?[J]. CVGIP: Image Understanding. 1993, 58(2): 250-264.
    [91]张文增,陈强,都东,等.直线检测的灰度投影积分方法[J].清华大学学报(自然科学版). 2005, 45(11): 1446-1449.
    [92] Litos G, Zabulis X, Triantafyllidis G. Synchronous Image Acquisition based on Network Synchronization[C]. in IEEE Workshop on Three-Dimensional Cinematography, 2006: 167-172.
    [93]王旭,霍炬,杨明.双相机空间定位硬件系统的构成研究[J].自动化技术与应用. 2005, 24(9): 71-74.
    [94]马强,郎岩梅,唐文彦.同步并行行图像采集系统的设计[J].仪器仪表学报. 2004, 24(增刊4): 137-139.
    [95]徐涛,黄鲁,王荣生.一种多PCI卡组成的高速同步图像获取系统[J].计算机工程与应用. 2004, 40(2): 124-125.
    [96]黄芳,崔希民,何建设,等.基于GPS时间同步的分布式数据采集与监测系统研究[J].矿山测量. 2004(1): 15-17.
    [97]刘团结,童庆禧,郑兰芬,等.一种航空多光谱数字相机系统的设计与实现[J].测绘通报. 2003(1): 7-10.
    [98] Point Grey Research Inc., Sync Unit[DB/OL]. http://www.ptgrey.com/products/sync/index.html
    [99] Objective Imaging Inc., OASIS-DC1 Digital Camera Trigger Interface[DB/OL]. http://www.objectiveimaging.com/OASIS_DC1.htm
    [100] Mills D L. Internet time synchronization: the Network Time Protocol[J]. IEEE Transaction on Communications COM-39. 1991, 10: 1482-1493.
    [101] Svoboda T, Hug H, van Gool L. ViRoom -- low cost synchronized multicamera system and its self-calibration[C]. in Pattern Recognition, 24th DAGM Symposium,Springer: 2002: 515-522.
    [102] Rai P K, Tiwari K, Guha P, et al. A Cost-effective Multiple Camera Vision System using FireWire Cameras and Software Synchronization[C]. in 10th International Conference on High Performance Computing (HiPC 2003), Hyderabad, India: 2003
    [103] Ahrenberg L, Ihrke I, Magnor M. A Mobile System for Multi-Video Recording[C]. in IEE 1st European Conference on Visual Media Production (CVMP), London, UK: 2004
    [104] Sinha S N, Pollefeys M. Synchronization and Calibration of Camera Networks from Silhouettes[C]. in International Conference on Pattern Recognition ICPR, 2004, Vol I: 116-119.
    [105] Yan J, Pollefeys M. Video Synchronization via Space-Time Interest Point Distribution[C]. in Proceedings of Advanced Concepts for Intelligent Vision Systems ACIVS, 2004
    [106] Advantech Co, Ltd., User Manual of USB-4711A[DB/OL]. http://download.advantech.com/DownloadFile/1-2HOQRZ/USB-4711A.pdf
    [107]李晓勇,张忠华,朱伟康,等.航天测量船船体变形的数据处理[J].光学精密工程. 2009, 17(2): 106-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700