用户名: 密码: 验证码:
多源卫星测高数据确定海洋潮汐模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋潮汐作为时变海面的重要组成部分,是最常见的海洋自然现象之一,与人类的生存环境密切相关,作为一个自然科学问题,已有千百年的研究认识历史。作为一个发展海洋经济的现实问题,一切海洋活动都需要海潮涨落的精确信息。随着空间对地观测技术的发展,海洋潮汐和海洋、大气、陆地水及两极冰盖等负荷效应对固定在地球表面的任何测量都有影响,为了达到各自观测的科学目标,必须建立精密的海洋潮汐模型来有效修正这些影响。过去的二十年里,卫星测高技术的发展和日趋成熟,使我们对全球海洋有了更近一步的认识,它革命性地改变了传统潮汐测量模式,极大地丰富了海洋的观测数据,特别是开阔海域的水位观测数据,使得全球海洋潮汐模型有了重大发展。潮汐分析可以直接从测高海面高观测时间序列中提取潮汐的调和常数或者相应的权参数,然而对于执行精密重复轨道任务的测高卫星来说,周期远远大于作为潮汐主体的半日分潮和主要分潮,势必会导致混叠现象,如何克服混叠效应及其导致的分潮间相关现象是利用卫星测高数据建立海潮模型的首要问题。每颗测高卫星都有自己的优势和局限性,虽然单一卫星或者单一系列卫星所能获取的潮汐信息精度尚可,但是难以满足各研究领域对海潮模型高时空分辨率的需求。随着多源多代卫星卫星测高数据的积累,为了使海潮模型有更高的时空分辨率,联合多种卫星测高数据是研究海洋潮汐的必然趋势。由于受复杂的海洋环境和陆地反射的影响,卫星测高数据在近海海域数据质量普遍较差,在联合多种测高数据的同时,应用数据同化等方法改善全球海洋潮汐模型的近海海域部分也是当前潮汐研究的热点和难点问题。
     本文联合多种测高数据,从潮汐的混叠效应着手,分析多种不同重复周期的测高卫星中存在的混叠现象,研究不同采样规律对消除和削弱混叠现象的作用,详细分析和比较不同提取方案和潮汐分析方法的优劣性,解决从卫星测高数据提取潮汐信息的若干关键问题,探讨潮汐信号与非潮汐时变信号之间的相关性,在总结确定海潮模型的具体理论和方法的基础上,联合多种测高数据确定全球海洋潮汐经验模型,并利用代表函数展开法同化测高和验潮站数据确定中国海及其邻近海域局部精化海潮模型。具体工作和主要成果如下:
     (1)从潮汐基本理论的历史发展脉络出发,评述了海洋潮汐研究的现实意义和科学意义。从现代潮汐测量技术和卫星测高技术两个方面评述了全球海洋潮汐模型的发展现状及其应用,进而根据相关地球科学领域的科学目标对潮汐模型精度和分辨率的要求,阐述发展海洋潮汐模型的必要性。
     (2)阐述了建立海洋潮汐模型所涉及的基础理论,包括平衡潮理论和潮汐动力学理论,以及引潮位的展开和潮汐分析方法,为进一步研究基于卫星测高数据解算潮汐调和常数提供理论依据。
     (3)从卫星测高的基本原理出发,重点分析了卫星测高重复采样条件下的潮汐混叠现象及其导致的分潮相关性,利用数字分析证明了利用卫星测高地面邻近平行轨迹和交叉轨迹上的相位进动差可以判断卫星分潮间的相关性,特别是对于ERS-1/2, Envisat-1和GFO等卫星,虽然不如T/P的轨道设计具有良好的分辨分潮的能力,但是根据其交叉轨迹相位进动差提供的有效信息,可以判断数据中是否包含了有用的潮汐信息,为联合多种测高数据确定海潮模型提供了理论上的先决条件。
     (4)详细讨论了不同测高卫星海而高联合数据处理的技术与方法,研究不同测高卫星海面高参考框架的统一技术。在统一处理多种测高数据以及统一参考框架的基础上,构建不同系列卫星的海平面观测时间序列。利用沿轨提取方案对T/P, Jason-1/2系列变轨前20年的观测序列和变轨后6年的观测序列分别进行调和分析和正交响应分析。结果表明,对于较短的观测时段,正交响应分析的结果略优于调和分析。在观测时段满足分离任意两个分潮的会合周期时,两种方法的分析结果具有良好的一致性,8个主要分潮在交叉点位置的振幅内符合精度均优于1cm。同时对交叉点分析和沿轨分析结果进行比较,结果表明,在相同观测时段不同采样规律的条件下,交叉点分析结果明显优于沿轨分析,验证了不规则采样具有良好的去相关作用,求解的潮汐调和常数精度更高。
     (5) ERS-1/2, Envisat-1卫星能够覆盖±81.5°以内的海域,是对T/P系列卫星很好的补充,但是鉴于太阳同步轨道的卫星测高数据中S2、K1、P1,分潮的不可分辨性,如何扬长避短从其十几年的观测资料中提取高精度的潮汐信息是当前亟需研究的问题。在调和分析方式不适用的条件F,采用调和分析与正交响应分析相结合的方式提取了ERS-2、Envisat-1系列卫星在中国海及邻近海域的潮汐调和常数。结果表明从ERS系列卫星观测时间序列中完全可以提取出与T/P卫星精度相当的太阴分潮,并把K1、P1,从Sa分离出来,把K2从Ssa中分离出来,其中P,与T/P的符合精度优于3cm。与验潮站的比较结果略优于T/P与之比较的结果。
     (6)结合国内外海潮模型的研究进展和现状,详细地总结和归纳了建立海潮模型的基本理论理论和方法,其中主要包括流体动力学数值解法,联合实际观测资料(验潮站、卫星测高等)与动力学模式的数据同化方法以及经验分析方法,并分析了不同方法的适用性和优缺点。详细研究了变分同化中的伴随法和代表函数展开法,以及经验分析的具体计算步骤。
     (7)基于精化的多源多代卫星测高数据,利用主要分潮调和常数的空间相关性,建立了15'×15'全球海洋海潮模型WHU12。在开阔海域,其与几个具有代表性的全球海洋潮汐模型符合较好。在浅海海域,精度降低一个量级,但是WHU12在中国海域的表现略好于其他模型。在此基础上,利用代表函数展开法同化T/P,Jason-1/2系列卫星变轨前的20年连续观测资料以及近岸验潮站调和常数建立了7.5'×7.5'的局部模型WHUCS12,更准确地反映了中国近海的潮汐结构。
Ocean tides, resulting mainly from the gravitational attractions of the Moon and the Sun, are one of the most fascinating natural events in the world with a significant importance for commerce and science over hundreds of years. In oceanography and geophysics, tides have strong influence on modeling of coastal or continental shelf circulations, play a significant role in climate due to its complex interactions between ocean, atmosphere, and sea ice, dissipate their energy in the ocean and solid Earth, and decelerate the Moon's mean motion, there is a clear need for more accurate ocean tide predictions. With the rapid development of the technologies of the Earth observation from the space, almost all high accuracy measurements of Geo-science contaminated with the deformations and loading effects due to ocean tides, also require to be de-tided using global ocean tide models in order to reach the scientific goals, respectively. The advent of altimetry has been totally revolutionary; it overcomes the limitation of traditional tide gauge pattern and provides the globally sampled record of sea surface height. Advances in satellite altimetry in the past two decades, especially the launch of Topex/Poseidon satellite and its follow on mission Jason-1/2, can construct a continuous long term sea level change time series and enable numerous scientific studies or discoveries, including improved global ocean tide modeling. The approach (harmonic constants or orthoweights) to tidal analysis based on satellite altimeter data is a direct, efficient and convenient way for ocean tides modeling. However, the altimeter satellites fly over the same location on the ground track once every repeat period. Because the repeated periods are of the order of ten days to a month, far larger than the most energetic tides, such as semi-diurnal and diurnal constituents with frequencies near2and1cycle per day, therefore, this kind of short-period variability clearly cannot be resolved in altimeter observations and consequently aliases to the lower frequencies. The aliasing and the question of how to separate two tides that alias to nearly the same time are the major problems to estimate the ocean tide from satellite altimetry. Owing to the distinct orbit design, the coverage and resolution of each altimeter decided by inclination and exact repeat period (ERP) is too sparse to form a global ocean tide model. All these could be largely improved by combining several kinds of altimeter data, and it is helpful to improve the ability of monitoring sea surface and investigate the water driving dynamic mechanism in shallow water.
     Based on the status of the present researches on ocean tide modeling, the aim of this thesis is mainly to develop a global ocean tide model with an accuracy of better than2cm in the deep oceans from multi-satellite altimeter data and a more accurate regional tide solution to representer method by means of assimilation altimeter data and tide gauge observations. The main research word and contributions of this dissertation include:
     1. Starting with the historical context of classical tidal theories, we summarize and review the realistic significance of commerce and science on study of tides. Reviewing the history and present status of satellite altimetry and traditional tidal measure pattern, as well as the global ocean tides modeling from the aspects of the methodology. The necessity of global ocean tides modeling according to principle, the present situation and applications of the existing ocean tide models are also summarized. At last, pointing out the author's opinions.
     2. Research on the fundamental theories of tides, including hydrodynamics, hydrostatic equilibrium, expansion of the tide generating potential, and empirical tidal analysis.
     3. Altimeter satellites are designed to monitor the sea level variation at same ground track every ERP. It is necessary to accomplish an ERP for investigating the time-variant signal, such as tidal current, ocean circulation and any other seasonal cycles. With these repeat orbits, diurnal and semi-diurnal ocean tides are aliased into periods much longer than a day or half a day. For three major satellite altimetry missions until now. i.e. T/P, ERS-2and GFO, the alias periods as well as the Rayleigh periods over which the aliased tides decorrelate have been identified. And prove these correlation problems can largely be solved by the differences of the tidal phase advances on crossing satellite ground tracks.
     4. Introducing the harmonization in multi-satellite altimeter data pro-processing and the fundamental principle to transform sea surface height from different missions in a certain reference frame and ellipsoids. The response method with orthotide formulation as well as harmonic method has been used to analyze the along track T/P observations, including20years initial orbit data and6years interleaved orbit data. The results show that the most accurate tidal solutions are obtained with the response method, which offers the possibility to infer a number of smaller tides from the dominant tides. The harmonic constants derived from the unevenly sampling pattern at crossover point are better than these from along track.
     5. The most complete altimeter coverage of the polar oceans is provided by the ERS-1/2and Envisat-1series of satellites. Unfortunately, their sun-synchronous orbits severely limit their usefulness for measuring solar tides. Nonetheless, with a decade-long time series from these satellites now in hand, and with other sun-synchronous satellite altimeters planned for the future, there is a need for detailed studies addressing what can be learned about tides from such data. The present work examines an empirical type analysis of ERS data which combine harmonic method and response method with orthotide formulation, validate the accuracy with the T/P response solution at dual-satellite crossover points and in-situ observation. The result show that the solution derived from the ERS series keep the same level as T/P response solution except the phase lag of solar tides. When we use multi-satellite altimeter data to develop a global ocean tide model, the ability of crossing ground tracks from other satellites could mitigate the decorrelation and aliasing problem.
     6. Investigating the methodology of ocean tide modeling in detail. Generally, ocean tide models can be classified into three groups, including hydrodynamic model by numerical simulation, assimilation model by data assimilation method and empirical model by direct tidal analysis on altimetry observations. After the launch of T/P, almost all ocean tide models are determined through the data assimilation or via the use of altimeter data in an empirical modeling solution. However, ocean tide model accuracy is still much worse, up to an order of magnitude, in the coastal regions or over partially or permanently sea-ice or ice-shelf covered polar ocean, than that of models in the deep ocean.
     7. A purely empirical ocean tide models with0.25°×0.25°spatial resolution has been determined using improved multi-satellite altimetry data from TOPEX, Jason-1/2, ERS-2, Envisat, and GFO, based on a Gauss function for weighting inverse proportional to the spherical grid node distance. Compared with contemporary ocean tide models using assessment from tidal constants of tide gauges and from variance reduction studies using crossover discrepancies. Meanwhile, a region ocean tide model with0.125°×0.125°is determined by means of representer method through assimilation of altimeter along track data and tide gauge data. The results show that:the ocean tides model is improved, particularly M2constituents in East China Sea and K1tide in South China Sea, the values of the other constituents are close to the uncertainty expected from the comparison of the global ocean tide models. It is indicated that assessing further improvements in tidal model accuracy will require development of a higher quality validation data set.
引文
[1]Andersen O B. Ocean tides in the northern North Atlantic and adjacent seas from ERS 1 altimetry[J]. J. Geophys. Res.1994,99(C11):22557-22573.
    [2]Andersen O B. Global ocean tides from ERS-1 and TOPEX/POSEIDON altimetry[J]. J. Geophys. Res. 1995,100:25249-25260.
    [3]Andersen O B, Woodworth P L, Flather R A. Intercomparison of recent ocean tide models[J]. J. Geophys. Res.1995,100:25261-25282.
    [4]Andersen O B, Knudsen P. Multi-satellite ocean tide modelling—The K1 constituent J]. Progress in Oceanography.1997,40:197-216.
    [5]Ardalan A A, Hashemi-Farahani H. A harmonic approach to global ocean tide analysis based on TOPEX/Poseidon satellite [J]. Mar. Geophys. Res.2007,28:235-255.
    [6]Baker T F, Bos M S. Validating Earth and ocean tide models using tidal gravity measurements[J]. Geophys. J. Int.2003,152:468-485.
    [7]Bennett A F. Inverse Methods in Physical Oceanography[M].1992, Cambridge University Press,347 pp.
    [8]Bennett A F. Inverse Modeling of the Ocean and Atmosphere[M].2002,Cambridge University Press,234 pp.
    [9]Bennett A F, Chua B S, Pflaum B L, et al. Inverse Ocean Modeling System. Part I:Implementation[J]. Journal of Atmospheric and Oceanic Technology 2008,25:1608-1622
    [10]Blayo E, Verron J, Molines J M. Assimilation of TOPEX/POSEIDON altimeter data into a circulation model of the North Atlantic[J]. J. Geophys. Res.1994,99(C12):24691-24705.
    [11]Bosch W, Savcenko R, Flechtner F, et al. Residual ocean tide signals from satellite altimetry, GRACE gravity fields, and hydrodynamic modeling[J]. Geophys. J. Int.2009,178(1185-1192).
    [12]Bouttier F, Courtier P. Data assimilation concepts and methods[J]. Meteorological Training Course Lecture Series.2002.
    [13]Brosche P, Schuh H. Tides and Earth rotation [J]. Surveys in Geophysics.1998,19:417-430.
    [14]Carrere L, Lyard F. Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing-comparisons with observations[J]. Geophys. Res. Lett.2003,30(6):1275.
    [15]Carton J A, Chepurin G, Cao X. A Simple Ocean Data Assimilation Analysis of the Global Upper Ocean 1950-95. Part I:Methodology[J]. Journal of Physical Oceanography.2000,30:294-309.
    [16]Cheng, Y C, Andersen O B. Multimission empirical ocean tide modeling for shallow waters and polar seas[J]. J. Geophys. Res.2011,116, C11001, doi:10.1029/2011JC007172.
    [17]Cartwright D E, Ray R. Oceanic tides from Geosat altimetry[J]. J. Geophys. Res.1990,95:3069-3090.
    [18]Cartwright D E, Edden A C. Corrected tables of tidal harmonics[J]. Geophys. J. R. Astron. Soc.1973,33: 253-264.
    [19]Cartwright D E, Ray R D. Energetics of global ocean tides from Geosat altimetry[J]. J. Geophys. Res. 1991,96:16897-16912.
    [20]Cartwright D E, Taylor R J. New computations of the tide generating potential[J]. Geophys. J. R. Astron. Soc.1971,23:45-74.
    [21]Cazenave A, Cabanes C, Dominh K, et al. Present-Day Sea Level Change:Observations and Causes[J]. Space Science Reviews.2003,108:131-144.
    [22]Chambers D P, Hayes S A, Ries J C, et al. New TOPEX sea state bias models and their effect on global mean sea level[J]. J. Geophys. Res.2003,108:3305.
    [23]Chang H, Lin L. Multi-point tidal prediction using artificial neural network with tide-generating forces[J]. Coastal Engineering.2006,53:857-864.
    [24]Cherniawsky J Y, Foreman M G G, Crawford W R, et al. Ocean tides from Topex/Poseidon sea level data[J]. Journal of Atmospheric and Oceanic Technology.2001,18:649-664.
    [25]Cosme E, Brankart J M, Verron J, et al. Implementation of a reduced rank square-root smoother for high resolution ocean data assimilation[J]. Ocean Modeling.2010,33(1-2):87-100.
    [26]Cummings J, Bertino L, Brasseur P, et al. Ocean data assimilation systems for GODAE[J]. Oceanography. 2009,22(3):96-109.
    [27]Desai S D, Wahr J M. Empirical ocean tide models estimated from TOPEX/POSEIDON altimetry[J]. J. Geophys. Res.1995,100:25205-25228.
    [28]Desai S D, Yuan D-. Application of the convolution formalism to the ocean tide potential results from grace[J]. J. Geophys. Res.2006,111:C6023.
    [29]Doodson A T. The harmonic development of the tide-generating potential[J]. Proc. Roy. Soc. London. 1921,100:305-329.
    [30]Durand F, Shankar D, Birol F, et al. Estimating boundary currents from satellite altimetry:A case study for the east coast of India [J]. Journal of Oceanography.2008,64:831-845.
    [31]Egbert G D, Bennett A F, Foreman M G G. TOPEX/Poseidon tides estimated using a global inverse model[J]. J. Geophys. Res.1994,99:24821-24852.
    [32]Egbert G D. Tidal data inversion:Interpolation and inference[J]. Progress in Oceanography.1997,40: 81-108.
    [33]Egbert G D, Bennett A F. Data assimilation methods for ocean tides. Modern Approaches to Data Assimilation in Ocean Modeling.1996, P. Malonotte-Rizzoli, Ed., Elsevier Science.147-179.
    [34]Egbert, G D, Erofeeva S. Efficient inverse modeling of barotropic ocean tides[J]. J. Atmos. Oceanic Technol.2002,19(2):183-204
    [35]Egbert G D, Erofeeva S, et al. Assimilation of GRACE tide solutions into a numerical hydrodynamic inverse model[J]. Geophys. Res. Lett.2009,36, L20609, doi:10.1029/2009GL040376.
    [36]Egbert G D, Erofeeva S Y, Ray R D. Assimilation of altimetry data for nonlinear shallow-water tides: Quarter-diurnal tides of the Northwest European Shelf[J]. Continental Shelf Research.2010,30(6): 668-679.
    [37]Evensen G. Data Assimilation The Ensemble Kalman Filter 2nd[M]. Springer,2009.
    [38]Evensen G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics[J]. J. Geophys. Res.1994,99(C5):10143-10162.
    [39]Evenson G, Van Leeuwen P J. Assimilation of Geosat altimeter data for the Agulhas Current using the ensemble kalman filter with a quasigeostrophic model[J]. Monthly Weather Review.1996,124:85-96.
    [40]Ezer T, Mellor G L. Continuous Assimilation of Geosat altimeter data into a three dimensional primitive equation Gulf Stream model[J]. Journal of Physical Oceanography.1994,24:832-847.
    [41]Fang G H, et al. Numerical simulation of principal tidal constituents in the South China Sea, Gulf of Tonkin and Gulf of Thailand[J]. Continental Shelf Research.1999,19:845-869.
    [42]Fieguth P W, Karl W C, Willsky A S, et al. Multiresolution optimal interpolation and statistical analysis of TOPEX/POSEIDON satellite altimetry[J]. IEEE Transactions on geoscience and remote sensing.1995, 30(2):280-292.
    [43]Fok Hok-sum, Ocean tides modeling using satellite altimetry[D]. Ohio State Univ.,2012.
    [44]Foreman M G G. Manual for tidal currents analysis and prediction[R]. Sidney, British Columbia, Canada: Institute of Ocean Sciences,1977.
    [45]Foreman M G G. Manual for tidal heights analysis and prediction[R]. Sidney, British Columbia, Canada: Institute of Ocean Sciences,1977.
    [46]Foreman M G G, Cherniawsky J Y, Ballantyne V A. Versatile harmonic tidal analysis:improvements and applications[J]. Journal of Atmospheric and Oceanic Technology.2009,26:806-816.
    [47]Foreman M G G, Henry R F. Tidal analysis based on high and low water observations[J]. Pacific Marine Science Report 79-15.1977.
    [48]Fukumori Ⅰ, Malanotte-Rizzoli P. An approximate kalman filter for ocean data assimilation:an example with an idealized Gulf Stream modeI[J]. J. Geophys. Res.1995,100(C4):6777-6793.
    [49]Fukumori Ⅰ, Raghunath R, Fu L, et al. Assimilation of TOPEX/POSEIDON data into a global ocean circulation model:How good are the results?[J]. J. Geophys. Res.1999,104:25647-25665.
    [50]Fricker H A, Padman L. Tides on Filchner-Ronne Ice Shelf from ERS radar altimetry[J]. Geophysical Res. Letters.2002,29(12), doi:10.1029/2001GL014175.
    [51]Fricker, H A, Padman L. Ice shelf grounding zone structure from ICESat laser altimetry[J]. Geophys. Res. Lett.2006,33, L15502, doi:10.1029/2006GL026907.
    [52]Gourdeau L, Verron J, Delcroix T, et al. Assimilation of TOPEX/Poseidon altimetric data in a primitive equation model of the tropical Pacific Ocean during the 1992-1996 El Nino-Southern Oscillation period[J]. J. Geophys. Res.2000,105(C4):8473-8488.
    [53]Groves G W, Reynolds R W. An orthogonalized convolution method of tide prediction[J]. J. Geophys. Res.1975,80(30):4131-4138.
    [54]Han G Q, Hendry R, Ikeda M. Assimilating TOPEXPOSEIDON derived tides in a primitive equation model over the Newfoundland Shelf[J]. Continental Shelf Research.2000,20:83-108.
    [55]Han S, Jekeli C, Shum C K. Time-variable aliasing effects of ocean tides, atmosphere, and continental water mass on monthly mean GRACE gravity field[J]. J. Geophys. Res.2004,109:B4403.
    [56]Han S, Ray R, Luthcke S B. Ocean tidal solutions in Antarctica from GRACE inter-satellite tracking data[J]. Geophysical Research Letter 2007,34, L21607, doi:10.1029/2007GL031540.
    [57]Han S, Ray R, Luthcke S. One centimeter-level observations of diurnal ocean tides from global monthly mean time-variable gravity fields[J]. J. Geod.2010,84:715-729.
    [58]Hendershott M C. The effects of solid earth deformation on global ocean tides[J]. Geophys. J. Roy. Astron. Soc.1972,29:389-402.
    [59]Hendershott M C. Ocean tides, Eos Trans. AGU,1973,54(2):76-86, doi:10.1029/EO054i002p00076-02.
    [60]Sun H P, Bernard D, Houze X, et al. Adaptability of the ocean and earth tidal models based on global observations of the superconducting gravimeters [J]. Science in China Ser. D.2005,48(11):1859-1969.
    [61]Hirose N, Fukumori I, Yoon J. Assimilation of TOPEX/POSEIDON altimeter data with a reduced gravity model of the Japan Sea[J]. Journal of Oceanography.1999,55:53-64.
    [62]Holland W R, Malanotte-Rizzoli P. Assimilation of altimeter data into an ocean circulation model:space versus time resolution studies[J]. Journal of Physical Oceanography.1989,19:1507-1534.
    [63]Kalnay E, Li H, Miyoshi T, et al.4D-Var or ensemble Kalman filter?[J]. Tellus.2007, A59:758-773.
    [64]Kalnay E. Atmospheric Modeling, Data Assimilation and Predictability[M]. Cambridge Univ. Press, 2003.
    [65]Kantha L H. Barotropic tides in the global oceans from a nonlinear tidal model assimilating altimetric tides.1. model description and results[J]. J. Geophys. Res.1995,100:25283-25308.
    [66]Kantha L H. Barotropic tides in the global oceans from a nonlinear tidal model assimilating altimetric tides.2. Altimetric and geophysical implications[J]. J. Geophys. Res.1995,100:25309-25317.
    [67]Killett B, Wahr J, Desai S, et al. Arctic Ocean tides from GRACE satellite accelerations[J]. J. Geophys. Res.2011,116, C11005, doi:10.1029/2011JC007111
    [68]King, M A, Padman L, et al. Ocean tides in the Weddell Sea:new observations on the Filchner-Ronne and Larsen C ice shelves and model validation[J]. J.Geophys.Res.2011,116,C06006,doi:10.1029/2011JC0069 49.
    [69]Knudsen P. Global low harmonic degree models of seasonal variability and residual ocean tides from TOPEX/Poseidon altimeter data[J]. J. Geophys. Res.1994,99:24643-24655.
    [70]Krohn J. A global ocean tide model with high resolution in shelf areas [J]. Mar. Geophys. Res.1984,7: 231-246.
    [71]Lahoz W, Khattatov B, Menard R. Data assimilation Make sense of observations[M]. Springer,2010.
    [72]Lefevre F, Lyard F H, Provost C L. FES99:A Global Tide Finite Element Solution Assimilating Tide Gauge and Altimetric Information[J]. Journal of Atmospheric and Oceanic Technology.2002,19: 1345-1355.
    [73]Leffler K E, Jay D A. Enhancing tidal harmonic analysis robust solutions[J]. Continental Shelf Research. 2009,29:78-88.
    [74]Le Provost C, Rougier G, Poncet A. Numerical modeling of the harmonic constituents of the tides, with application to the English Channel[J]. Journal of Physical Oceanography.1981, 11:1123-1138.
    [75]Le Provost C, Fornerino M. Tidal spectroscopy of the English Channel with a numerical model[J]. Journal of Physical Oceanography.1985,15:1009-1031.
    [76]Le Provost C, Genco M L, Lyard F et al. Tidal spectroscopy of the world ocean tides from a finite element hydrodynamic model[J]. J. Geophys. Res.1994,99:24777-24798.
    [77]Le Provost C, Lyard F. Energetics of the M2 barotropic ocean tides:an estimate of bottom friction dissipation from a hydrodynamic model[J]. Prog. Oceanog.1997,40:37-52.
    [78]Le Provost C, Lyard F, Molines J M, et al. A hydrodynamic ocean tide model improved by assimilating a satellite altimeter-derived data set[J]. J. Geophys. Res.1998,103:5513-5529.
    [79]Lyard F H. Data assimilation in a wave equation:A variational representer approach for the Grenoble tidal model[J]. J. Comput. Phys.1999,149:1-31.
    [80]Lyard F, Lefevre F, Letellier T, et al. Modelling the global ocean tides:modern insights from FES2004 [J]. Ocean Dynamics.2006,56:394-415.
    [81]Ma X C, Shum C K, Eanes R J, et al. Determination of ocean tides from the first year of TOPEX/Poseidon altimeter measurements[J]. J. Geophys. Res.1994,99:24809-24820.
    [82]Matsumoto K, Ooe M, Sato T, et al. Ocean tide model obtained from TOPEX/Poseidon altimetry data[J]. J. Geophys. Res.1995,100:25319-25330.
    [83]Matsumoto K, Takanezawa T, Ooe M. Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model:A Global model and a regional model around Japan[J]. Journal of Oceanography.2000,56:567-581.
    [84]Mayer-Gurr, Savcenko R, Bosch W, et al. Ocean tides from satellite altimetry and GRACE[J]. Journal of Geodynamics.2012,59-60:28-38.
    [85]Mazzega P, Berge M. Ocean tides in the Asian semienclosed seas from TOPEX/POSEIDON[J]. J. Geophys. Res.1994,99:24867-24881.
    [86]Mellor G L, Ezer T. A Gulf Stream model and an altimetry assimilation scheme[J]. J. Geophys. Res.1991, 96(C5):8779-8795.
    [87]Munk W H, Cartwright D E. Tidal spectroscopy and prediction[J]. Phil. Tran. Roy. Soc. London.1966, 259(1105):533-581.
    [88]Oschlies A, Willebrand J. Assimilation of Geosat altimeter data into an eddy-resolving primitive equation model of the North Altantic Ocean[J]. J. Geophys. Res.1996,101(C6):14175-147190.
    [89]Padman, L., H. A. Fricker, R. Coleman, S. Howard, and S. Erofeeva. A new tidal model for the Antarctic ice shelves and seas[J]. Ann. Glaciol.2002,34:247-254.
    [90]Padman L, Fricker H A. Tides on the Ross Ice Shelf observed with ICESat[J]. Geophys. Res. Lett.2005, 32, L14503, doi:10.1029/2005GL023214.
    [91]Padman L,Erofeeva S. A barotropic inverse tidal model for the Arctic Ocean[J]. Geophys. Res. Lett.2004, 31 (2), L02303, doi:10.1029/2003GL019003.
    [92]Padman L, Erofeeva L L, Fricker H A. Improving Antarctic tide models by assimilation of ICEsat laser altimetry over ice shelves[J]. Geophys. Res. Lett.2008,35, L22504,doi:10.1029/2008GL035592.
    [93]Park S K, Xu L. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications[M], Springer, 2009.
    [94]Parke M E, Stewart R H, Farless D L, and Cartwright D E. On the choice of orbits for an altimetric satellite to study ocean circulation and tides[J]. J. Geophys. Res.1987,92:11693-11707.
    [95]Pawlowicz R, Beardsley B, Lentz S. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE[J]. Computers & Geosciences.2002,28:929-937.
    [96]Ray R D. Spectral analysis of highly aliased sea-level signals[J]. J. Geophys. Res.1998,99: 24991-25003.
    [97]Ray R D. A Global Ocean Tide Model From TOPEX/POSEIDON Altimetry:GOT99.2[R]. Greenbelt, Maryland:Goddard Space Flight Center,1999.
    [98]Ray R D. Tidal analysis experiments with sun-synchronous satellite altimeter data [J]. J. Geod.2007,81: 247-257.
    [99]Ray R D. A preliminary tidal analysis of ICESat laser altimetry:Southern Ross Ice Shelf[J]. Geophys. Res. Lett.2008,35. L02505, doi:10.1029/2007GL032125.
    [100]Ray R D, Luthcke S B, Boy J P. Qualitative comparisons of global ocean tide models by analysis of intersatellite ranging data[J]. J. Geophys. Res.2009,114, C09017, doi. 10.1029/2009JC005362.
    [101]Ray R D, Egbert G D, Erofeeva S Y. Tide predictions in shelf and coastal waters:Status and prospects[M]. Coastal altimetry. Springer Berlin Heidelberg,2011:191-216.
    [102]Roosbeek F. RATGP95:a harmonic development of the tide-generating potential using an analytical method[J]. Geophy. J. Int.1996,126(1):197-204.
    [103]Sanchez B V, Pavlis N K. Estimation of main tidal constituents from TOPEX altimetry using a proudman function expansion[J]. J. Geophys. Res.1995,100:25229-25248.
    [104]Savcenko R, Bosch W. EOT08a-empirical ocean tide model from multi-mission satellite altimetry[R]. Munchen:Deutsches Geodatisches Forschungsinstitut,2008.
    [105]Savcenko R, Bosch W. Empirical ocean tide analysis of cross-calibrated multi-mission altimeter data[J]. IUGG General Assembly, Perugia, Italy.2007.
    [106]Schlax M G, Chelton D B. Aliased tidal errors in TOPEX/POSEIDON sea surface height data[J]. J. Geophys. Res.1994,99:24761-24775.
    [107]Schrama E J O, Ray R D. A preliminary tidal analysis of TOPEX/POSEIDON altimetry[J]. J. Geophys. Res.1994,99:24799-24808.
    [108]Schwiderski E W. Ocean tides,1, global ocean tidal equations[J]. Mar. Geod.1980,3:161-217.
    [109]Schwiderski E W. Ocean tides,2, a hydronomical interpolations model[J]. Mar. Geod.1980,3:218-257.
    [110]Schwiderski E W. On charting global ocean tides[J]. Reviews of Geophysics and Space physics.1980, 18(1):243-268.
    [111]Schwiderski E W. Combined hydrodynamical and empirical modeling of ocean tides [J]. Mar. Geophys.l Res.1984,7:215-229.
    [112]Shan G, Fan W, Mingkui L, et al. Application of altimetry data assimilation on mesoscale eddies simulation [J]. Science in China Ser. D.2008,51:142-151.
    [113]Shepherd A, Peacock N R. Ice shelf tidal motion derived from ERS altimetry[J]. Journal of Geophysical Research,2003,108(C6):3198.
    [114]Shum C K, Woodworth P L, Andersen O B, et al. Accuracy assessment of recent ocean tide models[J]. J. Geophys. Res.1997,102:25173-25194.
    [115]Smith A J E. Application of Satellite Altimetry for Global Ocean Tide Modeling[D]. Delft Univ. Press, 1999.
    [116]Smith A J E, Ambrosius B A C, Wakker K F. Ocean tides from T/P, ERS-1, GEOSAT altimetry[J]. J. Geod.2000,74:399-413.
    [117]Smith A J E, Ambrosius B A C, Wakker K. F, et al. Ocean tides from harmonic and response analysis on TOPEX/POSEIDON altimetry[J]. Adv. Space Res.1998,22(11):1541-1548.
    [118]Smith A J E, Ambrosius B A C, Wakker K F, et al. Comparison between the harmonic and response methods of tidal analysis using TOPEX/POSEIDON altimetry[J]. J. Geod.1997,71:695-703.
    [119]Smith A J E, Anderson O B. Errors in recent ocean tide models:possible origin and cause[J]. Prog. Oceanog.1997,40:325-336.
    [120]Smithson M J. Pelagic Tidal Constants. Vol.3. IAPSO Publication Scientifique 35,1992, IUGG,191pp.
    [121]Hartmann T H, Wenzel H G. The HW95 tidal potential catalogue[J]. Geophys. Res. Lett.1995,22(24): 3553-3556.
    [122]Tamura Y. A harmonic development of the tide-generating potential[J]. Bull. Inf. Marees Terrestres. 1987.
    [123]Teague W J, Pistek P, Jacobs G A, et al. Evaluation of Tides from TOPEX/Poseidon in the Bohai and Yellow Seas[J]. Journal of Atmospheric and Oceanic Technology.2000,17:679-689.
    [124]Tierney C C, Parke M E, Born G H. An investigation of ocean tides derived from along-track altimetry[J]. J. Geophys. Res.1998,103:10273-10287.
    [125]Tierney C C, Kantha L H, Born G H. Shallow and deep water global ocean tides from altimetry and numerical modeling[J]. J. Geophys. Res.2000,105:11259-11277.
    [126]Wagner C A, Tai C-, Kuhn J M. Improved M2 ocean tide from TOPEX/POSEIDON AND Geosat altimetry[J]. J. Geophys. Res.1994,99:24853-24865.
    [127]Wang Y. Ocean tide modlling in the Southern Ocean[D]. OSU,2004.
    [128]White W B, Tai C. Continuous assimilation of Geosat altimetric sea observations into a numerical synotic ocean model of the California Current[J]. J. Geophys. Res.1990,95(C3):3127-3148.
    [129]Xiao X, Wang D, Xu J. The assimilation experiment in the southwestern South China Sea in summer 2000 [J]. Chinese Science Bulletin.2006,51(Supp. II):31-37.
    [130]Yanagi T, Morimoto A, and Ichikawa K. Co-tidal and co-range charts for the East China Sea and the Yellow Sea derived from satellite altimetric data[J]. J. Oceanogr.1997,53:303-309.
    [131]Yuchan Y, Matsumoto K, Shum C K, et al. Advances in Southern Ocean tide modeling[J]. Journal of Geodynamics.2006,41:128-132.
    [132]Zahel W. Assimilating ocean tide determined data into global tidal models[J]. Journal of Marine Systems. 1995,6:3-13.
    [133]Zahrana K H, Jentzschb G, Seeberc G. Accuracy assessment of ocean tide loading computations for precise geodetic observations[J]. Journal of Geodynamics.2006,42:159-174.
    [134]Zhigang X, Hendry R M, Loder J W. Application of a direct inverse data assimilation method to the M2 tide on the Newfoundland and Southern Labrador Shelves[J]. Journal of Atmospheric and Oceanic Technology.2001,18:665-690.
    [135]暴景阳,晁定波.由T/P卫星测高数据建立南中国海潮汐模型的初步研究[J].武汉测绘科技大学学报.1999,24(4):341-345.
    [136]暴景阳,晃定波.南中国海TOPEX/POSEIDON轨迹交义点测高数据的潮汐调和分析[J].测绘学报.2000,29(1):17-23.
    [137]陈宗铺.潮汐学[M].北京:科学出版社,1980.
    [138]陈宗铺,黄祖坷,汤恩祥.潮汐分析和推算的一种j、v模型[J].海洋学报.1990,12(6):693-703.
    [139]褚永海.卫星测高波形处理理论研究及应用[D].武汉大学:武汉,2007.
    [140]董晓军,马继瑞,等.利用TOPEX/Poseidon卫星高度计资料提取黄海、东海潮汐信息的研究[J].海洋与湖沼.2002,33(4):386-392.
    [141]方国洪,郑文振,陈宗镛.潮汐和潮流的分析和预报[M].北京:海洋出版社,1986.
    [142]韩桂军,何柏荣.利用伴随法优化非线性潮汐模型的开边界条件:Ⅰ.伴随方程的建立及“孪生”数值试验[J].海洋学报.2000,22(6):27-33.
    [143]韩桂军,方国洪等.利用伴随法优化非线性潮汐模型的开边界条件Ⅱ.黄海、东海潮汐资料的同化试验[J].海洋学报.2001,23(2):25-31.
    [144]郝洪涛,孙和平.利用数值计算法实施引潮位的解析展开[J].大地测量与地球动力学.2007,27(2):75-79.
    [145]黄辰虎,暴景阳,刘雁春,et al.正交潮响应分析法与调和分析法在验潮站潮汐资料分析中的对比研究[J].海洋测绘.2004,24(2):19-23.
    [146]黄辰虎,侯世喜,黄谟涛,et al.潮汐非调和常数的计算及应用[J].海洋测绘.2005,25(4):22-24.
    [147]黄祖珂,黄磊.潮汐原理与计算[M].青岛:中国海洋大学出版社,2005.
    [148]金涛勇.多源海洋观测数据确定全球海平面及其变化的研究[D].武汉大学:武汉,2010.
    [149]姜卫平.卫星测高在大地测量学中的应用[D].武汉大学:武汉,2000.
    [150]李建成,陈俊勇,宁津生.地球重力场逼近理论与中国似大地水准面的确定[M].武汉:武汉大学出版社,2003.
    [151]李建成,褚永海,姜卫平.利用卫星测高资料监测长江中下游湖泊水位变化[J].武汉大学学报:信息科学版.2007,32(2):144-147.
    [152]李建成,宁津生,晁定波.卫星测高在大地测量学中的应用及进展[J].测绘科学.2006,31(6):19-23.
    [153]李建成,宁津生,晁定波.我国海域大地水准面与大陆大地水准面的拼接研究[J].武汉大学学报:信息科学版.2003,28(5):542-546.
    [154]李建成,宁津生,陈俊勇.中国海域大地水准面和重力异常的确定[J].测绘学报.2003,32(2): 114-119.
    [155]李磊,杜凌,,左军成.渤、黄、东海M2和K1分潮潮流场的有限元模拟[J].中国海洋大学学报:自然科学版.2006,36(6):851-858.
    [156]李立,甘子钧TOPEX/POSEIDON高度计浅海潮汐混淆的初步分析[J].海洋学报.1999,21(3):7-14.
    [157]李培良,左军成,等.南海TOPEX/POSEIDON高度计资料的正交响应法潮汐分析[J].海洋与湖沼.2002,33(3):287-295.
    [158]李培良,左军成,吴德星.渤、黄、东海同化TOPEX/POSEIDON高度计资料的半日分潮数值模拟[J].海洋与湖沼.2005,36(1):24-30.
    [159]刘克修,马继瑞.引入差比关系法分析西北太平洋TOPEX/POSEIDON卫星高度计测高数据[J].海洋学报.2002,24(4):1-10.
    [160]刘克修,许建平.用TOPEX/Poseidon资料研究南海潮汐和海面高度季节变化[J].热带海洋学报.2002,21(3):55-63.
    [161]马继瑞,韩桂军,冬李.变分伴随数据同化在海表面温度预报中的应用研究[J].海洋学报.2002,24(5):1-7.
    [162]马寨璞.海洋流场数据同化方法与应用的研究[D].浙江大学:杭州,2002.
    [163]丘仲锋,何宜军TOPEX/POSEIDON高度计资料用于中国近海M2分潮的同化反演[J].海洋与湖沼.2005,36(4):376-384.
    [164]丘仲锋,何宜军,吕咸青.黄海、渤海TOPEXPoseidon高度计资料潮汐伴随同化[J].海洋学报.2005,27(4):10-18.
    [165]孙新轩,许军,暴景阳.利用T/P卫星测高数据提取潮汐参数的研究[J].测绘通报.2006:16-18.
    [166]万振文,乔方利,袁业立.渤、黄、东海三维潮波运动数值模拟[J].海洋与湖沼.1998,29(6):611-616.
    [167]汪海洪,钟波,王伟.卫星测高的局限与新技术发展[J].大地测量与地球动力学.2009,29(1).
    [168]汪一航,方国洪,魏泽勋.基于卫星高度计的全球大洋潮汐模式的准确度评估[J].地球科学进展.2010,25(4):353-359.
    [169]王代锋,洪华生,张文舟.集合Kalman滤波同化方法在福建沿岸潮汐数值模拟和预报中的应用研究[J].厦门大学学报:自然科学版.2010,49(1):128-133.
    [170]文汉江,章传银.由ERS-2和TOPEX卫星测高数据推算的海面高异常的主成分分析[J].武汉大学学报:信息科学版.2006,31(3):221-223.
    [171]吴自库.南海TOPEX/Poseidon测高数据的潮波信息提取[J].科学技术与工程.2008,8(14):3734-3736.
    [172]郗钦文.不同规格化的引潮位展开及其转换[J].地球物理学报.2007,50(1):111-114.
    [173]郗钦文.现代引潮位质疑与调和分析方法评论[J].大地测量与地球动力学.2002,22(2):7-9.
    [174]郗钦文.引潮位展开中的面球谐函数及其递推公式[J].地球物理学报.1999,42(1):69-73.
    [175]郗钦文.精密引潮位展开的精度评定[J].地球物理学报.1992.35(2):150-153.
    [176]郗钦文.精密引潮位展开及某些诠释[J].地球物理学报.1991,34(2):182-194.
    [177]郗钦文,杨林章.地球对引潮力的响应及综合分析[J].中国地震.1994:83-89.
    [178]许军,暴景阳,晁定波.逆气压改正对卫星测高数据反演潮汐参数的影响[J].武汉大学学报:信息科学版.2006,31(7):599-602.
    [179]许军,暴景阳,刘雁春.潮汐模型对利用卫星测高数据研究海平面变化的影响[J].武汉大学学报:信息科学版.2006,31(6):503-507.
    [180]许军,暴景阳,刘雁存,et al.基于POM模式与blending同化法建立中国近海潮汐模型[J].海洋测绘.2008,28(6):15-17.
    [181]许军,暴景阳,章传银.联合TOPEX/Poseidon与Geosat/ERM建立区域潮汐模型的研究测高资料[J].测绘科学.2006,31(2):90-92.
    [182]许厚泽.固体地球潮汐[M].武汉:湖北科学技术出版社,2010.
    [183]于运全.海洋天灾:中国历史时期的海洋灾害与沿海社会经济[M].南昌:江西高校出版社,2005.
    [184]詹金刚,王勇,程永寿.中国近海海平面变化特征分析[J].地球物理学报.2009,52(7).
    [185]章传银,李建成.联合卫星测高和海洋物理数据计算近海稳态海面地形[J].武测绘科技大学学报.2000,25(6):500-504.
    [186]章传银.近海多种卫星测高应用技术研究[D].武汉大学:武汉,2002.
    [187]张继才.三维正压潮汐潮流伴随同化模型数值建模及应用研究[D].青岛:中国海洋大学,2008.
    [188]朱建荣.海洋数值计算方法和数值模式[M].北京:海洋出版社,2003.
    [189]张颖,高金耀.15年测高资料反演南海北部潮汐结果的分析[J].海洋测绘.2008,28(6).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700