用户名: 密码: 验证码:
海洋生态系统动力学数值模拟与同化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类对气候变化的日益重视,如何更加精确地、合理地模拟气候的演变规律及评估其对人类生存环境带来的影响成为一个关键的科学问题。作为这一问题中的重要一环,海洋生态系统数值模拟成为一个研究热点,这也对海洋生态系统动力学模型提出了更高的要求。在这种背景下,海洋生态系统动力学模型在模型维数、应用范围与模型复杂性程度等方面得到快速发展。但是,在以往大部分海洋生态模拟工作中,研究者们忽略了或者没有考虑关键生态参数在空间上存在变化这一特征,并认为在模拟区域中存在普适的一组参数,导致模拟结果与观测资料之间存在较大的区域性误差,并且这种误差不能通过改进背景物理环境或增加新的生态机制而得到有效控制。这个问题在大洋尺度甚至全球尺度的海洋生态系统模拟中表现地尤为突出,为了弥补这一缺陷,一些研究者根据实测数据估计局地参数或者是分区优化参数,并采用一些方法对参数进行平滑,虽然这些做法在一定程度上实现了参数的空间变化,却没有将模型与有限的观测作为一个整体来考虑,不能优化参数至全局最优,因此不能准确地描述模型参数在空间上的变化。本文使用一种全新的方法即参数的空间分布来实现参数的空间变化,并深入研究了是否能通过此方法改进模拟与同化结果。
     在气候耦合模式FOAM的气候态背景场下,本文建立了一个简单的全球尺度上的三维海洋生态系统动力学模型及其伴随模型,在500米深度内进行数值模拟与同化研究。通过在底层添加营养盐修正项的方式解决了模拟过程中营养盐不断耗散的问题,保障了模型的平稳运行。
     结合考察敏感性函数与代价函数关于模型参数的梯度量级两种方法,对各模型参数进行了敏感性分析,挑选出对模拟结果敏感且不相关的五个参数作为控制变量。在孪生数值实验中,通过同化模型产生的‘观测数据’来反演控制变量。首先通过反演无空间变化的控制变量验证了伴随模型的正确性,继而基于参数的空间分布,利用伴随方法反演了给定的空间变化的控制变量,证明了参数空间分布的有效性以及在模型中利用伴随同化方法反演空间变化的参数的可行性。
     在实际实验中,本文在全球尺度上通过伴随方法同化SeaWiFS叶绿素资料。在使用参数空间分布后,表层浮游植物生物量(氮)的平均误差下降至0.0584mmolN·m-3,与不考虑参数空间变化的同化实验相比下降了62.4%。反演出的参数在空间上呈现显著的变化特征,证明了空间变化的参数比参数取常数更合理。通过使用参数的空间分布,SeaWiFS图像上大部分的区域特征都能被很好地模拟出来,证明模拟与观测之间的区域性误差得到了有效控制。本文发现同化结果与独立点的数量以及影响半径的选取有很大关系:独立点数量越多,同化结果就越好;影响半径应根据独立点的设置来选取,过大或过小的影响半径都对同化结果不利。然而,由于缺少必要的数据支持,模型没有考虑一些海区存在的铁限制因素,导致模型不能正确模拟南大洋等海域的营养盐水平,这表明了在全球尺度上进行海洋生态系统数值模拟时,铁限制等机制是应当考虑的。
People has paid more attention to the global climate change in recently years, thus to improve numerical modeling ability on climate change and to evaluate its influence on human living become significantly important. As a crucial role in the issue, more researchers are focusing on marine ecosystem modeling and more robust models are urgent in demand. Under such circumstances, the number of model dimensions, application area and model complexity are undergoing quickly development. However, in most previous studies, the spatial variations of key parameters are always ignored or not taken into account at all, and researchers always assumes that a set of optimized parameters is suitable for the whole study area. It results in big spatial differences between modeled values and the observations, and these differences can not be effectively reduced by improving physical background or adding new ecological mechanisms, especially when modeling on basin or global scales. To solve the problem, spatially variable parameters are needed. Traditional ways are optimizing local parameters or estimating parameters in each sub-area independently, and then smoothing the parameter values. In such a way, spatially variable parameters are obtained, but the model and the observations are not taken as a whole and the parameters are not optimized globally, thus these spatially variable parameters can not represent the reality accurately. In this study, a new method (spatial parameterization) is utilized to realize spatial variations of the parameters. The article tested if the new method can help us improve marine ecosystem modeling.
     In this effort, a simple 3-D marine ecosystem model and the corresponding adjoint model are constructed on a global scale under climatological physical environment provided by FOAM. The numerical study and assimilation experiments are implemented within a depth of 500m. A relaxed term of nutrient in the bottom layer is designed to prevent nutrient from dissipation, which insures the positive simulation.
     Five uncorrelated and sensitive parameters are selected as control variables by a conventional sensitivity analysis and investigating the gradients of the cost function with respect to each parameter, respectively. In twin experiments, model-generated data are served as fictitious observations, and they are assimilated into the model to estimate the control variables. Firstly, the spatially-constant control variables are estimated, which validates the adjoint model. Furthermore, based on spatial parameterization, the spatially varying control variables are estimated by the adjoint method, which indicates the validity of spatial parameterization and the feasibility of estimating spatially varying parameters by the adjoint method.
     In real experiments, SeaWiFS chlorophyll-a data are assimilated into the model based on the adjoint method on a global scale. After spatial parameterization is utilized, the mean error of phytoplankton in the surface layer (nitrogen) reduced to 0.0584 mmolN·m-3, which is a reduction of 62.4% compared with the assimilation experiment without spatial parameterization. The assimilation results show that spatially varying parameters are more reasonable than a set of constants, since the selected parameters exhibit great spatial variations. By utilizing spatial parameterization, most regional features in SeaWiFS imagery can be reproduced. The assimilation results are sensitive to the amount of independent grids and the selected influencing radius: the more independent grids we use, the better the assimilation results are; the influencing radius should be suitable for the configuration of the independent grids, since either big or small influencing radius is unfavorable for the assimilations. Because of the deficiency of the model (iron-limitation is not considered), the model fails to simulate high nitrate zones in southern ocean, which indicates that when modeling on a global scale, some important mechanisms such as iron-limitation should be included in.
引文
[1]沈国英,施并章.海洋生态学.北京:科学出版社,2002. 6~10,376~377
    [2]冯士筰,李凤岐,李少菁.海洋科学导论.北京:高等教育出版社,1999. 7~8
    [3]苏纪兰,唐启升.我国海洋生态系统基础研究的发展——国际趋势和国内需求.地球科学进展,2005,20(2) :139~143
    [4]唐启升,苏纪兰,等.中国海洋生态系统动力学研究:I关键科学问题与研究发展战略.北京:科学出版社,2000,第251页
    [5]赵强.一个简单海洋生态系统动力学模型的伴随同化应用研究:[硕士学位论文].青岛:中国海洋大学海洋环境学院,2006
    [6] Riley, G. A., Stommel, H., Bumpus, D. F.. Quantitative ecology of the plankton of Western North Atlantic, Bull.Bingham.Oceanogr., 1949, 12, 1~169
    [7]王辉,刘桂梅,万莉颖.数据同化在海洋生态模型中的应用和研究进展.地球科学进展,2007,22(10) :989~996
    [8]刘桂梅.关键物理过程对黄、渤海浮游生物影响的现象分析与模式研究:[博士学位论文].青岛:中国科学院海洋研究所,2002
    [9] Fasham, M.J.R., Evans, G.T., Kiefer, D.A., et al.. The use of optimization techniques to model marine ecosystem dynamics at the JGOFS station at 47 degrees N 20 degrees W. Philosophical Transactions of the Royal Society of London, 1995, B 348, 203~209
    [10] Fasham, M.J.R., Boyd, P.W., Savidge, G.. Modeling the relative contributions of utotrophs and heterotrophs to carbon flow at a Lagrangian JGOFS station in the Northeast Atlantic: the importance of DOC. Limnology and Oceanography, 1999, 44: 80~94
    [11] Natvik, L.-J., Eknes,M., Evensen, G.. Aweak constraint inverse for zero-dimensional marine ecosystem model. Journal of Marine Systems, 2001, 28: 19~44
    [12] Hemmings, J.C.P., Srokosz, M.A., Challenor, P., et al.. Assimilating satellite ocean-colour observations into oceanic ecosystem models. Philosophical Transactions of the Royal Society of London A-Mathematics, Physics and Engineering Science, 2003, 361: 33~39
    [13] Hemmings, J.C.P., Srokosz, M.A., Challenor, P., et al.. Split-domain calibration of an ecosystem model using satellite ocean colour data. Journal of Marine Systems, 2004, 50: 141~179
    [14] Harmon, R., Challenor, P.. A Markov chain Monte Carlo model for estimation and assimilation into models. Ecological Modelling , 1997, 101: 41~59
    [15] Hurtt, G.C., Armstrong, R.A.. A pelagic ecosystem model calibrated with BATS data. Deep-Sea Research. Part 2. Topical Studies in Oceanography , 1996, 43: 653~683
    [16] Hurtt, G.C., Armstrong, R.A.. A pelagic ecosystem model calibrated with BATS and OWSI data. Deep-Sea Research. Part 2. Topical Studies in Oceanography, 1999, 46: 27~61
    [17] Matear, R.J.. Parameter estimation and analysis of ecosystem models using simulated annealing: a case study at Station P. Journal of Marine Research, 1995, 53: 571~607
    [18] Losa, S.N., Kivman, G.A., Schroter, J., et al.. Sequential weak constraint parameter estimation in an ecosystem model. Journal of Marine Systems, 2003, 43: 31~49
    [19] Losa, S.N., Kivman, G.A., Ryabchenko, V.A.. Weak constraint parameter estimation for a simple ocean ecosystem model: what can we learn about the model and data? Journal of Marine Systems, 2004, 45: 1~20
    [20] Weber, L., Volker, C., Schartau, M., et al.. Modeling the speciation and biogeochemistry of iron at the Bermuda Atlantic Time-Series study site. Global Biogeochemical Cycles, 2005, 19, GB1019. doi:10.1029/2004GBC002340
    [21] Lawson, L.M., Hofmann, E.E., Spitz, Y.H.. Time series sampling and data assimilation in a simple marine ecosystem model. Deep-Sea Research. Part 2. Topical Studies in Oceanography, 1996, 43: 625~651
    [22] Fennel, K., Losch, M., Schroter, J., et al.. Testing a marine ecosystem model: sensitivity analysis and parameter optimization. Journal of Marine Systems, 2001: 28, 45~63
    [23] Schartau, M., Oschlies, A., Willebrand, J.. Parameter estimates of a zero-dimensional ecosystem model applying the adjoint method. Deep-Sea Research. Part 2. Topical Studies in Oceanography, 2001, 48: 1769~1800
    [24] Spitz, Y.H., Moisan, J.R., Abbott, M.R., et al.. Data assimilation and a pelagic ecosystem model: parameterization using time series observations. Journal of Marine Systems, 1998, 16: 51~68
    [25] Spitz, Y.H., Moisan, J.R., Abbott, M.R.. Configuring an ecosystem model using data from the Bermuda Atlantic Time Series (BATS). Deep-Sea Research. Part 2. Topical Studies in Oceanography, 2001, 48: 1733~1768
    [26] Vallino, J.J.. Improving marine ecosystem models: use of data assimilation and mesocosm experiments. Journal of Marine Research, 2000, 58: 117~164
    [27] Kuroda, H., Kishi,M.J.. A data assimilation technique applied to estimate parameters for the NEMURO marine ecosystem model. Ecological Modelling, 2004, 172: 69~85
    [28] Leredde, Y., Lauer-Leredde, C., Diaz, C.. On the variational data assimilation by a marineecosystem model of NPZ type. Comptes Rendus Geoscience, 2005, 337: 1055~1064
    [29] Freidrichs, M.A.M.,. A data assimilative marine ecosystem model of the central equatorial Pacific: numerical twin experiments. Journal of Marine Research, 2001, 59: 859~894
    [30] Freidrichs, M.A.M.. Assimilation of JGOFS EqPac and SeaWiFS data into a marine ecosystem model of the central equatorial Pacific Ocean. Deep-Sea Research. Part 2. Topical Studies in Oceanography, 2002, 49: 289~320
    [31] Oschlies, A., Schartau, M.. Basin-scale performance of a locally optimized marine ecosystem model. Journal of Marine Research, 2005, 63: 335~358
    [32] Schartau, M., Oschlies, A.. Simultaneous data-based optimization of a 2D-ecosystem model at three locations in the North Atlantic: Part I—method and parameter estimates. Journal of Marine Research, 2003, 61: 765~793
    [33] Faugeras, B., Levy, M., Memery, L., et al.. Can biogeochemical fluxes be recovered from nitrate and chlorophyll data? A case study assimilating data in the Northwestern Mediterranean Sea at the JGOFS-DYFAMED station. Journal of Marine Systems, 2003, 40–41: 99~125
    [34] Faugeras, B., Bernard, O., Sciandra, A., et al.. A mechanistic modeling and data assimilation approach to estimate the carbon/chlorophyll and carbon/nitrogen ratios in a coupled hydrodynamical–biological model. Nonlinear Processes in Geophysics, 2004, 11: 515~533
    [35] Prunet, P.,Minster, J.F., RuizPino, D., et al.. Assimilation of surface data in a one-dimensional physical–biogeochemical model of the surface ocean. 1. Method and preliminary results. Global Biogeochemical Cycles, 1996, 10: 111~138
    [36] Eknes, M., Evensen, G.. An ensemble Kalman filter with a 1-D marine ecosystem model. Journal of Marine Systems, 2002, 36: 75~100
    [37] Allen, J.I., Eknes, M., Evensen, G.. An ensemble Kalman filter with a complex marine ecosystem model: hindcasting phytoplankton in the Cretan Sea. Annales Geophysicae, 2002, 20: 1~13
    [38] Hoteit, I., Triantafyllou, G., Petihakis, G., et al.. A singular evolutive extended Kalman filter to assimilate real in situ data in a 1-D marine ecosystem model. Annales Geophysicae, 2003, 21: 389~397
    [39] Ibrahim, H., George, T., George, P.. Towards a data assimilation system for the Cretan Sea ecosystem using a simplified Kalman filter. Journal of Marine Systems, 2004, 45: 159~171
    [40] Magri, S., Brasseur, P., Lacroix, G.. Data assimilation in a marine ecosystem model of theLigurian Sea. Comptes Rendus Geoscience, 2005, 337: 1065~1074
    [41] Garcia-Gorriz, E., Hoepffner, N., Ouberdous, M.. Assimilation of SeaWiFS data in a coupled physical–biological model of the Adriatic Sea. Journal of Marine Systems, 2003, 40–41: 233~252
    [42] Xu, Q., Lin, H., Liu, Y.G., et al.. Data assimilation in a coupled physical-biological model for the Bohai sea and the Northern Yellow Sea. Marine and Freshwater Research, 2008, 59: 529~539
    [43] Miller, A.J., DiLorenzo, E., Neilson, D.J., et al.. Modeling CalCOFI observations during El Nino: fitting physics and biology. CalCOFI Report, 2000, 41, pp: 11
    [44] Zhao, L., Wei, H., Xu, Y.F., et al.. An adjoint data assimilation approach for estimating parameters in a three-dimensional ecosystem model, Ecol. Model., 2005, 186: 234~249
    [45] Zhao, Q., Lu, X.Q.. Parameter estimation in a three-dimensional marine ecosystem model using the adjoint technique. Journal of Marine Systems, 2008, 74: 443~452
    [46] Gunson, J., Oschlies, A., Garcon, V.. Sensitivity of ecosystem parameters to simulated satellite ocean color data using a coupled physical–biological model of the North Atlantic. Journal of Marine Research, 1999, 57: 613~639
    [47] Schlitzer, R.. Carbon export fluxes in the Southern Ocean: results from inverse modeling and comparison with satellite-based estimates. Deep-Sea Research. Part 2. Topical Studies in Oceanography, 2002, 49: 1623~1644
    [48] Ishizaka, J.. Coupling of Coastal Zone Color Scanner data to a physical–biological model of the southeastern United-States continental-shelf ecosystem. 3. Nutrient and phytoplankton fluxes and CZCS data assimilation. Journal of Geophysical Research, 1990, 95: 20201~20212
    [49] Armstrong, R.A., Sarmiento, J.L., Slater, R.D.. Monitoring ocean productivity by assimilating satellite chlorophyll into ecosystem models. In: Powell, Steele (Eds.), Ecological Time Series. Chapman and Hall, London, 1995, pp: 371~390
    [50] Triantafyllou, G., Hoteit, I., Petihakis, G.. A singular evolutive interpolated Kalman filter for efficient data assimilation in a 3-D complex physical–biogeochemical model of the Cretan Sea. Journal of Marine Systems, 2003, 40: 213~231
    [51] Anderson, L.A., Robinson, A.R., Lozano, C.J.. Physical and biological modeling in the Gulf Stream region: I. Data assimilation methodology. Deep-Sea Research. Part 1. Oceanographic Research Papers, 2000, 1787~1827
    [52] Natvik, L.J., Evensen, G.. Assimilation of ocean colour data into a biochemical model of theNorth Atlantic. Part 1. Data assimilation experiments. Journal of Marine Systems, 2003a, 40–41: 127~153
    [53] Natvik, L.J., Evensen, G.. Assimilation of ocean colour data into a biochemical model of the North Atlantic. Part 2. Statistical analysis. Journal of Marine Systems, 2003b, 40–41: 155~169
    [54] Gregg, W.W.. Assimilation of SeaWiFS ocean chlorophyll data into a three-dimensional global ocean model. Journal of Marine Systems, 2008, 69: 205~225
    [55] Besiktepe, S.T., Lermusiaux, P.F.J., Robinson, A.R.. Coupled physical and biogeochemical data-driven simulations of Massachusetts Bay in late summer: real-time and postcruise data assimilation. Journal of Marine Systems, 2003, 40: 171~212
    [56] Popova, E.E., Lozano, C.J., Srokosz, M.A., et al.. Coupled 3D physical and biological modeling of the mesoscale variability observed in North-East Atlantic in Spring 1997: biological processes. Deep-Sea Research. Part 1. Oceanographic Research Papers, 2002: 49, 1741~1768
    [57] Losa, S.N., Vézina, A., Wright, D., et al.. 3D ecosystem modelling in the North Atlantic: Relative impacts of physical and biological parameterizations. Journal of Marine Systems, 2006, 61: 230~245
    [58] Gregg, W.W., Ginoux, P., Schopf, P.S., et al.. Phytoplankton and iron: validation of a global three-dimensional ocean biogeochemical model. Deep-Sea Research. Part 2. Topical Studies in Oceanography, 2003, 50: 3143~3169
    [59] Franks, P.J.S., Chen, C.S.. A 3-D Prognostic numerical model study of the Georges Bank ecosystem, Part II: biological–physical model. Deep-Sea Research. Part 2. Topical Studies in Oceanography, 2001, 48: 457~482
    [60]徐青,刘玉光,程永存,等.伴随同化技术在渤黄海生态模式中的应用:控制变量的选取与孪生实验.高技术通讯,2006,16(1):78~83
    [61] Fan, W., Lv, X. Q.. Data assimilation in a simple marine ecosystem model based on spatial biological parameterizations, Ecol. Model., 2009, doi:10.1016/j.ecolmodel.2009.04.050
    [62] Li, X., Wunsch, C.. An adjoint sensitivity study of chlorofluorocarbons in the North Atlantic. Journal of Geophysical Research, 2004, 109, doi:10.1029/2003JD004091
    [63] Van Leeuwea, M.A., Scharekb, R., De Baara, H.J.W., et al.. Iron enrichment experiments in the Southern Ocean: physiological responses of plankton communities. Deep-Sea Research. Part 2. Topical Studies in Oceanography, 1997, 44: 189~208
    [64] Price, N.M., Andeson, L.G., Morel, F.M.M.. Iron and nitrogen nutrition of equatorial Pacificplankton. Deep Sea Res. Part A, 1991, 38: 1361~1378
    [65] Bissett, W. P., Walsh, J. J., Dieterle, D. A., et al.. Carbon cycling in the upper waters of the Sargasso Sea: I. Numerical simulation of differential carbon and nitrogen fluxes, Deep-Sea Research. Part 1, 1999, 46: 205~269
    [66] Moore, J.K., Doney, S.C., Glover, D.M., et al.. Iron cycling and nutrient-limitation patterns in surface waters of the World Ocean. Deep-Sea Research. Part 2. Topical Studies in Oceanography, 2002, 49: 463~507
    [67] Lancelot, C., Spitz, Y.H., Gypens, N., et al.. Modelling diatom-Phaeocystis blooms and nutrient cycles in the Southern Bight of the North Sea: the MIRO model, Mar. Ecol. Prog. Ser., 2005, 289: 63~78
    [68] Franks,P.J.S.. NPZ model of plankton dynamics: their construction, coupling to physics, and application. J. Oceanogr., 2002, 58: 379~387
    [69]陈长胜,海洋生态系统动力学与模型.北京:高等教育出版社,第404页
    [70] Friedrichs, M.A.M., Hood, R., Wiggert, J.. Ecosystem model complexity versus physical forcing: Quantification of their relative impact with assimilated Arabian Sea data. Deep-Sea Research. Part 2. Topical Studies in Oceanography, 2006, 53: 576~600
    [71] Flynn, K. J.. Castles built on sand: dysfunctionality in plankton models and the inadequacy of dialogue between biologists and modelers. J. Plankton Res., 27(12): 1205~1210
    [72] Denman, K.L.. Modelling planktonic ecosystems: Parameterizing complexity, Prog. Oceanogr., 2003, 57: 429~452
    [73] Raick, C., Soetaert, K., Grégoire, M.. Model complexity and performance: How far can we simplify?. Progress in Oceanography, 2006, 70: 27~57
    [74] Friedrichs, M.A.M., Dusenberry, J.D., Anderson, L.A., et al.. Assessment of skill and portability in regional marine biogeochemical models: Role of multiple planktonic groups, J. Geophys. Res., 2007, 112: C08001, doi:10.1029/2006JC003852.
    [75] Anderson, T. R.. Plankton functional type modeling: running before we can walk?. J. Plankton Res., 2005, 27(11): 1073~1081, doi:10.1093/plankt/ fbi076
    [76] Le Quere, C.. Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models, Global Change Biol., 2005, 11: 2016~2040
    [77] Hood, R.. Functional group modeling: progress, challenges and prospects, Deep-Sea Research. Part 2. Topical Studies in Oceanography, 2006, 53: 459~512
    [78] Evans, G.T.. The role of local models and data sets in the Joint Global Ocean Flux Study.Deep-Sea Res., Part 1, Oceanogr. Res., 1999, 46: 1369~1389.
    [79] Lu, X.Q., Zhang, J.C.. Numerical study on spatially varying bottom friction coefficient of a 2D tidal model with adjoint method. Continental Shelf Research, 2006, 26: 1905~1923
    [80]樊伟,吕咸青.基于参数空间分布的海洋生态系统数值模拟.海洋科学进展,2009,27(1):24~33
    [81]张继才.三维正压潮汐潮流伴随同化模型数值建模及应用研究:[博士学位论文].青岛:中国海洋大学海洋环境学院,2008
    [82] Panofsky, H.A.. Objective weather map analysis. Journal of Meteorology, 1949, 6:386~392
    [83] Gilchrist, B., Cressman, G.. An experiment in Objective Analysis. Tellus, 1954, 6:309~318
    [84] Cressman, G.P.. An operational objective analysis system. Monthly Weather Review, 1959, 87:367~374
    [85] Eliassen, A.. Provisional report on calculation of spatial covariance and autocorrelation of the pressure field. Oslo: Inst. Weather and Climate Research, Academy of Sciences, 1954, Report No.5
    [86] Gandin, L.. Objective Analysis of Meteorological Fields (translated from Russian). Jerusalem: Israel Program for Scientific Translation, 1965
    [87] Bratseth, A.M.. Statistical interpolation by means of successive corrections. Tellus, 1986, 38A: 439~447
    [88] Miller, R. N.. Toward the application of the Kalman filter to regional open ocean modeling. Journal of Physical Oceanography, 1986, 16: 72~86
    [89] Bennett, A.F., Budgell, W.P.. Ocean data assimilation and the Kalman filter, spatial regularity. Journal of Physical Oceanography, 1987, 17 :1583~1601
    [90] LeDimet, F.X., Talagrand, O.. Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus, 1986, 38A: 97~110
    [91] Thacker, W.C., Long, R.B.. Fitting dynamics to data. Journal of Geophysical Research, 1988, 93: 1227~1240
    [92] Evensen, G.. Sequential data assimilation with a nonlinear quasi-geostrophic model using Montre Carlo methods to forecast error statistics. Journal of Geophysical Research, 1994, 99(10): 143~162
    [93] Talagrand, O., Courtier, P.. Variational assimilation of meteorological observations with the adjoint vorticity equation Part I: Theory.Quarterly. Journal of the Royal Meteorological Society, 1987, 113: 1311~1328
    [94] Smedstad, O.M., O’Brien, J.J.. Variational data assimilation and parameter estimation in an equatorial Pacific Ocean model. Progress in Oceanography, 1991, 26: 179~241
    [95] Anderson, D.L.T., Sheinbaum, J., Haines, K.. Data assimilation in ocean models. Reports on Progress in Physics, 1996, 59: 1209~1266
    [96] Bouttier, F., Courtier, P.. Data assimilation concepts and methods. 1999, Available on: http://www.ecmwf.int/newsevents/training/rcourse_notes/DATA_ASSIMILATION/ASSIM_CONCEPTS/Assim_concepts2.html
    [97] Robinson, A.R., Lermusiaux, P.F.J.. Overview of Data Assimilation. Cambridge: Harvard Reports in Physical/Interdisciplinary Ocean Science, 2000, Number 62
    [98] Daley, R.. Atmospheric Data Analysis. New York: Cambridge Atmospheric and Space Science Series, Cambridge University Press, 1991, 363~402
    [99] Sasaki, Y.. Some basic formalisms in numerical variational analysis. Monthly Weather Review, 1970, 98: 875~883
    [100]吕咸青.海洋数值建模中伴随方法的研究:[博士后研究工作报告].青岛:中国科学院海洋研究所,2000
    [101]吴自库.南海内潮三维数值同化模拟:[博士学位论文].青岛:中国海洋大学海洋环境学院,2005
    [102] DeMaria, M., Jones, R.W.. Optimization of a hurricane track forecast model with the adjoint model equations. Monthly Weather Review, 1993, 121 (6): 1730~1745
    [103] Zupanski, D., Mesinger, F.. Four-dimensional variational assimilation of precipitation data. Monthly Weather Review, 1995, 123 (4): 1112~1127
    [104] Kuo, Y.H., Zou, X., Guo, Y.R.. Variational assimilation of precipitable water using a nonhydrostatic mesoscale adjoint model. Part I: moisture retrieval and sensitivity experiments. Monthly Weather Review, 1996, 124 (1): 122~147
    [105] Yu, L., Malanotte-Rizzoli, P.. Analysis of the North Atlantic climatologies using a combined OGCM/adjoint approach. Journal of Marine Research, 1996, 54 (5): 867~913
    [106] Yu, L., Malanotte-Rizzoli, P.. Inverse modeling of seasonal variations in the North Atlantic Ocean. Journal of Physical Oceanography, 1998, 28 (5): 902~922
    [107] Greiner, E., Arnault, S., Morliaère, A.. Twelve-monthly experiments of 4D-variational assimilation in the tropical Atlantic during 1987, Part 1: Method and statistical results. Progress in Oceanography, 1998a, 41: 141~202
    [108] Greiner, E., Arnault, S., Morliaère, A.. Twelve-monthly experiments of 4D-variationalassimilation in the tropical Atlantic during 1987, Part 2: Oceanographic interpretation. Progress in Oceanography, 1998b, 41: 203~247
    [109]王东晓,兰健,吴国雄,朱江.一个海洋环流模式伴随系统的初步实验.自然科学进展,1999,9(9):824~833
    [110]王东晓,吴国雄,朱江,兰健.大洋风生环流观测优化的伴随分析.中国科学(D),2000,30(1):97~106
    [111] Schiller, A.. The mean circulation of the Atlantic Ocean north of 30S determined with the adjoint method applied to an ocean general circulation model. Journal of Marine Research, 1995, 53(3): 453~497
    [112] Yu, L.S., O'Brien, J.J. Variational data assimilation for determining the seasonal net surface heat flux using a tropical Pacific Ocean model. Journal of Physical Oceanography, 1995, 25: 2319~2343
    [113] Yuan, D.L., Rienecker, M.M.. Inverse estimation of sea surface heat flux over the equatorial Pacific Ocean: Seasonal cycle. Journal of Geophysical Research, 2003, 108(C8): 3247
    [114] Peng, S.Q., Xie, L.. Effect of determining initial conditions by four-dimensional variational data assimilation on storm surge forecasting. Ocean Modelling, 2006, 14: 1~18
    [115] Qiu, Z.F., He, Y.J., Lu, X.Q.. Tidal constituents in the Bohai and Yellow Seas from an adjoint numerical model with T/P data. Journal of Hydrodynamics(B), 2005, 17(3): 275~282
    [116]吕咸青.数据同化反演风应力拖曳系数以及垂向涡动黏性系数的分布.海洋学报,2001,23(1):13~20
    [117]吕咸青,田纪伟,吴自库.渤、黄海的底摩擦系数.力学学报,2003a,35(4):465~468
    [118]吕咸青,吴自库,谷艺,田纪伟.数据同化中的伴随方法的有关问题的研究.应用数学和力学,2004,25(6):581~590
    [119] Zhang, A.J., Parker, B.B., Wei, E.. Assimilation of water level data into a coastal hydrodynamic model by an adjoint optimal technique. Continental Shelf Research, 2002, 22: 1909~1934
    [120] Lu, X.Q., Wu, Z.K., Gu, Y., et al.. Study on the adjoint method in data assimilation and the related problems. Applied Mathematics and Mechanics, 2004, 25(6): 636~646
    [121]张继才,吕咸青.空间分布底摩擦系数的伴随法反演研究.自然科学进展,2005,15(9):1086~1093
    [122] Zhang, J.C., Zhu, J.G., Lu, X.Q.. Numerical Study on the Bottom Friction Coefficient of theBohai Sea, the Yellow Sea and the East China Sea. Chinese Journal of Computational Physics, 2006 ,23(6): 731~737
    [123] Zhang, J.C., Lu, X.Q.. Parameter Estimation for a Three-Dimensional Numerical Barotropic Tidal Model with Adjoint Method. International Journal for Numerical Methods in Fluids, 2007.(Available online)
    [124] Moore, A.M.. Data assimilation in a quasi-geostrophic open ocean model of the Gulf Stream region using the adjoint method. Journal of Physical Oceanography, 1991, 21: 398~427
    [125] Yu, L.S., O'Brien, J.J.. On the initial condition parameter estimation. Journal of Physical Oceanography, 1992, 22: 1361~1364
    [126] Gunson, J.R., Malanotte-Rizzoli, P.. Assimilation studies of open-ocean flows, Part I: Estimation of initial and boundary conditions, Journal of Geophysical Research, 1996a, 101: 28457~28472
    [127] Gunson, J.R., Malanotte-Rizzoli, P.. Assimilation studies of open-ocean flows, Part II: Error measures with strongly nonlinear dynamics. Journal of Geophysical Research, 1996b, 101: 28473~28488
    [128] Greiner, E., Perigaud, C.. Assimilation of Geo-sat altimetric data in a nonlinear reduced-gravity model of the Indian Ocean, Part I: adjoint approach and model-data consistency. Journal of Physical Oceanography, 1994, 24(8): 1783~1804
    [129] Greiner, E., Perigaud, C.. Assimilation of Geo-sat altimetric data in a nonlinear reduced-gravity model of the Indian Ocean, Part II: Some Validation and Interpretation of the assimilated results. Journal of Physical Oceanography, 1996, 26: 1735~1746
    [130]马继瑞,韩桂军,李冬.变分伴随数据同化在海表面温度预报中的应用研究.海洋学报,2002,24(5):1~7
    [131] Seiler, U.. Estimation of open boundary conditions with the adjoint method. Journal of Geophysical Research, 1993, 98: 22855~22870
    [132] Lardner, R.W.. Optimal control of an open boundary conditions for a numerical tidal model. Computer Methods in Applied Mechanics and Engineering, 1993, 102: 367~387
    [133] Mewis, P., Holz, K.P.. Inverse boundary value estimation for a shallow water model. Computational Methods in Water Resources XI, Cancun, Volume 2, Computational Methods in Surface Flow and transport Problems, 1996: 223~230
    [134]朱江,曾庆存,郭冬建,刘卓.利用伴随算法从岸边潮位站资料估计近岸模式的开边界条件.中国科学(D辑),1997,27(5):462~468
    [135] Marotzke, J., Giering, R., Zhang, Q.K., et al.. Construction of the adjoint MIT ocean general circulation model and application to Atlantic heat transport sensitivity. Journal of Geophysical Research, 1999, 104: 29529~29548
    [136]吕咸青,张杰.如何利用水位资料反演开边界条件(1).水动力学研究与进展,1999,14:92~102
    [137]韩桂军,何柏荣,马继瑞,等.利用伴随法优化非线性潮汐模型的开边界条件I:伴随方程的建立及“孪生”数值试验.海洋学报,2000,22(6):134~140
    [138]韩桂军,何柏荣,马继瑞,等.利用伴随法优化非线性潮汐模型的开边界条件II:黄海、东海潮汐资料的同化试验.海洋学报,2001,23(2):25~31
    [139] Zhang, A.J., Wei, E., Parker, B.B.. Optimal estimation of tidal open boundary conditions using predicted tides and adjoint data assimilation technique. Continental Shelf Research, 2003, 23: 1055~1070
    [140]吕咸青,吴自库,殷忠斌,田纪伟.渤、黄、东海潮汐开边界的1种反演方法.青岛海洋大学学报,2003b,33(2):155~172
    [141] Kishi, M.J., Okunishi, T., Yamanaka, Y.. A comparison of simulated particle fluxes using NEMURO and other ecosystem models in the Western North Pacific. J.Oceanogr., 2004, 60: 63~73
    [142] Yamanaka,Y., Yoshie, N., Fujii, M., et al.. An ecosystem Model Coupled with Nitrogen-Silicon-Carbon cycles applied to Station A7 in the Northwestern Pacific. J.Oceanogr., 2004, 60:227~241
    [143] Tian,T., Wei, H., Su, J., et al.. Simulations of annual cycle of phytoplankton production and the utilization of nitrogen in the Yellow Sea. J.Oceanogr., 2005, 61, 343~357
    [144] Semovski, S.V., Wo?niak, B.. Model of the annual phytoplankton cycle in the marine ecosystem-assimilation of monthly satellite chlorophyll data for the North Atlantic and Baltic. Oceanologia, 1995, 37: 3~31
    [145] Redfield, A.C., Ketchum, B.H., Richards, F.A.. The influence of organisms on the composition of sea water. The Sea, vol. 2. Inter-Science, New York, 1963, 26~77 pp.
    [146] Cloern, J.E., Grenz, C., Vidergar-Lucas, L.. An empirical model of the phytoplankton chlorophyll : carbon ratio - the conversion factor between productivity and growth rate. Limnol. Oceanogr, 1995, 40: 1313~1321
    [147] Das, S.K., Lardner, R.W.. Variational parameter estimation for a two dimensional numerical tidal model. International Journal for Numerical Methods in Fluids, 1992, 15: 313~327
    [148] Ullman, D.S., Wilson, R.E.. Model parameter estimation from data assimilation modelling:temporal and spatial variability of the bottom drag coefficient. Journal of Geophysical Research, 1998, 103: 5531~5549
    [149] Thacker, W.C.. The role of the Hessian in fitting models to measurements. Journal of Geophysical Research C, 1989, 94: 6177~6196

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700