用户名: 密码: 验证码:
海上低空大气波导的遥感反演及数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于电磁波传播技术的广泛应用,大气环境成为电磁波传播研究的一个重要领域,尤其是天气变化多端的对流层。对流层大气波导是对流层大气的一种异常结构。大气波导可以使通信电路的相互干扰问题变得复杂,既可能干扰其他系统,又可能形成另外的系统,可以使探测系统产生超视距探测、雷达盲区等反常传播问题。然而通信系统或雷达探测系统遭受大气波导影响的时机具有很大的偶然性,它完全取决于对流层大气的特点。假如能够掌握大气波导的变化规律,准确而及时地预测、预报其出现的时间和地域,结合频率、射线波束、天线仰角和发生功率的选择,就能更好地发挥探测及通信设备的作用。因此,根据实际大气环境,分析、预测和预报大气波导,对于评估大气环境对电磁波传播和探测系统性能具有重要的理论意义和实际价值,尤其是在军事领域。然而在海洋大气环境中,特别是在广阔的海洋上,传统的海洋测量手段,如浮标、船只,获取的海洋水文数据稀少,探空数据更少,无法满足现代海洋大气环境监测所需的大范围观测信息,即使获取数据也很难保证数据点时间和空间的有效性;同时海洋大气边界层日变化缓慢,发生的大气波导持续时间长,比较稳定,对于海上舰船通讯等急需开展大气波导环境区域研究。我国是海洋大国,海岸线狭长,更需要开展沿海区域及近海对流层大气波导研究,特别是边界层内低空大气波导环境预测、预报研究。
     目前国内大气波导的研究大多数情况下只注重单站波导发生情况,其代表的时空有效性是有限的,而在实际应用中,人们更加关注波导存在区域,因为波导区域决定了电磁波传输范围。本文针对我国近海区域大气波导不同的形成机理和类型,分别进行了研究。对于蒸发波导,本文利用卫星遥感获取海水表面温度、海面风场、气温、相对湿度等资料,建立卫星遥感资料与蒸发波导高度之间的诊断模式,研究大气波导反演算法和预测模型,首次分析了蒸发波导高度的空间不均匀性。对于低空表面波导和悬空波导,利用中尺度数值模式MM5对大气波导进行了系统的研究,填补了国内中尺度大气波导数值模拟研究的空白,同时选取典型的天气过程,进行了中尺度数值模拟个例研究,分析了大气波导形成机理。
     本文主要工作如下:
     一、结合P-J模式,利用AMSR-E卫星数据用两种神经网络方法反演了热带海域的蒸发波导高度,并进行了比较,两种方法得到的与浮标实测参数计算得到的蒸发波导高度之间的相关系数相当,都为0.82左右,均方根差后者比前者小,分别为2.64米和1.89米。神经网络直接反演蒸发波导高度方法要优于间接反演蒸发波导高度的方法。利用AMSR-E卫星数据直接反演了南海海域的蒸发波导高度,可以清楚看出蒸发波导高度的空间分布的不均匀性,为研究蒸发波导的环境特性奠定基础。
     二、以2005年6月2日出现在黄海海域的大气波导为例,设计了三种数值试验,利用MM5模式对大气波导进行了24h数值模拟研究,包括是否加入常规探空资料进行格点分析同化,垂直分层的多寡,粗、细网格模拟比较分析。通过研究得到了以下结论:(1)利用常规资料进行格点同化对海上大气波导影响较小,对陆地影响较大;(2)垂直分层对大气波导特征参数影响明显,层数较多描述大气波导比较合适;(3)对于海上大气波导,细网格刻画大气波导特征参数比较细致,但粗网格的模拟已经足够进行大气波导分析。
     三、以NCEP再分析资料为背景场,利用MM5模式,对2005年6月2日至4日出现在黄海海域的大气波导和2008年5月10日12时到11日12时由‘威玛逊’台风引起的大气波导分别进行了数值模拟研究。通过研究发现:模拟的修正折射率廓线与探空数据得到的廓线基本吻合,但是模拟的较强波导强度和高度普遍比实测的要小得多;同时给出了大气波导参数的演变过程,分析了两次大气波导形成的天气过程,说明了模拟的大气波导区域是可靠的和可信的; MM5模式能够模拟出特定天气条件下低空较强大气波导三维空间变化过程,可以为定量地描述大气波导特征提供理论和试验依据。
The atmospheric enviorenment has become an important field of propagation of radio waves with the technique of electromagnetic wave propagation wildly used recently, especially in the changeful troposphere. The atmospheric duct is a kind of abnormal structure in the troposphere air. Because of radio wave anomalous propagation along the atmospheric ducts, the problems of the co-channel interference are more complicate for communication systems with the results of intersystem interference and the formation of other system. Besides those, for surveillance equipments such as radar they can produce radar holes or the extensions of detect range. Howere, the occurrence of the atmospheric duct is stochastic and lies on the characters of the troposphere air process absolutely. If the changeful law of the atmospheric duct is drawn and its occurring time and extension are estimated and forecasted, the surveillance equipments can exert all their powers to work well, based on frequency, launching elevation and so on. So based on the real data from the atmosphere and sea, atmospheric ducts can be analysed, estimated and forecasted, which has great theoretical significance and is of great value espically to military when effects of atmospheric duct on propagation of radio waves and functions of surveillance equipments are estimated. The meteorological ocean data and sounding data, are very scarce by traditional measurements such as buoys and vessels in the marine- atmospheric environment, especially over the wide ocean, which can not meet present needs. What’s more, the diurnal marine atomaspheric boundary layer changes slowly on the ocean, the atmospheric ducts last long and are stable. Many countries are interested with them. China is one of the greatest countries of the ocean and owns long coastline so the researches of tropospheric duct in coastal waters, especialy in marine atmospheric boundary layer are being developed urgently.
     The researches are conducted according to the evolution mechanisms and duct types separately. The most interior current studies are concentrated on single sounding site duct conditions. However more attentions are paid on the extent of existing duct in practice. So the paper founds coupling models between satellite remote data and evaporation duct height, studies retrieval arithmetic and estimates models using the sea surface temperature, wind speed, air temperature, relative humidity near the sea retrieved from the satellite remote data. Besides those, evaporation duct asymmetric distributions are analyzed with the above method firstly. Then the Pennsylvannia State Universtity/National Center for Atmospheric Research Fifth Generation Mesoscale Model (MM5) is used to simulate the elevated ducts and surface ducts and analyze the evolution mechanisms. Simulation of atmospheric duct with the MM5 is studied system systemically which is filled up the gap in interior Simulation of atmospheric duct.
     The conclusions derived from these researches are following:
     (1)Two methods based on the multiparameter neural network and P-J model are proposed to retrieve the evaporation duct from the AMSR-E data. One is to retrieve the sea surface parameters and then calculate the evaporation duct, the other is to retrieve the evaporation duct directly. The correlation coefficients between estimated evaporation duct from AMSR-E data and calculated by P-J model from buoy measurements parameters are all about 0.82 and root-mean-square errors of them are 2.64 meters and 1.89 meters respectively. So the first method is better than the second one. The evaporation ducts of South China Sea are retrieved from AMSR-E data using the later method and evaporation duct asymmetric distributions are analyzed from the retrieved results.
     (2)The paper takes example for the atmospheric ducts occurred in Yellow sea from from Jun 2 to Jun 3 of 2005 and designs several numerical tests to simulate the the atmospheric ducts for 24 hours with MM5 model, including whether or not using data assimilation with routine sounding and ground data and how much levels the models used etc. Some conclusions are inducted through the study: first, grid nudging with the rountine observed data in the MM5 simulation of atmospheric duct affects less over the sea than the land;Second,how much of sigma levels have great influence on simulation of atmospheric duct and the MM5 simulation with more sigma levels depicting the atmospheric ducts are reasonable; Last, multiple nests are allowed on a given level of nesting domain in the MM5 model.The mother domain has the ability enough to simulate the atmospheric duct over the sea than the sub-domain.
     (3) Two numerical simulations of atmospheric duct process in the Yellow Sea is produced with MM5 atmospheric model based on NCEP reanalyzed data. One is from Jun 2 to Jun 4 of 2005 and the other one is from May 10 to May 11 resulted from No 2 typhoon‘RAMMASUN’in 2008. The simulated results corresponding to upper Observation stations are consistent with the profiles from the sounding balloons basically, but the simulated duct parameters such as duct strength are less than those from sounding balloons generally. The duct parameters evolution processes are given and synoptic processes are analyzed. The results show that the temporal and spacial evolutions of the simulated duct parameters are reasonable and authentic and MM5 model can simulate the evolution of atmospheric ducts and describe the characters of them.
引文
[1]蔡世樵,台湾地区蒸发导管之特性研究,硕士论文,台湾,国立中央大学,2005.6
    [2]戴福山主编,大气波导及其军事应用,北京:解放军出版社,2002.143-150
    [3]董超华主编,气象卫星遥感反演和应用论文集(上册),海洋出版社,北京,2001
    [4]官莉,顾松山,火焰等,大气波导形成条件及传播路径模拟[J],南京气象学院学报,2003,26(5): 631-637
    [5]谷晓平,王长耀等.“地基GPS遥感大气水汽含量及在气象上的应用”气象科学,2005,10,25(5),pp. 543-549.
    [6]黄小毛,张永刚等,蒸发波导中雷达异常性能的仿真与分析[J],系统仿真学报2006,18(002): 513-516
    [7]焦林,张永刚,大气波导条件下雷达电磁盲区的研究[J],西安电子科技大学学报,2004,31(005): 815-820
    [8]焦培南,张忠治编著,雷达环境与电波传播特性,电子工业出版社,北京,2007.7,pp.219
    [9]孔玉寿,章东华编著,现代天气预报技术第二版,气象出版社,北京,2005年3月,8-15
    [10]蔺发军,刘成国等,海上大气波导的统计分析[J],电波科学学报,2005,20(1): 64-68.
    [11]蔺法军,刘成国,潘中伟A,近海面大气波导探测及与其它研究结果的比较[J],电波科学学报,2002,17(3):269-272
    [12]蔺法军,刘成国,潘中伟B等,大气波导环境数据库及其应用[J],电波科学学报,2002,17(1)::35-37
    [13]林伟,察毫等.“浅谈海上大气波导形成及其测量预报技术”微计算机信息,2006,22(2),pp. 156-158.
    [14]林伟,察豪等,蒸发波导仿真及误差分析[J],舰船电子对抗,2006,29(1): 20-26
    [15]刘成国等,中国低空大气波导出现概率和特征量的统计分析[J],电波科学学报,1996,11(2) : 60-66.
    [16]刘成国,潘中伟,低空大气波导的研究状况及前景[J],电波与天线,1996(1):1-5
    [17]刘成国,黄际英,江长荫等,用伪折射率和相似理论计算海上蒸发波导剖面[J],电子学报,2001,29(7) : 970-972.
    [18]刘成国,黄际英,东南沿海对流层大气波导结构的出现规律[J],电波科学学报,2002,17(5): 509-513.
    [19]刘成国,蒸发波导环境特性和传播特性及其应用研究,博士论文,陕西西安,西安电子科技大学,2003
    [20]刘成国,低空大气波导预报软件研制方案[R],中国电波传播研究所,1999.8
    [21]刘成国,黄际英,江长荫等,我国对流层波导环境特性研究[J],西安电子科技大学学报2002,29(1): 119-122
    [22]刘成国,黄际英,东南沿海对流层大气波导结构的出现规律[J],电波科学学报2002,17(5): 509-513.
    [23] M.P.M.霍尔著,梁卓英等译,对流层传播与无线电通信,国防工业出版社,北京,1984.9,12-13
    [24]樊昌信,詹道庸,徐炳祥等,通信原理,第四版,国防工业出版社,北京,1999,p83
    [25]潘中伟,刘成国,郭丽,东南沿海波导结构的预报方法[J],电波科学学报,1996,11(3): 58-64
    [26]曲建光,“GPS遥感气象要素的理论与应用研究”武汉大学博士学位论文,2005,4。
    [27] R.B斯塔尔编徐静琦杨殿融译,边界层气象学导论[M],青岛,青岛海洋大学出版社,1991.12
    [28]盛裴轩,毛节泰,李建国等.大气物理学.北京,北京大学出版社,2003
    [29]唐海川,王华,黄小毛等,黄海海域一次典型大气波导过程分析[J].海洋技术,2007,26(4):89-92
    [30]姚洪滨,王桂军等,气象因素影响下的雷达作用距离预测[J],大连海事大学学报,2005,31(1): 35-38
    [31]姚展予,赵柏林,李万彪等,大气波导特征分析及其对电磁波传播的影响[J].气象学报,2000,58(5):605-615
    [32]张星,张祥林,大气波导对雷达测距和测高的影响[J],火力与指挥控制,2006,31(008): 84-86
    [33]张玉生等,利用海雾遥感和天气形势进行海上大气波导的预报研究[J],电波科学学报,2007,9(sup)
    [34]张玉生等,与大气波导结构相关的天气形势实例分析[J],电波科学学报, 2005,9(sup)
    [35]张培昌,杜秉玉,戴铁丕,雷达气象学[M],北京,气象出版社,2001,94
    [36]赵小龙,蒸发波导环境中的电磁场分布研究,硕士论文,陕西西安,西安电子科技大学,2005
    [37]赵小龙,黄际英,蒸发波导环境中的雷达探测性能分析[J],电波科学学报2006,21(6): 891-894
    [38]朱宝明,国外超视距雷达发展概况[J],电子工程信息,1999,21(21):1-8
    [39] Adolf J.Giger,Low-angle microwave propagation: physics and modeling, Artect House, Bouston ,Copyright, 1991, p16
    [40] Atkinson B.W, Li J.G and Plant R.S,Numerical modeling of the propagation environment in the atmospheric boundary layer over the Persian Gulf [J].Journal of Applied Meteorology ,2001,40(3):586-603
    [41] AMSR-E Data User’s Handbook.2003:NASA
    [42] Anthes R.A and Warner.T.T, Development of hydro-dynamic models suitable for air pollutionand other mesometeorological studies[J].Mon. Wea.Rev,1978,106:1045-1078
    [43] Bashir S O,Three years statistics of refractive index gradient and effective earth radius factor for the state of Bahrain[C],6th international conference on antennas and propagation,Convertry U K,4-7,April 1989,2:220-223
    [44] Bean B.R,Dutton E J,Radio Meteorology[M]. New York: Dover Publication Inc, 1968,7-8,132-134
    [45] Dudhia J,Numerical study of convection obse-rved during the winter monsoon experiment using a mesoscale two-dimensional model[J].J. Atmos.Sci, 1989,46(20):3077-3107
    [46] Dudhia J, A nonhydrostatic version of the Penn state-NCAR mesoscale model[J].Mon.Wea.Rev, 1993,121(5):1493-1513
    [47] E.E.Gossard:“The Formation of Elevated Refractive Layers in the Oceanic Boundary Layer by Offshore Modification of Land Air”,PB81-211419, Clorado,Boulder,Wave Propagation Lab,1980.
    [48] Earl E. Gossard, Seth Gutman, B. Boba Stankov, Daniel E. Wolf:“Profilesof Radio Refractive Index and Humidity Derived from Radar Wind Profilers and Global Positioning System”, Radio Science, Vol.34, No.2, March- April, 1999, pp.371~383.
    [49] Gary W,Culbertson, Assessment of Atmospheric Effects on VHF and UHF Communications, Thesis,Naval Postgraduate School,1990
    [50] Grell G.A, Prognostic evaluation of assumptions used by cumulus parameterizations[J].Mon.Wea.Rev, 1993,121(3):764-787
    [51] Hall.M.P.M, Barclay.L.W, Radiowave propagation, London, United Kingdom, Peter Peregrinus Ltd., 1991,pp42,155-161
    [52] Hitney H V,Vieth R,Statistical assessment of evaporation duct propagation [J],IEEE,Trans Antennas Propag,1990,38(6)::794-799
    [53] Hong S.Y, Pan H.L, Nonlocal boundary layer vertical diffusion in a medium-range forecast model. [J].Mon.Wea.Rev, 1996.124(10):2322-2339
    [54] H.T.Dougherty,B.A.Hart.Recent propagation in duct propagation predictions. IEEE Transactions on Antennas and Propagation, 1997,27(4):542-548
    [55] Jeske.H.The state of radar range prediction over sea[A],in Tropospheric radio wave propagation,part II [C], AGARD CP-70,1971,pap:50
    [56] John Cook,A sensitivity study of weather date inaccuracies on evaporation duct height algorithms [J], Radio Science, 1991, 26(3):731-746
    [57] Kaas E,A Guldberg, W May and M Decque, Using tendency errors to tune the parameterization of unresolved dynamical scale interactions in atmospheric general ciculation models.Tellus, 1999,51A,612-629
    [58] Kamran Khan, Refractive conditions in Arabian Sea and their effects on ESM and airborne radar operations[D], Naval Postgraduate School, 1990
    [59] Lee J.Wagner,L.Ted Rogers,Steve D.Burk,Tracy Haack,Island Wake Imp-act on Evaporation Duct Height and Sea Clutter in the Lee of Kauai, 2001 International Geosciences and Remote Sensing Symposium (IGARSS-2001),vol.II,Sydney ,Australia,9-13 July 2001,pp.901-903.
    [60] Lei Meng,Yijun He,Yumei Wu,Jinnan Chen, Neural network retrieval of ocean surf- ace parameters from SSM/I data [J],Monthly Weather Review,2007,vol(135),586-597
    [61] L.G..Rowlandson,H.W.Meredith,The Effect of Meteorological Conditions on the Trade Wind Duct and Related Radio Wave Propagation, AD706132,Aerospace Instrumentation Program office,HQElectronic System Division, February, 1970.
    [62] L. Ted Rogers, Claude P. Hattan,Estimating Evaporation Duct Heights from Radar Sea Echo, Radio Science, Vol.35, No.4, July-August 2000, pp.955~966.
    [63] Luc Musson-Genon,Sylvie Gauthier,Eric Bruth,A simple method to determine evaporation duct height in the sea surface boundary layer[J], Radio Science,1992,27(5):635-644.
    [64] Martin J.Otte,Nelson L.Seaman,David R.Stauffer etc, A Mesoscale Model for EM Ducting in the Marine Boundary Layer[R], The Pennsyvania State University,1996
    [65] Matthew E K, Forecasting the nighttimeevolution of radio wave ducting in complex terrain using the MM5 numerical weather model Pennsylvania , Thesis,The Pennsylvania State University, 2003
    [66] Mlawer E.J, S.J.Taubman, P.D.Brown et, Radiative transfer for inhomogeneous atmospheres: RRTM a validated correlated-k model for thelongwave [J].J.Geophys.Res,1997,102 (D14):16663-16682
    [67] Nel J W,Erasmus J E,Mare S,The establishment of a radio refractivity data base for Southern Africa[C],COMSIG88,Southern Africa Conference on communications and signal processing proceedings Pretoria,Southern Africa ,24,June,1988,pp144-147
    [68] Paulus R A,Specification for environmental measurements to assess radarsensors[R],NOST Tech,Document 1685,1989:43
    [69] Paulus R A, Practical application of an evaporation duct model [J], Radio Science, 1985, 20(4):887-896.
    [70] Richardson L F,Weather Prediction by Numerical process,Cambridge Unive-rsity Press,Cambridge,Reprinted buy Dover (1965,New York) with a new Introduction by Sydney Chapman, 1922
    [71] Stauffer D R and N L Seaman, Use of 4-D Data Assimilation in a Limited Area Mesoscale Model. Part 1: Experiments with Synoptic Scale Data [J], Mon.Wea.Rev.1990, 118, 1250-1277
    [72] Steven M.Babin,George S.Young,James A.Carton,A new model of the oceanic evaporation duct[J],Journal of Applied Meteorology ,1997,36,193-204.
    [73] Theodore Paul Mouras,Charls Thomas Houser, Effects of atmospheric refraction on U.S.ground warfare, AD-A134827,Naval Postgraduate School, Monterey, California, September, 1983
    [74] Talagrand O, Assimilation of Observations an Introduction[J],Met. Soc.Japan. Special Issue 75, 1B, 191-209, 1997
    [75] William T.Thompson,The Surface Evaporation Duct Height Product:An Evaluation,Naval Environmental Prediction Research Facility,1987,TR87-06, AD-A 195-918
    [76] Zhu.M,Atkinson B.W, Simulated climatology of atmospheric ducts over the Pe-rsian Gulf [J].Boundary-layer Meteorology ,2005,115(3):433-452

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700